Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19700551
PubMed Central
PMC2765145
DOI
10.1128/aem.00466-09
PII: AEM.00466-09
Knihovny.cz E-zdroje
- MeSH
- Armoracia mikrobiologie MeSH
- Bacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- bakteriální geny MeSH
- bakteriální RNA genetika MeSH
- Betaproteobacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- bifenylové sloučeniny metabolismus MeSH
- DNA bakterií genetika MeSH
- DNA primery genetika MeSH
- fylogeneze MeSH
- izotopy uhlíku MeSH
- látky znečišťující půdu metabolismus MeSH
- molekulární sekvence - údaje MeSH
- polychlorované bifenyly metabolismus MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální RNA MeSH
- bifenylové sloučeniny MeSH
- biphenyl MeSH Prohlížeč
- DNA bakterií MeSH
- DNA primery MeSH
- izotopy uhlíku MeSH
- látky znečišťující půdu MeSH
- polychlorované bifenyly MeSH
- RNA ribozomální 16S MeSH
DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [(13)C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase alpha subunits (BphA) from bacteria that incorporated [(13)C]into DNA in 3-day incubations of the soils with [(13)C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl.
Zobrazit více v PubMed
Baker, G. C., J. J. Smith, and D. A. Cowan. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55:541-555. PubMed
Blanchard, M., M. J. Teil, E. Guigon, K. Larcher-Tiphagne, D. Ollivon, B. Garban, and M. Chevreuil. 2007. Persistent toxic substance inputs to the River Seine basin (France) via atmospheric deposition and urban sludge application. Sci. Total Environ. 375:232-243. PubMed
Braune, B. M., M. L. Mallory, G. H. Grant, R. J. Letcher, and K. G. Drouillard. 2007. Levels and trends of organochlorines and brominated flame retardants in ivory gull eggs from the Canadian Arctic, 1976 to 2004. Sci. Total Environ. 378:403-417. PubMed
Cebron, A., L. Bodrossy, N. Stralis-Pavese, A. C. Singer, I. P. Thompson, J. I. Prosser, and J. C. Murrell. 2007. Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Appl. Environ. Microbiol. 73:798-807. PubMed PMC
Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M. McGarrell, G. M. Garrity, and J. M. Tiedje. 2005. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33:D294-D296. PubMed PMC
de Carcer, D. A., M. Martin, M. Mackova, T. Macek, U. Karlson, and R. Rivilla. 2007. The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME J. 1:215-223. PubMed
Demnerova, K., M. Mackova, V. Spevakova, K. Beranova, L. Kochankova, P. Lovecka, E. Ryslava, and T. Macek. 2005. Two approaches to biological decontamination of groundwater and soil polluted by aromatics—characterization of microbial populations. Int. Microbiol. 8:205-211. PubMed
Erickson, B. D., and F. J. Mondello. 1992. Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J. Bacteriol. 174:2903-2912. PubMed PMC
Furukawa, K., H. Suenaga, and M. Goto. 2004. Biphenyl dioxygenases: functional versatilities and directed evolution. J. Bacteriol. 186:5189-5196. PubMed PMC
Hernandez, B. S., S. C. Koh, M. Chial, and D. D. Focht. 1997. Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation 8:153-158.
Holoubek, I. 2001. Polychlorinated biphenyl (PCB) contaminated sites worldwide, p. 17-26. In L. W. Robertson and L. G. Hansen (ed.), PCBs. Recent advances in environmental toxicology and health effects. University of Kentucky Press, Lexington.
Kahl, S., and B. Hofer. 2003. A genetic system for the rapid isolation of aromatic-ring-hydroxylating dioxygenase activities. Microbiology 149:1475-1481. PubMed
Lambo, A. J., and T. R. Patel. 2006. Cometabolic degradation of polychlorinated biphenyls at low temperature by psychrotolerant bacterium Hydrogenophaga sp. IA3-A. Curr. Microbiol. 53:48-52. PubMed
Lambo, A. J., and T. R. Patel. 2006. Isolation and characterization of a biphenyl-utilizing psychrotrophic bacterium, Hydrogenophaga taeniospiralis IA3-A, that cometabolizes dichlorobiphenyls and polychlorinated biphenyl congeners in Aroclor 1221. J. Basic Microbiol. 46:94-107. PubMed
Lambo, A. J., and T. R. Patel. 2007. Biodegradation of polychlorinated biphenyls in Aroclor 1232 and production of metabolites from 2,4,4′-trichlorobiphenyl at low temperature by psychrotolerant Hydrogenophaga sp. strain IA3-A. J. Appl. Microbiol. 102:1318-1329. PubMed
Lebeuf, M., M. Noel, S. Trottier, and L. Measures. 2007. Temporal trends (1987-2002) of persistent, bioaccumulative and toxic (PBT) chemicals in beluga whales (Delphinapterus leucas) from the St. Lawrence Estuary, Canada. Sci. Total Environ. 383:216-231. PubMed
Leigh, M. B., V. H. Pellizari, O. Uhlik, R. Sutka, J. Rodrigues, N. E. Ostrom, J. Zhou, and J. M. Tiedje. 2007. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 1:134-148. PubMed
Macek, T., P. Kotrba, A. Svatos, M. Novakova, K. Demnerova, and M. Mackova. 2008. Novel roles for genetically modified plants in environmental protection. Trends Biotechnol. 26:146-152. PubMed
Macek, T., M. Mackova, and J. Kas. 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18:23-34. PubMed
Macek, T., O. Uhlik, K. Jecna, M. Novakova, P. Lovecka, J. Rezek, V. Dudkova, P. Stursa, B. Vrchotova, D. Pavlikova, K. Demnerova, and M. Mackova. 2009. Advances in phytoremediation and rhizoremediation, p. 257-277. In A. Singh, R. C. Kuhad, and O. P. Ward (ed.), Advances in applied bioremediation. Springer, Berlin, Germany.
Mackova, M., D. Dowling, and T. Macek. 2006. Phytoremediation and rhizoremediation. Theoretical background. Springer, Dordrecht, The Netherlands.
Mondello, F. J., M. P. Turcich, J. H. Lobos, and B. D. Erickson. 1997. Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl. Environ. Microbiol. 63:3096-3103. PubMed PMC
Novakova, M., M. Mackova, Z. Chrastilova, J. Viktorova, M. Szekeres, K. Demnerova, and T. Macek. 2009. Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of PCB phytoremediation. Biotechnol. Bioeng. 102:29-37. PubMed
Park, J. S., L. Linderholm, M. J. Charles, M. Athanasiadou, J. Petrik, A. Kocan, B. Drobna, T. Trnovec, A. Bergman, and I. Hertz-Picciotto. 2007. