Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
27483244
PubMed Central
PMC5000603
DOI
10.3390/ijms17081205
PII: ijms17081205
Knihovny.cz E-zdroje
- Klíčová slova
- bioremediation, carbon flow, community structure, secondary plant metabolites (SPMEs),
- MeSH
- Bacteria klasifikace izolace a purifikace metabolismus MeSH
- biodegradace * MeSH
- látky znečišťující půdu chemie toxicita MeSH
- polychlorované bifenyly toxicita MeSH
- půdní mikrobiologie * MeSH
- rostliny metabolismus mikrobiologie MeSH
- sekundární metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- látky znečišťující půdu MeSH
- polychlorované bifenyly MeSH
Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the "secondary compound hypothesis" and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes.
Zobrazit více v PubMed
Hartmann A., Rothballer M., Schmid M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil. 2008;312:7–14. doi: 10.1007/s11104-007-9514-z. DOI
Bakker P.A.H.M., Berendsen R.L., Doornbos R.F., Wintermans P.C.A., Pieterse C.M.J. The rhizosphere revisited: Root microbiomics. Front. Plant Sci. 2013;4:165. doi: 10.3389/fpls.2013.00165. PubMed DOI PMC
Smalla K., Wieland G., Buchner A., Zock A., Parzy J., Kaiser S., Roskot N., Heuer H., Berg G. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 2001;67:4742–4751. doi: 10.1128/AEM.67.10.4742-4751.2001. PubMed DOI PMC
Berg G., Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009;68:1–13. doi: 10.1111/j.1574-6941.2009.00654.x. PubMed DOI
Schreiter S., Eltlbany N., Smalla K. Microbial communities in the rhizosphere analyzed by cultivation-independent DNA-based methods. In: Lugtenberg B., editor. Principles of Plant–Microbe Interactions: Microbes for Sustainable Agriculture. Springer International Publishing; New York, NY, USA: 2015. pp. 289–298.
York L.M., Carminati A., Mooney S.J., Ritz K., Bennett M.J. The holistic rhizosphere: Integrating zones, processes, and semantics in the soil influenced by roots. J. Exp. Bot. 2016 doi: 10.1093/jxb/erw108. PubMed DOI
Jones D.L., Nguyen C., Finlay R.D. Carbon flow in the rhizosphere: Carbon trading at the soil–root interface. Plant Soil. 2009;321:5–33. doi: 10.1007/s11104-009-9925-0. DOI
Lakshmanan V., Selvaraj G., Bais H.P. Functional soil microbiome: Belowground solutions to an aboveground problem. Plant Physiol. 2014;166:689–700. doi: 10.1104/pp.114.245811. PubMed DOI PMC
Nguyen C. Rhizodeposition of organic C by plant: Mechanisms and controls. In: Lichtfouse E., Navarrete M., Debaeke P., Véronique S., Alberola C., editors. Sustainable Agriculture. Springer; Houten, The Netherlands: 2009. pp. 97–123.
Lu Y., Zhou Y., Nakai S., Hosomi M., Zhang H., Kronzucker H.J., Shi W. Stimulation of nitrogen removal in the rhizosphere of aquatic duckweed by root exudate components. Planta. 2014;239:591–603. doi: 10.1007/s00425-013-1998-6. PubMed DOI PMC
Pieterse C.M.J., de Jonge R., Berendsen R.L. The soil-borne supremacy. Trends Plant Sci. 2016;21:171–173. doi: 10.1016/j.tplants.2016.01.018. PubMed DOI
Egamberdieva D., Abdiev A., Khaitov B. Synergistic interactions among root-associated bacteria, rhizobia and chickpea under stress conditions. In: Azooz M.M., Ahmad P., editors. Plant-Environment Interaction: Responses and Approaches to Mitigate Stress. John Wiley & Sons, Ltd.; Chichester, UK: 2016. pp. 250–261.
Barret M., Morrissey J.P., O’Gara F. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol. Fertil. Soils. 2011;47:729–743. doi: 10.1007/s00374-011-0605-x. DOI
Bais H.P., Weir T.L., Perry L.G., Gilroy S., Vivanco J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006;57:233–266. doi: 10.1146/annurev.arplant.57.032905.105159. PubMed DOI
Bertin C., Yang X.H., Weston L.A. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil. 2003;256:67–83. doi: 10.1023/A:1026290508166. DOI
Donnelly P.K., Hegde R.S., Fletcher J.S. Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere. 1994;28:981–988. doi: 10.1016/0045-6535(94)90014-0. DOI
Chaudhry Q., Blom-Zandstra M., Gupta S., Joner E.J. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ. Sci. Pollut. Res. Int. 2005;12:34–48. doi: 10.1065/espr2004.08.213. PubMed DOI
Singer A.C., Crowley D.E., Thompson I.P. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol. 2003;21:123–130. doi: 10.1016/S0167-7799(02)00041-0. PubMed DOI
Urbance J.W., Cole J., Saxman P., Tiedje J.M. BSD: The biodegradative strain database. Nucleic Acids Res. 2003;31:152–155. doi: 10.1093/nar/gkg032. PubMed DOI PMC
Muangchinda C., Chavanich S., Viyakarn V., Watanabe K., Imura S., Vangnai A.S., Pinyakong O. Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ. Sci. Pollut. Res. 2015;22:4725–4735. doi: 10.1007/s11356-014-3721-y. PubMed DOI
Meckenstock R.U., Elsner M., Griebler C., Lueders T., Stumpp C., Aamand J., Agathos S.N., Albrechtsen H.-J., Bastiaens L., Bjerg P.L., et al. Biodegradation: Updating the concepts of control for microbial cleanup in contaminated aquifers. Environ. Sci. Technol. 2015;49:7073–7081. doi: 10.1021/acs.est.5b00715. PubMed DOI
Pausch J., Tian J., Riederer M., Kuzyakov Y. Estimation of rhizodeposition at field scale: Upscaling of a 14C labeling study. Plant Soil. 2013;364:273–285. doi: 10.1007/s11104-012-1363-8. DOI
Marihal A.K., Jagadeesh K.S. Plant–microbe interaction: A potential tool for enhanced bioremediation. In: Arora K.N., editor. Plant Microbe Symbiosis: Fundamentals and Advances. Springer India; New Delhi, India: 2013. pp. 395–410.
Handelsman J., Rondon M.R., Brady S.F., Clardy J., Goodman R.M. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chem. Biol. 1998;5:R245–R249. doi: 10.1016/S1074-5521(98)90108-9. PubMed DOI
Metzker M.L. Sequencing technologies—The next generation. Nat. Rev. Genet. 2010;11:31–46. doi: 10.1038/nrg2626. PubMed DOI
Kuzyakov Y., Raskatov A., Kaupenjohann M. Turnover and distribution of root exudates of Zea mays. Plant Soil. 2003;254:317–327. doi: 10.1023/A:1025515708093. DOI
Jones D.L., Hodge A., Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 2004;163:459–480. doi: 10.1111/j.1469-8137.2004.01130.x. PubMed DOI
Lu Y., Watanabe A., Kimura M. Input and distribution of photosynthesized carbon in a flooded rice soil. Glob. Biogeochem. Cycles. 2002;16:32-1–32-8. doi: 10.1029/2002GB001864. DOI
Keith H., Oades J.M., Martin J.K. Input of carbon to soil from wheat plants. Soil Biol. Biochem. 1986;18:445–449. doi: 10.1016/0038-0717(86)90051-9. DOI
Kuzyakov Y., Kretzschmar A., Stahr K. Contribution of Lolium perenne rhizodeposition to carbon turnover of pasture soil. Plant Soil. 1999;213:127–136. doi: 10.1023/A:1004566027237. DOI
Zang H., Yang X., Feng X., Qian X., Hu Y., Ren C., Zeng Z. Rhizodeposition of nitrogen and carbon by mungbean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.) PLoS ONE. 2015;10:1205. doi: 10.1371/journal.pone.0121132. PubMed DOI PMC
Liljeroth E., Bååth E., Mathiasson I., Lundborg T. Root exudation and rhizoplane bacterial abundance of barley (Hordeum vulgare L.) in relation to nitrogen fertilization and root growth. Plant Soil. 1990;127:81–89. doi: 10.1007/BF00010839. DOI
Dijkstra F.A., Morgan J.A., Blumenthal D., Follett R.F. Water limitation and plant inter-specific competition reduce rhizosphere-induced C decomposition and plant N uptake. Soil Biol. Biochem. 2010;42:1073–1082. doi: 10.1016/j.soilbio.2010.02.026. DOI
Sanaullah M., Chabbi A., Rumpel C., Kuzyakov Y. Carbon allocation in grassland communities under drought stress followed by 14C pulse labeling. Soil Biol. Biochem. 2012;55:132–139. doi: 10.1016/j.soilbio.2012.06.004. DOI
Neumann G., Römheld V. The release of root exudates as affected by the plant physiological status. In: Pinton R., Varanini Z., Nannipieri P., editors. The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface. 2nd ed. CRC Press; Boca Raton, FL, USA: 2007. pp. 23–72.
