Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil

. 2016 ; 7 () : 995. [epub] 20160624

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27446035

Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.

Zobrazit více v PubMed

Abraham W. R., Wenderoth D. F., Glasser W. (2005). Diversity of biphenyl degraders in a chlorobenzene polluted aquifer. Chemosphere 58 529–533. 10.1016/j.chemosphere.2004.08.074 PubMed DOI

Benizri E., Amiaud B. (2005). Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biol. Biochem. 37 2055–2064. 10.1016/j.soilbio.2005.03.008 DOI

Berg G., Smalla K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68 1–13. 10.1111/j.1574-6941.2009.00654.x PubMed DOI

Chain P. S., Denef V. J., Konstantinidis K. T., Vergez L. M., Agullo L., Reyes V. L., et al. (2006). Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc. Natl. Acad. Sci. U.S.A. 103 15280–15287. 10.1073/pnas.0606924103 PubMed DOI PMC

Chaudhry Q., Blom-Zandstra M., Gupta S., Joner E. J. (2005). Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ. Sci. Pollut. Res. 12 34–48. 10.1065/espr2004.08.213 PubMed DOI

Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., et al. (2009). The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37 D141–D145. 10.1093/nar/gkn879 PubMed DOI PMC

Dennis P. G., Miller A. J., Hirsch P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol. Ecol. 72 313–327. 10.1111/j.1574-6941.2010.00860.x PubMed DOI

Fierer N., Bradford M. A., Jackson R. B. (2007). Toward an ecological classification of soil bacteria. Ecology 88 1354–1364. 10.1890/05-1839 PubMed DOI

Geisseler D., Scow K. M. (2014). Long-term effects of mineral fertilizers on soil microorganisms - a review. Soil Biol. Biochem. 75 54–63. 10.1016/j.soilbio.2014.03.023 DOI

Gilbert E. S., Crowley D. E. (1997). Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl. Environ. Microbiol. 63 1933–1938. PubMed PMC

Hartmann A., Schmid M., Van Tuinen D., Berg G. (2009). Plant-driven selection of microbes. Plant Soil 321 235–257. 10.1007/s11104-008-9814-y DOI

Ionescu M., Beranová K., Dudková V., Kochánková L., Demnerová K., Macek T., et al. (2009). Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphenyls. Int. Biodeterior. Biodegr. 63 667–672. 10.1016/j.ibiod.2009.03.009 DOI

Jones D., Nguyen C., Finlay R. (2009). Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321 5–33. 10.1007/s11104-009-9925-0 DOI

Koubek J., Uhlík O., Ječná K., Junková P., Vrkoslavová J., Lipov J., et al. (2012). Whole-cell MALDI-TOF: rapid screening method in environmental microbiology. Int. Biodeterior. Biodegr. 69 82–86. 10.1016/j.ibiod.2011.12.007 DOI

Kowalchuk G. A., Buma D. S., De Boer W., Klinkhamer P. G. L., Van Veen J. A. (2002). Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81 509–520. 10.1023/A:1020565523615 PubMed DOI

Kurzawová V., Štursa P., Uhlík O., Norková K., Strohalm M., Lipov J., et al. (2012). Plant-microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil. New Biotechnol. 30 15–22. 10.1016/j.nbt.2012.06.004 PubMed DOI

Lambers H., Mougel C., Jaillard B., Hinsinger P. (2009). Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321 83–115. 10.1007/s11104-009-0042-x DOI

Lane D. J. (1991). “16S/23S rRNA sequencing,” in Nucleic Acid Techniques in Bacterial Systematics eds Stackebrandt E., Goodfellow M. (New York, NY: John Wiley and Sons; ), 115–175.

Lauro F. M., Mcdougald D., Thomas T., Williams T. J., Egan S., Rice S., et al. (2009). The genomic basis of trophic strategy in marine bacteria. Proc. Natl. Acad. Sci. U.S.A. 106 15527–15533. 10.1073/pnas.0903507106 PubMed DOI PMC

Lee K. C. Y., Morgan X. C., Power J. F., Dunfield P. F., Huttenhower C., Stott M. B. (2015). Complete genome sequence of the thermophilic Acidobacteria, Pyrinomonas methylaliphatogenes type strain K22T. Stand. Genomic Sci. 10 1–8. 10.1186/s40793-015-0099-5 PubMed DOI PMC

Leewis M.-C., Uhlík O., Fraraccio S., Mcfarlin K., Kottara A., Glover C., et al. (2016a). Differential impacts of willow and mineral fertilizer on bacterial communities and biodegradation in diesel fuel oil-contaminated soil. Front. Microbiol. 7:837 10.3389/fmicb.2016.00837 PubMed DOI PMC