Salt D.E., Smith R.D., Raskin I. Phytoremediation. Annu. Rev. Plant Physiol. 1998;49:643–668. doi: 10.1146/annurev.arplant.49.1.643. PubMed DOI
Hütsch B.W., Augustin J., Merbach W. Plant rhizodeposition—An important source for carbon turnover in soils. J. Plant Nutr. Soil Sci. 2002;165:397–407. doi: 10.1002/1522-2624(200208)165:4<397::AID-JPLN397>3.0.CO;2-C. DOI
Farrar J., Hawes M., Jones D., Lindow S. How roots control the flux of carbon to the rhizosphere. Ecology. 2003;84:827–837. doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2. DOI
Martin B.C., George S.J., Price C.A., Ryan M.H., Tibbett M. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Sci. Total Environ. 2014;472:642–653. doi: 10.1016/j.scitotenv.2013.11.050. PubMed DOI
Jones D.L. Organic acids in the rhizosphere—A critical review. Plant Soil. 1998;205:25–44. doi: 10.1023/A:1004356007312. DOI
Demain A.L., Fang A. The natural functions of secondary metabolites. In: Fiechter A., editor. History of Modern Biotechnology I. Volumn 69. Springer; Heidelberg, Germany: 2000. pp. 1–39. PubMed
Dixon R.A. Natural products and plant disease resistance. Nature. 2001;411:843–847. doi: 10.1038/35081178. PubMed DOI
Pichersky E., Gang D.R. Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends Plant Sci. 2000;5:439–445. doi: 10.1016/S1360-1385(00)01741-6. PubMed DOI
Walton N.J., Brown D.E. Chemicals from Plants: Perspectives on Plant Secondary Products. Imperial College Press; London, UK: 1999.
Crozier A., Jaganath I.B., Clifford M.N. Phenols, polyphenols and tannins: An overview. In: Crozier A., Clifford M.N., Ashihara H., editors. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet. Blackwell Publishing, Ltd.; Oxford, UK: 2007. pp. 1–24.
Humphrey A.J., Beale M.H. Terpenes. In: Crozier A., Clifford M.N., Ashihara H., editors. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet. Blackwell Publishing, Ltd.; Oxford, UK: 2007. pp. 47–101.
Christensen L.P., Brandt K. Acetylenes and psoralens. In: Crozier A., Clifford M.N., Ashihara H., editors. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet. Blackwell Publishing, Ltd.; Oxford, UK: 2007. pp. 137–173.
Mithen R. Sulphur-containing compounds. In: Crozier A., Clifford M.N., Ashihara H., editors. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet. Blackwell Publishing, Ltd.; Oxford, UK: 2007. pp. 25–46.
Zulak K.G., Liscombe D.K., Ashihara H., Facchini P.J. Alkaloids. In: Crozier A., Clifford M.N., Ashihara H., editors. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet. Blackwell Publishing, Ltd.; Oxford, UK: 2007. pp. 102–136.
Iriti M., Faoro F. Ozone-induced changes in plant secondary metabolism. In: Singh S.N., editor. Climate Change and Crops. Springer; Heidelberg, Germany: 2009. pp. 245–268.
Noctor G., Mhamdi A., Chaouch S., Han Y.I., Neukermans J., Marquez-Garcia B., Queval G., Foyer C.H. Glutathione in plants: An integrated overview. Plant Cell Environ. 2012;35:454–484. doi: 10.1111/j.1365-3040.2011.02400.x. PubMed DOI
Schlaeppi K., Bodenhausen N., Buchala A., Mauch F., Reymond P. The glutathione-deficient mutant pad2–1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J. 2008;55:774–786. doi: 10.1111/j.1365-313X.2008.03545.x. PubMed DOI
Brandel J., Humbert N., Elhabiri M., Schalk I.J., Mislin G.L.A., Albrecht-Gary A.-M. Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(iii), copper(ii) and zinc(ii) complexes. Dalton Trans. 2012;41:2820–2834. doi: 10.1039/c1dt11804h. PubMed DOI
Chen Y.X., Lin Q., Luo Y.M., He Y.F., Zhen S.J., Yu Y.L., Tian G.M., Wong M.H. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere. 2003;50:807–811. doi: 10.1016/S0045-6535(02)00223-0. PubMed DOI
Yadav S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010;76:167–179. doi: 10.1016/j.sajb.2009.10.007. DOI
Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012;7:1456–1466. doi: 10.4161/psb.21949. PubMed DOI PMC
Erb M., Lu J. Soil abiotic factors influence interactions between belowground herbivores and plant roots. J. Exp. Bot. 2013;64:1295–1303. doi: 10.1093/jxb/ert007. PubMed DOI
Fontaine S., Mariotti A., Abbadie L. The priming effect of organic matter: A question of microbial competition? Soil Biol. Biochem. 2003;35:837–843. doi: 10.1016/S0038-0717(03)00123-8. DOI
Eilers K.G., Lauber C.L., Knight R., Fierer N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 2010;42:896–903. doi: 10.1016/j.soilbio.2010.02.003. DOI
Slater H., Gouin T., Leigh M.B. Assessing the potential for rhizoremediation of PCB-contaminated soils in northern regions using native tree species. Chemosphere. 2011;84:199–206. doi: 10.1016/j.chemosphere.2011.04.058. PubMed DOI PMC
Hernandez B.S., Koh S.C., Chial M., Focht D.D. Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation. 1997;8:153–158. doi: 10.1023/A:1008255218432. DOI
Singer A.C., Smith D., Jury W.A., Hathuc K., Crowley D.E. Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ. Toxicol. Chem. 2003;22:1998–2004. doi: 10.1897/02-471. PubMed DOI
Uhlik O., Musilova L., Ridl J., Hroudova M., Vlcek C., Koubek J., Holeckova M., Mackova M., Macek T. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl. Microbiol. Biotechnol. 2013;97:9245–9256. doi: 10.1007/s00253-012-4627-6. PubMed DOI
Gao M., Teplitski M., Robinson J.B., Bauer W.D. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol. Plant Microbe Interact. 2003;16:827–834. doi: 10.1094/MPMI.2003.16.9.827. PubMed DOI
Koh C.-L., Sam C.-K., Yin W.-F., Tan L.Y., Krishnan T., Chong Y.M., Chan K.-G. Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors. 2013;13:6217–6228. doi: 10.3390/s130506217. PubMed DOI PMC
Bernier S.P., Surette M.G. Concentration-dependent activity of antibiotics in natural environments. Front. Microbiol. 2013;4 doi: 10.3389/fmicb.2013.00020. PubMed DOI PMC
Badri D.V., Vivanco J.M. Regulation and function of root exudates. Plant Cell Environ. 2009;32:666–681. doi: 10.1111/j.1365-3040.2009.01926.x. PubMed DOI
Xia J.H., Roberts J.K.M. Improved cytoplasmic pH regulation, increased lactate efflux, and reduced cytoplasmic lactate levels are biochemical traits expressed in root tips of whole maize seedlings acclimated to a low-oxygen environment. Plant Physiol. 1994;105:651–657. PubMed PMC
Henry A., Doucette W., Norton J., Bugbee B. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J. Environ. Qual. 2007;36:904–912. doi: 10.2134/jeq2006.0425sc. PubMed DOI
Juszczuk I., Wiktorowska A., Malusá E., Rychter A. Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.) Plant Soil. 2004;267:41–49. doi: 10.1007/s11104-005-2569-9. DOI
Carvalhais L.C., Dennis P.G., Fedoseyenko D., Hajirezaei M.-R., Borriss R., von Wirén N. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J. Plant Nutr. Soil Sci. 2011;174:3–11. doi: 10.1002/jpln.201000085. DOI
Leigh M.B., Fletcher J.S., Fu X., Schmitz F.J. Root turnover: An important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 2002;36:1579–1583. doi: 10.1021/es015702i. PubMed DOI
Han E., Kautz T., Perkons U., Uteau D., Peth S., Huang N., Horn R., Köpke U. Root growth dynamics inside and outside of soil biopores as affected by crop sequence determined with the profile wall method. Biol. Fertil. Soils. 2015;51:847–856. doi: 10.1007/s00374-015-1032-1. DOI
D’Arcy-Lameta A. Study of soybean and lentil root exudates. Plant Soil. 1986;92:113–123. doi: 10.1007/BF02372272. DOI
Bulgarelli D., Schlaeppi K., Spaepen S., Themaat E.V.L.V., Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013;64:807–838. doi: 10.1146/annurev-arplant-050312-120106. PubMed DOI
Schlaeppi K., Dombrowski N., Oter R.G., van Themaat E.V.L., Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc. Natl. Acad. Sci. USA. 2014;111:585–592. doi: 10.1073/pnas.1321597111. PubMed DOI PMC
Bulgarelli D., Garrido-Oter R., Münch P.C., Weiman A., Dröge J., Pan Y., McHardy A.C., Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 2015;17:392–403. doi: 10.1016/j.chom.2015.01.011. PubMed DOI PMC
Hartmann A., Schmid M., van Tuinen D., Berg G. Plant-driven selection of microbes. Plant Soil. 2009;321:235–257. doi: 10.1007/s11104-008-9814-y. DOI
DeAngelis K.M., Brodie E.L., DeSantis T.Z., Andersen G.L., Lindow S.E., Firestone M.K. Selective progressive response of soil microbial community to wild oat roots. ISME J. 2008;3:168–178. doi: 10.1038/ismej.2008.103. PubMed DOI
Dzantor E.K., Woolston J.E., Momen B. PCB dissipation and microbial community analysis in rhizosphere soil under substrate amendment conditions. Int. J. Phytoremediat. 2002;4:283–295. doi: 10.1080/15226510208500088. DOI
İnceoğlu Ö., van Overbeek L.S., Salles J.F., van Elsas J.D. Normal operating range of bacterial communities in soil used for potato cropping. Appl. Environ. Microbiol. 2013;79:1160–1170. doi: 10.1128/AEM.02811-12. PubMed DOI PMC
Fan B., Carvalhais L.C., Becker A., Fedoseyenko D., von Wirén N., Borriss R. Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol. 2012;12:1–13. doi: 10.1186/1471-2180-12-116. PubMed DOI PMC
Zyśko A., Sanguin H., Hayes A., Wardleworth L., Zeef L.A.H., Sim A., Paterson E., Singh B.K., Kertesz M.A. Transcriptional response of Pseudomonas aeruginosa to a phosphate-deficient Lolium perenne rhizosphere. Plant Soil. 2012;359:25–44. doi: 10.1007/s11104-011-1060-z. DOI
Smith D.L., Subramanian S., Lamont J.R., Bywater-Ekegärd M. Signaling in the phytomicrobiome: Breadth and potential. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00709. PubMed DOI PMC
Toussaint J.-P., Pham T., Barriault D., Sylvestre M. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl. Microbiol. Biotechnol. 2012;95:1589–1603. doi: 10.1007/s00253-011-3824-z. PubMed DOI
Blum U., Staman K., Flint L., Shafer S. Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J. Chem. Ecol. 2000;26:2059–2078. doi: 10.1023/A:1005560214222. DOI
Sugiyama A., Yazaki K. Root exudates of legume plants and their involvement in interactions with soil microbes. In: Vivanco M.J., Baluška F., editors. Secretions and Exudates in Biological Systems. Springer; Berlin & Heidelberg, Germany: 2012. pp. 27–48.
De Weert S., Vermeiren H., Mulders I.H.M., Kuiper I., Hendrickx N., Bloemberg G.V., Vanderleyden J., de Mot R., Lugtenberg B.J.J. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant Microbe Interact. 2002;15:1173–1180. doi: 10.1094/MPMI.2002.15.11.1173. PubMed DOI
Yao J., Allen C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J. Bacteriol. 2006;188:3697–3708. doi: 10.1128/JB.188.10.3697-3708.2006. PubMed DOI PMC
Meng F., Yao J., Allen C. A MotN mutant of Ralstonia solanacearum is hypermotile and has reduced virulence. J. Bacteriol. 2011;193:2477–2486. doi: 10.1128/JB.01360-10. PubMed DOI PMC
Neumann G., George T.S., Plassard C. Strategies and methods for studying the rhizosphere—The plant science toolbox. Plant Soil. 2009;321:431–456. doi: 10.1007/s11104-009-9953-9. DOI
Takenaka C., Miyahara M., Ohta T., Maximov T.C. Response of larch root development to annual changes of water conditions in eastern Siberia. Polar Sci. 2016;10:160–166. doi: 10.1016/j.polar.2016.04.012. DOI
Davis J.P., Haines B., Coleman D., Hendrick R. Fine root dynamics along an elevational gradient in the southern Appalachian mountains, USA. For. Ecol. Manag. 2004;187:19–33. doi: 10.1016/S0378-1127(03)00226-3. DOI
Oburger E., Schmidt H. New methods to unravel rhizosphere processes. Trends Plant Sci. 2016;21:243–255. doi: 10.1016/j.tplants.2015.12.005. PubMed DOI
Downie H., Holden N., Otten W., Spiers A.J., Valentine T.A., Dupuy L.X. Transparent soil for imaging the rhizosphere. PLoS ONE. 2012;7:1205. doi: 10.1371/journal.pone.0044276. PubMed DOI PMC
Chimungu J.G., Loades K.W., Lynch J.P. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea mays) J. Exp. Bot. 2015;66:3151–3162. doi: 10.1093/jxb/erv121. PubMed DOI PMC
Mooney S.J., Pridmore T.P., Helliwell J., Bennett M.J. Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil. 2012;352:1–22. doi: 10.1007/s11104-011-1039-9. DOI
Mairhofer S., Zappala S., Tracy S., Sturrock C., Bennett M.J., Mooney S.J. Recovering complete plant root system architectures from soil via X-ray µ-computed tomography. Plant Methods. 2013;9 doi: 10.1186/1746-4811-9-8. PubMed DOI PMC
Stingaciu L., Schulz H., Pohlmeier A., Behnke S., Zilken H., Javaux M., Vereecken H. In situ root system architecture extraction from magnetic resonance imaging for water uptake modeling. Vadose Zone J. 2013;12 doi: 10.2136/vzj2012.0019. DOI
Metzner R., Eggert A., van Dusschoten D., Pflugfelder D., Gerth S., Schurr U., Uhlmann N., Jahnke S. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification. Plant Methods. 2015;11:1–11. doi: 10.1186/s13007-015-0060-z. PubMed DOI PMC
Oswald S.E., Menon M., Carminati A., Vontobel P., Lehmann E., Schulin R. Quantitative imaging of infiltration, root growth, and root water uptake via neutron radiography. Vadose Zone J. 2008;7:1035–1047. doi: 10.2136/vzj2007.0156. DOI
Downie H.F., Adu M.O., Schmidt S., Otten W., Dupuy L.X., White P.J., Valentine T.A. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. Plant Cell Environ. 2015;38:1213–1232. doi: 10.1111/pce.12448. PubMed DOI
Van Dusschoten D., Metzner R., Kochs J., Postma J.A., Pflugfelder D., Buehler J., Schurr U., Jahnke S. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiol. 2016 doi: 10.1104/pp.15.01388. PubMed DOI PMC
De Schepper V., Bühler J., Thorpe M., Roeb G., Huber G., van Dusschoten D., Jahnke S., Steppe K. 11C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling. Front. Plant Sci. 2013;4:200. doi: 10.3389/fpls.2013.00200. PubMed DOI PMC
Larsen M., Santner J., Oburger E., Wenzel W.W., Glud R.N. O2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes. Plant Soil. 2015;390:279–292. doi: 10.1007/s11104-015-2382-z. PubMed DOI PMC
Koop-Jakobsen K., Wenzhöfer F. The dynamics of plant-mediated sediment oxygenation in Spartina anglica rhizospheres—A planar optode study. Estuaries Coasts. 2015;38:951–963. doi: 10.1007/s12237-014-9861-y. DOI
Blossfeld S., Schreiber C.M., Liebsch G., Kuhn A.J., Hinsinger P. Quantitative imaging of rhizosphere pH and CO2 dynamics with planar optodes. Ann. Bot. 2013;112:267–276. doi: 10.1093/aob/mct047. PubMed DOI PMC
Faget M., Blossfeld S., von Gillhaussen P., Schurr U., Temperton V.M. Disentangling who is who during rhizosphere acidification in root interactions: Combining fluorescence with optode techniques. Front. Plant Sci. 2013;4:392. doi: 10.3389/fpls.2013.00392. PubMed DOI PMC
Marschner P., Crowley D., Rengel Z. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis—Model and research methods. Soil Biol. Biochem. 2011;43:883–894. doi: 10.1016/j.soilbio.2011.01.005. DOI
Jusoh W., Wong L.S. Exploring the potential of whole cell biosensor: A review in environmental applications. Int. J. Chem. Environ. Biol. Sci. 2014;2:52–56.