Leewis M.-C., Uhlík O., Leigh M. B. (2016b). Synergistic processing of biphenyl and benzoate: carbon flow through the bacterial community in polychlorinated-biphenyl-contaminated soil. Sci. Rep. 6:22145 10.1038/srep22145 PubMed DOI PMC

Leff J. W., Jones S. E., Prober S. M., Barberán A., Borer E. T., Firn J. L., et al. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. U.S.A. 112 10967–10972. 10.1073/pnas.1508382112 PubMed DOI PMC

Leigh M. B., Fletcher J. S., Fu X., Schmitz F. J. (2002). Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36 1579–1583. 10.1021/es015702i PubMed DOI

Leigh M. B., Pellizari V. H., Uhlík O., Sutka R., Rodrigues J., Ostrom N. E., et al. (2007). Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 1 134–148. 10.1038/ismej.2007.26 PubMed DOI

Leigh M. B., Prouzová P., Macková M., Macek T., Nagle D. P., Fletcher J. S. (2006). Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl. Environ. Microbiol. 72 2331–2342. 10.1128/AEM.72.4.2331-2342.2006 PubMed DOI PMC

Liliensiek A.-K., Thakuria D., Clipson N. (2012). Influences of plant species composition, fertilisation and lolium perenne ingression on soil microbial community structure in three irish grasslands. Microb. Ecol. 63 509–521. 10.1007/s00248-011-9985-6 PubMed DOI

Liste H. H., Alexander M. (2000). Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40 11–14. 10.1016/s0045-6535(99)00217-9 PubMed DOI

Love M., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550 10.1186/s13059-014-0550-8 PubMed DOI PMC

Macek T., Macková M., Káš J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18 23–34. 10.1016/S0734-9750(99)00034-8 PubMed DOI

Macková M., Dowling D., Macek T. (eds) (2006). Phytoremediation and Rhizoremediation. Theoretical Background. Dordrecht: Springer.

Macková M., Uhlík O., Lovecká P., Viktorová J., Nováková M., Demnerová K., et al. (2010). “Bacterial degradation of polychlorinated biphenyls,” in Geomicrobiology: Molecular and Environmental Perspective eds Loy A., Mandl M., Barton L. L. (Dordrecht: Springer; ), 347–366.

Marschner P., Yang C. H., Lieberei R., Crowley D. E. (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 33 1437–1445. 10.1016/S0038-0717(01)00052-9 DOI

McMurdie P. J., Holmes S. (2014). Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10:e1003531 10.1371/journal.pcbi.1003531 PubMed DOI PMC

Meyer F., Paarmann D., D’souza M., Olson R., Glass E., Kubal M., et al. (2008). The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386 10.1186/1471-2105-9-386 PubMed DOI PMC

Mukerjee-Dhar G., Hatta T., Shimura M., Kimbara K. (1998). Analysis of changes in congener selectivity during PCB degradation by Burkholderia sp. strain TSN101 with increasing concentrations of PCB and characterization of the bphBCD genes and gene products. Arch. Microbiol. 169 61–70. 10.1007/s002030050541 PubMed DOI

Mukherjee S., Juottonen H., Siivonen P., Lloret Quesada C., Tuomi P., Pulkkinen P., et al. (2014). Spatial patterns of microbial diversity and activity in an aged creosote-contaminated site. ISME J. 8 2131–2142. 10.1038/ismej.2014.151 PubMed DOI PMC

Neumann G., George T. S., Plassard C. (2009). Strategies and methods for studying the rhizosphere—the plant science toolbox. Plant Soil 321 431–456. 10.1007/s11104-009-9953-9 DOI

Ni J., Yan Q., Yu Y. (2013). How much metagenomic sequencing is enough to achieve a given goal? Sci. Rep. 3:1968 10.1038/srep01968 PubMed DOI PMC

Nunes da Rocha U., Plugge C. M., George I., Van Elsas J. D., Van Overbeek L. S. (2013). The rhizosphere selects for particular groups of acidobacteria and verrucomicrobia. PLoS ONE 8:e82443 10.1371/journal.pone.0082443 PubMed DOI PMC

Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O’hara R. B., et al. (2013). Vegan: Community Ecology Package. Available at: http://CRAN.R-project.org/package=vegan

Pavlíková D., Macek T., Macková M., Pavlík M. (2007). Monitoring native vegetation on a dumpsite of PCB-contaminated soil. Int. J. Phytoremediation 9 71–78. 10.1080/15226510601139433 PubMed DOI