Porteous F., Killham K., Meharg A. Use of a lux-marked rhizobacterium as a biosensor to assess changes in rhizosphere C flow due to pollutant stress. Chemosphere. 2000;41:1549–1554. doi: 10.1016/S0045-6535(00)00072-2. PubMed DOI
Puglisi E., Fragoulis G., Del Re A.A.M., Spaccini R., Piccolo A., Gigliotti G., Said-Pullicino D., Trevisan M. Carbon deposition in soil rhizosphere following amendments with compost and its soluble fractions, as evaluated by combined soil–plant rhizobox and reporter gene systems. Chemosphere. 2008;73:1292–1299. doi: 10.1016/j.chemosphere.2008.07.008. PubMed DOI
Tobar R.M., Azcón-Aguilar C., Sanjuán J., Barea J.M. Impact of a genetically modified Rhizobium strain with improved nodulation competitiveness on the early stages of arbuscular mycorrhiza formation. Appl. Soil Ecol. 1996;4:15–21. doi: 10.1016/0929-1393(96)00104-7. DOI
DeAngelis K.M., Firestone M.K., Lindow S.E. Sensitive whole-cell biosensor suitable for detecting a variety of N-acyl homoserine lactones in intact rhizosphere microbial communities. Appl. Environ. Microbiol. 2007;73:3724–3727. doi: 10.1128/AEM.02187-06. PubMed DOI PMC
Liu X., Germaine K.J., Ryan D., Dowling D.N. Whole-cell fluorescent biosensors for bioavailability and biodegradation of polychlorinated biphenyls. Sensors. 2010;10:1377–1398. doi: 10.3390/s100201377. PubMed DOI PMC
DeAngelis K.M., Ji P., Firestone M.K., Lindow S.E. Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere. Appl. Environ. Microbiol. 2005;71:8537–8547. doi: 10.1128/AEM.71.12.8537-8547.2005. PubMed DOI PMC
Jensen L.E., Kragelund L., Nybroe O. Expression of a nitrogen regulated lux gene fusion in Pseudomonas fluorescens DF57 studied in pure culture and in soil. FEMS Microbiol. Ecol. 1998;25:23–32. doi: 10.1111/j.1574-6941.1998.tb00457.x. DOI
Kragelund L., Christoffersen B., Nybroe O., de Bruijn F.J. Isolation of lux reporter gene fusions in Pseudomonas fluorescens DF57 inducible by nitrogen or phosphorus starvation. FEMS Microbiol. Ecol. 1995;17:95–106. doi: 10.1111/j.1574-6941.1995.tb00134.x. DOI
Kuppardt A., Vetterlein D., Harms H., Chatzinotas A. Visualisation of gradients in arsenic concentrations around individual roots of Zea mays L. Using agar-immobilized bioreporter bacteria. Plant Soil. 2010;329:295–306. doi: 10.1007/s11104-009-0154-3. DOI
Jaeger Iii C.H., Lindow S.E., Miller W., Clark E., Firestone M.K. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl. Environ. Microbiol. 1999;65:2685–2690. PubMed PMC
Loper J.E., Henkels M.D. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 1997;63:99–105. PubMed PMC
Amann R., Fuchs B.M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 2008;6:339–348. doi: 10.1038/nrmicro1888. PubMed DOI
Wagner M., Haider S. New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr. Opin. Biotechnol. 2012;23:96–102. doi: 10.1016/j.copbio.2011.10.010. PubMed DOI
Cao Y., Zhang Z., Ling N., Yuan Y., Zheng X., Shen B., Shen Q. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil. Soils. 2011;47:495–506. doi: 10.1007/s00374-011-0556-2. DOI
Khabbaz S.E., Zhang L., Cáceres L.A., Sumarah M., Wang A., Abbasi P.A. Characterisation of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases. Ann. Appl. Biol. 2015;166:456–471. doi: 10.1111/aab.12196. DOI
Buddrus-Schiemann K., Schmid M., Schreiner K., Welzl G., Hartmann A. Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley. Microb. Ecol. 2010;60:381–393. doi: 10.1007/s00248-010-9720-8. PubMed DOI
Haichar F.E.Z., Heulin T., Guyonnet J.P., Achouak W. Stable isotope probing of carbon flow in the plant holobiont. Curr. Opin. Biotechnol. 2016;41:9–13. doi: 10.1016/j.copbio.2016.02.023. PubMed DOI
Uhlik O., Leewis M.C., Strejcek M., Musilova L., Mackova M., Leigh M.B., Macek T. Stable isotope probing in the metagenomics era: A bridge towards improved bioremediation. Biotechnol. Adv. 2013;31:154–165. doi: 10.1016/j.biotechadv.2012.09.003. PubMed DOI PMC
Radajewski S., McDonald I.R., Murrell J.C. Stable-isotope probing of nucleic acids: A window to the function of uncultured microorganisms. Curr. Opin. Biotechnol. 2003;14:296–302. doi: 10.1016/S0958-1669(03)00064-8. PubMed DOI
Nikolausz M., Palatinszky M.A., Rusznyak A., Richnow H.H., Kappelmeyer U., Kastner M. Novel approach using substrate-mediated radiolabelling of RNA to link metabolic function with the structure of microbial communities. FEMS Microbiol. Lett. 2007;274:154–161. doi: 10.1111/j.1574-6968.2007.00821.x. PubMed DOI
Aelion C.M., Norman R.S. Isotopic labeling in environmental and biodegradation studies. In: Aelion C.M., Höhener P., Hunkeler D., Aravena R., editors. Environmental Isotopes in Biodegradation and Bioremediation. CRC Press; Boca Raton, FL, USA: 2009. pp. 327–349.
Xu J. Microbial ecology in the age of genomics and metagenomics: Concepts, tools, and recent advances. Mol. Ecol. 2006;15:1713–1731. doi: 10.1111/j.1365-294X.2006.02882.x. PubMed DOI
Turner T.R., Ramakrishnan K., Walshaw J., Heavens D., Alston M., Swarbreck D., Osbourn A., Grant A., Poole P.S. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 2013;7:2248–2258. doi: 10.1038/ismej.2013.119. PubMed DOI PMC
Handelsman J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004;68:669–685. doi: 10.1128/MMBR.68.4.669-685.2004. PubMed DOI PMC
Gilbert J.A., Hughes M. Gene expression profiling: Metatranscriptomics. In: Kwon M.Y., Ricke C.S., editors. High-Throughput Next Generation Sequencing: Methods and Applications. Humana Press; Totowa, NJ, USA: 2011. pp. 195–205. PubMed
Suenaga H. Targeted metagenomics: A high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ. Microbiol. 2012;14:13–22. doi: 10.1111/j.1462-2920.2011.02438.x. PubMed DOI
Hettich R.L., Pan C., Chourey K., Giannone R.J. Metaproteomics: Harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal. Chem. 2013;85:4203–4214. doi: 10.1021/ac303053e. PubMed DOI PMC
Van Dam N.M., Bouwmeester H.J. Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends Plant Sci. 2016;21:256–265. doi: 10.1016/j.tplants.2016.01.008. PubMed DOI
Mairhofer S., Zappala S., Tracy S.R., Sturrock C., Bennett M., Mooney S.J., Pridmore T. Rootrak: Automated recovery of three-dimensional plant root architecture in soil from X-ray micro-computed tomography images using visual tracking. Plant Physiol. 2012;158 doi: 10.1104/pp.111.186221. PubMed DOI PMC
Metzner R., Dusschoten D., Bühler J., Schurr U., Jahnke S. Belowground plant development measured with magnetic resonance imaging (MRI): Exploiting the potential for non-invasive trait quantification using sugar beet as a proxy. Front. Plant. Sci. 2014;5 doi: 10.3389/fpls.2014.00469. PubMed DOI PMC
Beer S., Streun M., Hombach T., Buehler J., Jahnke S., Khodaverdi M., Larue H., Minwuyelet S., Parl C., Roeb G., et al. Design and initial performance of PlanTIS: A high-resolution positron emission tomograph for plants. Phys. Med. Biol. 2010;55:635. doi: 10.1088/0031-9155/55/3/006. PubMed DOI
Yuan H., Zhu Z., Liu S., Ge T., Jing H., Li B., Liu Q., Lynn T.M., Wu J., Kuzyakov Y. Microbial utilization of rice root exudates: 13C labeling and PLFA composition. Biol. Fertil. Soils. 2016;52:615–627. doi: 10.1007/s00374-016-1101-0. DOI
Wang J., Chapman S.J., Yao H. Incorporation of 13C-labelled rice rhizodeposition into soil microbial communities under different fertilizer applications. Appl. Soil Ecol. 2016;101:11–19. doi: 10.1016/j.apsoil.2016.01.010. DOI
Gschwendtner S., Engel M., Lueders T., Buegger F., Schloter M. Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings. Plant Soil. 2016:1–13. doi: 10.1007/s11104-016-2888-z. DOI
De Santi C., Altermark B., Pierechod M.M., Ambrosino L., de Pascale D., Willassen N.-P. Characterization of a cold-active and salt tolerant esterase identified by functional screening of arctic metagenomic libraries. BMC Biochem. 2016;17:1–13. doi: 10.1186/s12858-016-0057-x. PubMed DOI PMC
Unno Y., Shinano T. Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. Microbes Environ. 2013;28:120–127. doi: 10.1264/jsme2.ME12181. PubMed DOI PMC
Chapelle E., Mendes R., Bakker P.A.H.M., Raaijmakers J.M. Fungal invasion of the rhizosphere microbiome. ISME J. 2016;10:265–268. doi: 10.1038/ismej.2015.82. PubMed DOI PMC
Chaparro J.M., Badri D.V., Vivanco J.M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803. doi: 10.1038/ismej.2013.196. PubMed DOI PMC
Yergeau E., Sanschagrin S., Maynard C., St-Arnaud M., Greer C.W. Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J. 2014;8:344–358. doi: 10.1038/ismej.2013.163. PubMed DOI PMC
Newman M.M., Lorenz N., Hoilett N., Lee N.R., Dick R.P., Liles M.R., Ramsier C., Kloepper J.W. Changes in rhizosphere bacterial gene expression following glyphosate treatment. Sci. Total Environ. 2016;553:32–41. doi: 10.1016/j.scitotenv.2016.02.078. PubMed DOI
Hettich R.L., Sharma R., Chourey K., Giannone R.J. Microbial metaproteomics: Identifying the repertoire of proteins that microorganisms use to compete and cooperate in complex environmental communities. Curr. Opin. Microbiol. 2012;15:373–380. doi: 10.1016/j.mib.2012.04.008. PubMed DOI
Becher D., Bernhardt J., Fuchs S., Riedel K. Metaproteomics to unravel major microbial players in leaf litter and soil environments: Challenges and perspectives. Proteomics. 2013;13:2895–2909. doi: 10.1002/pmic.201300095. PubMed DOI
Lin W., Wu L., Lin S., Zhang A., Zhou M., Lin R., Wang H., Chen J., Zhang Z., Lin R. Metaproteomic analysis of ratoon sugarcane rhizospheric soil. BMC Microbiol. 2013;13:1–13. doi: 10.1186/1471-2180-13-135. PubMed DOI PMC
Brooks J.M., Benson D.R. Comparative metabolomics of root nodules infected with Frankia sp. strains and uninfected roots from Alnus glutinosa and Casuarina cunninghamiana reflects physiological integration. Symbiosis. 2016:1–10. doi: 10.1007/s13199-016-0379-x. DOI
Ghaste M., Mistrik R., Shulaev V. Applications of Fourier transform ion cyclotron resonance (FT-ICR) and orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. Int. J. Mol. Sci. 2016;17:816. doi: 10.3390/ijms17060816. PubMed DOI PMC
O’Leary B.M., Neale H.C., Geilfus C.-M., Jackson R.W., Arnold D.L., Preston G.M. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae pv. Phaseolicola. Plant Cell Environ. 2016 doi: 10.1111/pce.12770. PubMed DOI PMC
Oger M.P., Mansouri H., Nesme X., Dessaux Y. Engineering root exudation of lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microb. Ecol. 2004;47:96–1039. doi: 10.1007/s00248-003-2012-9. PubMed DOI
Costura R.K., Alvarez P.J.J. Expression and longevity of toluene dioxygenase in Pseudomonas putida F1 induced at different dissolved oxygen concentrations. Water Res. 2000;34:3014–3018. doi: 10.1016/S0043-1354(00)00035-X. DOI
Szokol J., Rucka L., Simcikova M., Halada P., Nesvera J., Patek M. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Appl. Microbiol. Biotechnol. 2014;98:8267–8279. doi: 10.1007/s00253-014-5881-6. PubMed DOI
Watanabe T., Inoue R., Kimura N., Furukawa K. Versatile transcription of biphenyl catabolic bph operon in Pseudomonas pseudoalcaligenes KF707. J. Biol. Chem. 2000;275:31016–31023. doi: 10.1074/jbc.M003023200. PubMed DOI
Kim D., Kim S.W., Choi K.Y., Lee J.S., Kim E. Molecular cloning and functional characterization of the genes encoding benzoate and p-hydroxybenzoate degradation by the halophilic Chromohalobacter sp. strain HS-2. FEMS Microbiol. Lett. 2008;280:235–241. doi: 10.1111/j.1574-6968.2008.01067.x. PubMed DOI
Frascari D., Zanaroli G., Danko A.S. In situ aerobic cometabolism of chlorinated solvents: A review. J. Hazard. Mater. 2015;283:382–399. doi: 10.1016/j.jhazmat.2014.09.041. PubMed DOI
Rentz J.A., Alvarez P.J.J., Schnoor J.L. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environ. Pollut. 2005;136:477–484. doi: 10.1016/j.envpol.2004.12.034. PubMed DOI
Zorádová-Murínová S., Dudášová H., Lukáčová L., Čertík M., Šilharová K., Vrana B., Dercová K. Adaptation mechanisms of bacteria during the degradation of polychlorinated biphenyls in the presence of natural and synthetic terpenes as potential degradation inducers. Appl. Microbiol. Biotechnol. 2012;94:1375–1385. doi: 10.1007/s00253-011-3763-8. PubMed DOI
Leigh M.B. Methods for rhizoremediation research: Approaches to experimental design and microbial analysis. In: Macková M., Dowling D., Macek T., editors. Phytoremediation and Rhizoremediation. Theoretical Background. 9th ed. Springer; Dordrecht, The Netherlands: 2006. pp. 33–55.