Pham T. T., Pino Rodriguez N. J., Hijri M., Sylvestre M. (2015). Optimizing polychlorinated biphenyl degradation by flavonoid-induced cells of the rhizobacterium Rhodococcus erythropolis U23A. PLoS ONE 10:e0126033 10.1371/journal.pone.0126033 PubMed DOI PMC

Pham T. T. M., Tu Y., Sylvestre M. (2012). Remarkable ability of Pandoraea pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids. Appl. Environ. Microbiol. 78 3560–3570. 10.1128/aem.00225-12 PubMed DOI PMC

Philippot L., Raaijmakers J. M., Lemanceau P., Van Der Putten W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11 789–799. 10.1038/nrmicro3109 PubMed DOI

Prober S. M., Leff J. W., Bates S. T., Borer E. T., Firn J., Harpole W. S., et al. (2015). Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18 85–95. 10.1111/ele.12381 PubMed DOI

Quince C., Lanzén A., Curtis T. P., Davenport R. J., Hall N., Head I. M., et al. (2009). Accurate determination of microbial diversity from 454 pyrosequencing data. Nat. Methods 6 639–641. 10.1038/nmeth.1361 PubMed DOI

Quince C., Lanzen A., Davenport R. J., Turnbaugh P. J. (2011). Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38 10.1186/1471-2105-12-38 PubMed DOI PMC

R Development Core Team (2009). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Read D. B., Bengough A. G., Gregory P. J., Crawford J. W., Robinson D., Scrimgeour C. M., et al. (2003). Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol. 157 315–326. 10.1046/j.1469-8137.2003.00665.x PubMed DOI

Rezek J., Macek T., Macková M., Tříska J., Růžičková K. (2008). Hydroxy-PCBs, methoxy-PCBs and hydroxy-methoxy-PCBs: metabolites of polychlorinated biphenyls formed in vitro by tobacco cells. Environ. Sci. Technol. 42 5746–5751. 10.1021/es800445h PubMed DOI

Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC

Shah N., Tang H., Doak T. G., Ye Y. (2012). Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Biocomputing 2011 165–176. PubMed

Singer A. C., Smith D., Jury W. A., Hathuc K., Crowley D. E. (2003). Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ. Toxicol. Chem. 22 1998–2004. 10.1897/02-471 PubMed DOI

Sipila T. P., Keskinen A.-K., Akerman M.-L., Fortelius C., Haahtela K., Yrjala K. (2008). High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J. 2 968–981. 10.1038/ismej.2008.50 PubMed DOI

Smalla K., Wieland G., Buchner A., Zock A., Parzy J., Kaiser S., et al. (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67 4742–4751. 10.1128/aem.67.10.4742-4751.2001 PubMed DOI PMC

Stella T., Covino S., Burianová E., Filipová A., Křesinová Z., Voříšková J., et al. (2015). Chemical and microbiological characterization of an aged PCB-contaminated soil. Sci. Total Environ. 533 177–186. 10.1016/j.scitotenv.2015.06.019 PubMed DOI

Su J.-Q., Ding L.-J., Xue K., Yao H.-Y., Quensen J., Bai S.-J., et al. (2015). Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol. Ecol. 24 136–150. 10.1111/mec.13010 PubMed DOI

Tatusov R. L., Fedorova N. D., Jackson J. D., Jacobs A. R., Kiryutin B., Koonin E. V., et al. (2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41 10.1186/1471-2105-4-41 PubMed DOI PMC

Tatusov R. L., Galperin M. Y., Natale D. A., Koonin E. V. (2000). The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28 33–36. 10.1093/nar/28.1.33 PubMed DOI PMC

Tillmann S., Strompl C., Timmis K. N., Abraham W. R. (2005). Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol. Ecol. 52 207–217. 10.1016/j.femsec.2004.11.014 PubMed DOI

Toussaint J.-P., Pham T., Barriault D., Sylvestre M. (2012). Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl. Microbiol. Biotechnol. 95 1589–1603. 10.1007/s00253-011-3824-z PubMed DOI

Uhlík O., Ječná K., Macková M., Vlček C., Hroudová M., Demnerová K., et al. (2009). Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl. Environ. Microbiol. 75 6471–6477. 10.1128/Aem.00466-09 PubMed DOI PMC

Uhlík O., Musilová L., Rídl J., Hroudová M., Vlček C., Koubek J., et al. (2013). Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl. Microbiol. Biotechnol. 97 9245–9256. 10.1007/s00253-012-4627-6 PubMed DOI

Uhlík O., Wald J., Strejček M., Musilová L., Rídl J., Hroudová M., et al. (2012). Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS ONE 7:e40653 10.1371/journal.pone.0040653 PubMed DOI PMC

Yi H., Crowley D. E. (2007). Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ. Sci. Technol. 41 4382–4388. 10.1021/es062397y PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...