Singer A.C., Thompson I.P., Bailey M.J. The tritrophic trinity: A source of pollutant-degrading enzymes and its implications for phytoremediation. Curr. Opin. Microbiol. 2004;7:239–244. doi: 10.1016/j.mib.2004.04.007. PubMed DOI
Singer A.C., Gilbert E.S., Luepromchai E., Crowley D.E. Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl. Microbiol. Biotechnol. 2000;54:838–843. doi: 10.1007/s002530000472. PubMed DOI
Tandlich R., Brezna B., Dercova K. The effect of terpenes on the biodegradation of polychlorinated biphenyls by Pseudomonas stutzeri. Chemosphere. 2001;44:1547–1555. doi: 10.1016/S0045-6535(00)00523-3. PubMed DOI
Ionescu M., Beranova K., Dudkova V., Kochankova L., Demnerova K., Macek T., Mackova M. Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphenyls. Int. Biodeterior. Biodegrad. 2009;63:667–672. doi: 10.1016/j.ibiod.2009.03.009. DOI
Furukawa K., Miyazaki T. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J. Bacteriol. 1986;166:392–398. PubMed PMC
Furukawa K., Suenaga H., Goto M. Biphenyl dioxygenases: Functional versatilities and directed evolution. J. Bacteriol. 2004;186:5189–5196. doi: 10.1128/JB.186.16.5189-5196.2004. PubMed DOI PMC
Macek T., Mackova M., Kas J. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 2000;18:23–34. doi: 10.1016/S0734-9750(99)00034-8. PubMed DOI
Maeda H., Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012;63:73–105. doi: 10.1146/annurev-arplant-042811-105439. PubMed DOI
Dewick P.M. The shikimate pathway: Aromatic amino acids and phenylpropanoids. In: Dewick P.M., editor. Medicinal Natural Products. 3rd ed. John Wiley & Sons, Ltd.; Chichester, UK: 2009. pp. 137–186.
Duke J.A. Handbook of Phytochemical Constituent Grass, Herbs and Other Economic Plants. 1st ed. CRC Press; Boca Raton, FL, USA: 1992.
Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126:485–493. doi: 10.1104/pp.126.2.485. PubMed DOI PMC
Dashtban M., Schraft H., Syed T.A., Qin W. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 2010;1:36–50. PubMed PMC
Ruiz-Dueñas F.J., Martínez Á.T. Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb. Biotechnol. 2009;2:164–177. doi: 10.1111/j.1751-7915.2008.00078.x. PubMed DOI PMC
Jeffries T. Biodegradation of lignin and hemicelluloses. In: Ratledge C., editor. Biochemistry of Microbial Degradation. Springer; Houten, The Netherlands: 1994. pp. 233–277.
Sainsbury P.D., Mineyeva Y., Mycroft Z., Bugg T.D.H. Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases. Bioorg. Chem. 2015;60:102–109. doi: 10.1016/j.bioorg.2015.05.002. PubMed DOI
Brown M.E., Chang M.C.Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 2014;19:1–7. doi: 10.1016/j.cbpa.2013.11.015. PubMed DOI
Kameshwar A.k.S., Qin W. Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. Int. J. Biol. Sci. 2016;12:156–171. doi: 10.7150/ijbs.13537. PubMed DOI PMC
Stewart P., Kersten P., Vanden Wymelenberg A., Gaskell J., Cullen D. Lignin peroxidase gene family of Phanerochaete chrysosporium: Complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome. J. Bacteriol. 1992;174:5036–5042. PubMed PMC
Li D., Alic M., Brown J.A., Gold M.H. Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Appl. Environ. Microbiol. 1995;61:341–345. PubMed PMC
Huang Z., Liers C., Ullrich R., Hofrichter M., Urynowicz M.A. Depolymerization and solubilization of chemically pretreated powder river basin subbituminous coal by manganese peroxidase (MnP) from Bjerkandera adusta. Fuel. 2013;112:295–301. doi: 10.1016/j.fuel.2013.04.081. DOI
Hirosue S., Tazaki M., Hiratsuka N., Yanai S., Kabumoto H., Shinkyo R., Arisawa A., Sakaki T., Tsunekawa H., Johdo O., et al. Insight into functional diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete chrysosporium: Involvement of versatile monooxygenase. Biochem. Biophys. Res. Commun. 2011;407:118–123. doi: 10.1016/j.bbrc.2011.02.121. PubMed DOI
Cullen D. Recent advances on the molecular genetics of ligninolytic fungi. J. Biotechnol. 1997;53:273–289. doi: 10.1016/S0168-1656(97)01684-2. PubMed DOI
Morel M., Meux E., Mathieu Y., Thuillier A., Chibani K., Harvengt L., Jacquot J.-P., Gelhaye E. Xenomic networks variability and adaptation traits in wood decaying fungi. Microb. Biotechnol. 2013;6:248–263. doi: 10.1111/1751-7915.12015. PubMed DOI PMC
Cvancarova M., Kresinova Z., Filipova A., Covino S., Cajthaml T. Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere. 2012;88:1317–1323. doi: 10.1016/j.chemosphere.2012.03.107. PubMed DOI
Yadav J.S., Quensen J.F., Tiedje J.M., Reddy C.A. Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl. Environ. Microbiol. 1995;61:2560–2565. PubMed PMC
Krcmar P., Ulrich R. Degradation of polychlorinated biphenyl mixtures by the lignin-degrading fungus Phanerochœte chrysosporium. Folia Microbiol. 1998;43:79–84. doi: 10.1007/BF02815549. PubMed DOI
Cajthaml T., Erbanova P., Sasek V., Moeder M. Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus. Chemosphere. 2006;64:560–564. doi: 10.1016/j.chemosphere.2005.11.034. PubMed DOI
Cajthaml T., Erbanova P., Kollmann A., Novotný C., Sasek V., Mougin C. Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol. 2008;53:289–294. doi: 10.1007/s12223-008-0045-7. PubMed DOI
Wang C., Sun H., Li J., Li Y., Zhang Q. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere. 2009;77:733–738. doi: 10.1016/j.chemosphere.2009.08.028. PubMed DOI
Byss M., Elhottova D., Triska J., Baldrian P. Fungal bioremediation of the creosote-contaminated soil: Influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Chemosphere. 2008;73:1518–1523. doi: 10.1016/j.chemosphere.2008.07.030. PubMed DOI
Baborova P., Moder M., Baldrian P., Cajthamlova K., Cajthaml T. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res. Microbiol. 2006;157:248–253. doi: 10.1016/j.resmic.2005.09.001. PubMed DOI
Covino S., Svobodova K., Kresinova Z., Petruccioli M., Federici F., D’Annibale A., Cvancarova M., Cajthaml T. In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresour. Technol. 2010;101:3004–3012. doi: 10.1016/j.biortech.2009.12.020. PubMed DOI
Sato A., Watanabe T., Watanabe Y., Harazono K., Fukatsu T. Screening for basidiomycetous fungi capable of degrading 2,7-dichlorodibenzo-p-dioxin. FEMS Microbiol. Lett. 2002;213:213–217. doi: 10.1111/j.1574-6968.2002.tb11308.x. PubMed DOI
Donnelly K.C., Chen J.C., Huebner H.J., Brown K.W., Autenrieth R.L., Bonner J.S. Utility of four strains of white-rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture. Environ. Toxicol. Chem. 1997;16:1105–1110. doi: 10.1002/etc.5620160603. DOI
Rigas F., Dritsa V., Marchant R., Papadopoulou K., Avramides E.J., Hatzianestis I. Biodegradation of lindane by Pleurotus ostreatus via central composite design. Environ. Int. 2005;31:191–196. doi: 10.1016/j.envint.2004.09.024. PubMed DOI
Rüttimann-Johnson C., Lamar R.T. Binding of pentachlorophenol to humic substances in soil by the action of white rot fungi. Soil Biol. Biochem. 1997;29:1143–1148. doi: 10.1016/S0038-0717(96)00296-9. DOI
Uhlik O., Jecna K., Mackova M., Vlcek C., Hroudova M., Demnerova K., Paces V., Macek T. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl. Environ. Microbiol. 2009;75:6471–6477. doi: 10.1128/AEM.00466-09. PubMed DOI PMC
Leigh M.B., Prouzova P., Mackova M., Macek T., Nagle D.P., Fletcher J.S. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl. Environ. Microbiol. 2006;72:2331–2342. doi: 10.1128/AEM.72.4.2331-2342.2006. PubMed DOI PMC
Ridl J., Kolar M., Strejcek M., Strnad H., Stursa P., Paces J., Macek T., Uhlik O. Plants rather than mineral fertilization shape microbial community structure and functional potential in legacy contaminated soil. Front. Microbiol. 2016;7 doi: 10.3389/fmicb.2016.00995. PubMed DOI PMC
Reynolds C., Koenen B., Carnahan J., Walworth J., Bhunia P. Rhizosphere and nutrient effects on remediating subarctic soils. Situ On-Site Bioremediat. 1997;4:297–302.
Leewis M.-C.C.E., Uhlik O., Fraraccio S., McFarlin K., Kottara A., Glover C., Macek T., Leigh M.B. Differential impacts of willow and mineral fertilizer on bacterial communities and biodegradation in diesel fuel oil-contaminated soil. Front. Microbiol. 2016;7 doi: 10.3389/fmicb.2016.00837. PubMed DOI PMC
Gilbert E.S., Crowley D.E. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl. Environ. Microbiol. 1997;63:1933–1938. PubMed PMC
Gilbert E.S., Crowley D.E. Repeated application of carvone-induced bacteria to enhance biodegradation of polychlorinated biphenyls in soil. Appl. Microbiol. Biotechnol. 1998;50:489–494. doi: 10.1007/s002530051325. PubMed DOI
Yi H., Crowley D.E. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ. Sci. Technol. 2007;41:4382–4388. doi: 10.1021/es062397y. PubMed DOI
McLoughlin E., Rhodes A.H., Owen S.M., Semple K.T. Biogenic volatile organic compounds as a potential stimulator for organic contaminant degradation by soil microorganisms. Environ. Pollut. 2009;157:86–94. doi: 10.1016/j.envpol.2008.07.029. PubMed DOI
Scheublin T.R., Deusch S., Moreno-Forero S.K., Müller J.A., van der Meer J.R., Leveau J.H.J. Transcriptional profiling of gram-positive Arthrobacter in the phyllosphere: Induction of pollutant degradation genes by natural plant phenolic compounds. Environ. Microbiol. 2014;16:2212–2225. doi: 10.1111/1462-2920.12375. PubMed DOI
Suttinun O., Lederman P.B., Luepromchai E. Application of terpene-induced cell for enhancing biodegradation of TCE contaminated soil. Songklanakarin J. Sci. Technol. 2004;26:131–142.
Dabrock B., Riedel J., Bertram J., Gottschalk G. Isopropylbenzene (cumene)—A new substrate for the isolation of trichloroethene-degrading bacteria. Arch. Microbiol. 1992;158:9–13. doi: 10.1007/BF00249058. PubMed DOI
Kirby R. Actinomycetes and lignin degradation. In: Laskin A.I., Bennett J.W., Gadd G.M., Sariaslani S., editors. Advances in Applied Microbiology. Volumn 58. Academic Press; San Diego, CA, USA: 2005. pp. 125–168.
Ahmad M., Roberts J.N., Hardiman E.M., Singh R., Eltis L.D., Bugg T.D.H. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry. 2011;50:5096–5107. doi: 10.1021/bi101892z. PubMed DOI
McLeod M.P., Warren R.L., Hsiao W.W.L., Araki N., Myhre M., Fernandes C., Miyazawa D., Wong W., Lillquist A.L., Wang D., et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. USA. 2006;103:15582–15587. doi: 10.1073/pnas.0607048103. PubMed DOI PMC
Tehrani R., Van Aken B. Hydroxylated polychlorinated biphenyls in the environment: Sources, fate, and toxicities. Environ. Sci. Pollut. Res. 2014;21:6334–6345. doi: 10.1007/s11356-013-1742-6. PubMed DOI PMC
Rezek J., Macek T., Mackova M., Triska J., Ruzickova K. Hydroxy-PCBs, methoxy-PCBs and hydroxy-methoxy-PCBs: Metabolites of polychlorinated biphenyls formed in vitro by tobacco cells. Environ. Sci. Technol. 2008;42:5746–5751. doi: 10.1021/es800445h. PubMed DOI
Francova K., Mackova M., Macek T., Sylvestre M. Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants. Environ. Pollut. 2004;127:41–48. doi: 10.1016/S0269-7491(03)00257-4. PubMed DOI
Pham T.T.M., Sondossi M., Sylvestre M. Metabolism of doubly para-substituted hydroxychlorobiphenyls by bacterial biphenyl dioxygenases. Appl. Environ. Microbiol. 2015;81:4860–4872. doi: 10.1128/AEM.00786-15. PubMed DOI PMC
Sondossi M., Barriault D., Sylvestre M. Metabolism of 2,2′- and 3,3′-dihydroxybiphenyl by the biphenyl catabolic pathway of Comamonas testosteroni B-356. Appl. Environ. Microbiol. 2004;70:174–181. doi: 10.1128/AEM.70.1.174-181.2004. PubMed DOI PMC
Tehrani R., Lyv M.M., Kaveh R., Schnoor J.L., van Aken B. Biodegradation of mono-hydroxylated PCBs by Burkholderia xenovorans. Biotechnol. Lett. 2012;34:2247–2252. doi: 10.1007/s10529-012-1037-x. PubMed DOI PMC
Pham T.T.M., Tu Y., Sylvestre M. Remarkable ability of Pandoraea pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids. Appl. Environ. Microbiol. 2012;78:3560–3570. doi: 10.1128/AEM.00225-12. PubMed DOI PMC
Pham T.T., Pino Rodriguez N.J., Hijri M., Sylvestre M. Optimizing polychlorinated biphenyl degradation by flavonoid-induced cells of the rhizobacterium Rhodococcus erythropolis U23A. PLoS ONE. 2015;10:1205. doi: 10.1371/journal.pone.0126033. PubMed DOI PMC
Chen S.H., Aitken M.D. Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ. Sci. Technol. 1998;33:435–439. doi: 10.1021/es9805730. DOI
Kang J.H., Kondo F. Bisphenol a degradation by bacteria isolated from river water. Arch. Environ. Contam. Toxicol. 2002;43:265–269. doi: 10.1007/s00244-002-1209-0. PubMed DOI
Kamath R., Schnoor J.L., Alvarez P.J.J. Effect of root-derived substrates on the expression of nah-lux genes in Pseudomonas fluorescens HK44: Implications for PAH biodegradation in the rhizosphere. Environ. Sci. Technol. 2004;38:1740–1745. doi: 10.1021/es0306258. PubMed DOI
Wojcieszyńska D., Guzik U., Greń I., Perkosz M., Hupert-Kocurek K. Induction of aromatic ring: Cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems. World J. Microbiol. Biotechnol. 2011;27:805–811. doi: 10.1007/s11274-010-0520-6. PubMed DOI PMC
Greń I., Wojcieszyńska D., Guzik U., Perkosz M., Hupert-Kocurek K. Enhanced biotransformation of mononitrophenols by Stenotrophomonas maltophilia KB2 in the presence of aromatic compounds of plant origin. World J. Microbiol. Biotechnol. 2009;26:289–295. doi: 10.1007/s11274-009-0172-6. DOI
Crowell P.L. Prevention and therapy of cancer by dietary monoterpenes. J. Nutr. 1999;129:775S–778S. PubMed
Ballal N.R., Bhattacharyya P.K., Rangachari P.N. Perillyl alcohol dehydrogenase from a soil pseudomonad. Biochem. Biophys. Res. Comm. 1966;23:473–478. doi: 10.1016/0006-291X(66)90752-2. PubMed DOI
Yoo S.K., Day D.F. Bacterial metabolism of α- and β-pinene and related monoterpenes by Pseudomonas sp. strain PIN. Process Biochem. 2002;37:739–745. doi: 10.1016/S0032-9592(01)00262-X. DOI
De Carvalho C.C.C.R., Parreño-Marchante B., Neumann G., da Fonseca M.M.R., Heipieper H.J. Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl. Microbiol. Biotechnol. 2005;67:383–388. doi: 10.1007/s00253-004-1750-z. PubMed DOI
Bicas J.L., Fontanille P., Pastore G.M., Larroche C. A bioprocess for the production of high concentrations of R-(+)-α-terpineol from R-(+)-limonene. Process Biochem. 2010;45:481–486. doi: 10.1016/j.procbio.2009.11.007. DOI
Eaton R.W., Sandusky P. Biotransformations of (+/−)-geosmin by terpene-degrading bacteria. Biodegradation. 2010;21:71–79. doi: 10.1007/s10532-009-9282-y. PubMed DOI
Van der Werf M.J., Swarts H.J., de Bont J.A.M. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl. Environ. Microbiol. 1999;65:2092–2102. PubMed PMC
Van Dyk M.S., van Rensburg E., Moleleki N. Hydroxylation of (+)limonene, (−)α-pinene and (−)β-pinene by a Hormonema sp. Biotechnol. Lett. 1998;20:431–436. doi: 10.1023/A:1005399918647. DOI
Ferrara M.A., Almeida D.S., Siani A.C., Lucchetti L., Lacerda P.S.B., Freitas A., Tappin M.R.R., Bon E.P.S. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica. Braz. J. Microbiol. 2013;44:1075–1080. doi: 10.1590/S1517-83822014005000008. PubMed DOI PMC
Chang H.C., Oriel P. Bioproduction of perillyl alcohol and related monoterpenes by isolates of Bacillus stearothermophilus. J. Food Sci. 1994;59:660–662. doi: 10.1111/j.1365-2621.1994.tb05588.x. DOI
Mars A., Gorissen J., van den Beld I., Eggink G. Bioconversion of limonene to increased concentrations of perillic acid by Pseudomonas putida GS1 in a fed-batch reactor. Appl. Microbiol. Biotechnol. 2001;56:101–107. doi: 10.1007/s002530100625. PubMed DOI
Redondo-Nieto M., Barret M., Morrisey J.P., Germaine K., Martínez-Granero F., Barahona E., Navazo A., Sánchez-Contreras M., Moynihan J.A., Giddens S.R., et al. Genome sequence of the biocontrol strain Pseudomonas fluorescens F113. J. Bacteriol. 2012;194:1273–1274. doi: 10.1128/JB.06601-11. PubMed DOI PMC
Crowley D.E., Focht D.D., Gilbert E.S., Hernandez B.S. Composition and Method for Degradation of Polychlorinated Biphenyl Compounds. US5968360 A. U.S. Patent. 1999 Oct 19;
Brown J.R.M., Thompson I.P., Paton G.I., Singer A.C. Enhanced biotransformation of tce using plant terpenoids in contaminated groundwater. Lett. Appl. Microbiol. 2009;49:769–774. doi: 10.1111/j.1472-765X.2009.02738.x. PubMed DOI
Radajewski S., Webster G., Reay D.S., Morris S.A., Ineson P., Nedwell D.B., Prosser J.I., Murrell J.C. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology. 2002;148:2331–2342. doi: 10.1099/00221287-148-8-2331. PubMed DOI
Mackova M., Uhlik O., Lovecka P., Viktorova J., Novakova M., Demnerova K., Sylvestre M., Macek T. Bacterial degradation of polychlorinated biphenyls. In: Loy A., Mandl M., Barton L.L., editors. Geomicrobiology: Molecular and Environmental Perspective. Springer; Dordrecht, The Netherlands: 2010. pp. 347–366.
Chen Y., Murrell J.C. When metagenomics meets stable-isotope probing: Progress and perspectives. Trends Microbiol. 2010;18:157–163. doi: 10.1016/j.tim.2010.02.002. PubMed DOI
Musilová L., Uhlík O., Strejček M., Dudková V., Macková M., Macek T. Enchancement of Polychlorinated Biphenyls Bioremediation by Soil Enrichment with Plant Secondary Metabolites. In: Lovecká P., Nováková M., Prouzová P., Uhlík O., editors. Proceedings of the 5th International Symposium on Biosorption and Bioremediation; Prague, Czech Republic. 25–29 June 2012; Prague, Czec, Republic: ICT Prague Press; 2012. pp. 135–138.
Duke J., Dr. Duke’s Phytochemical and Ethnobotanical Databases. [(accessed on 10 June 2016)]; Available online: https://phytochem.nal.usda.gov/phytochem/search.
Bell T., Newman J.A., Silverman B.W., Turner S.L., Lilley A.K. The contribution of species richness and composition to bacterial services. Nature. 2005;436:1157–1160. doi: 10.1038/nature03891. PubMed DOI
Wardle D.A., Bonner K.I., Nicholson K.S. Biodiversity and plant litter: Experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos. 1997;79:247–258. doi: 10.2307/3546010. DOI
Leigh M.B., Pellizari V.H., Uhlík O., Sutka R., Rodrigues J., Ostrom N.E., Zhou J., Tiedje J.M. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs) ISME J. 2007;1:134–148. doi: 10.1038/ismej.2007.26. PubMed DOI
He Z., Gentry T.J., Schadt C.W., Wu L., Liebich J., Chong S.C., Huang Z., Wu W., Gu B., Jardine P., et al. Geochip: A comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 2007;1:67–77. doi: 10.1038/ismej.2007.2. PubMed DOI
Stark S., Julkunen-Tiitto R., Holappa E., Mikkola K., Nikula A. Concentrations of foliar quercetin in natural populations of white birch (Betula pubescens) increase with latitude. J. Chem. Ecol. 2008;34:1382–1391. doi: 10.1007/s10886-008-9554-8. PubMed DOI
Leewis M.-C., Reynolds C.M., Leigh M.B. Long-term effects of nutrient addition and phytoremediation on diesel and crude oil contaminated soils in subarctic Alaska. Cold Reg. Sci. Technol. 2013;96:129–137. doi: 10.1016/j.coldregions.2013.08.011. PubMed DOI PMC
Petrini O. Fungal endophytes of tree leaves. In: Andrews J.H., Hirano S.S., editors. Microbial Ecology of Leaves. Springer; New York, NY, USA: 1991. pp. 179–197.
Compant S., Saikkonen K., Mitter B., Campisano A., Mercado-Blanco J. Editorial special issue: Soil, plants and endophytes. Plant Soil. 2016:1–11. doi: 10.1007/s11104-016-2927-9. DOI
Van Aken B., Yoon J.M., Schnoor J.L. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides × nigra DN34) Appl. Environ. Microbiol. 2004;70:508–517. PubMed PMC
Moore F.P., Barac T., Borrernans B., Oeyen L., Vangronsveld J., van der Lelie D., Campbell C.D., Moore E.R.B. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: The characterisation of isolates with potential to enhance phytoremediation. Syst. Appl. Microbiol. 2006;29:539–556. doi: 10.1016/j.syapm.2005.11.012. PubMed DOI
Weyens N., van der Lelie D., Taghavi S., Vangronsveld J. Phytoremediation: Plant-endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 2009;20:248–254. doi: 10.1016/j.copbio.2009.02.012. PubMed DOI
Siciliano S.D., Fortin N., Mihoc A., Wisse G., Labelle S., Beaumier D., Ouellette D., Roy R., Whyte L.G., Banks M.K., et al. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol. 2001;67:2469–2475. doi: 10.1128/AEM.67.6.2469-2475.2001. PubMed DOI PMC
Pavlikova D., Macek T., Mackova M., Pavlik M. Monitoring native vegetation on a dumpsite of PCB-contaminated soil. Int. J. Phytoremediat. 2007;9:71–78. doi: 10.1080/15226510601139433. PubMed DOI
Uhlik O., Wald J., Strejcek M., Musilova L., Ridl J., Hroudova M., Vlcek C., Cardenas E., Mackova M., Macek T. Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS ONE. 2012;7:1205. doi: 10.1371/journal.pone.0040653. PubMed DOI PMC
Uhlík O., Strejček M., Junková P., Šanda M., Hroudová M., Vlček C., Macková M., Macek T. Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microbiol. 2011;77:6858–6866. doi: 10.1128/AEM.05465-11. PubMed DOI PMC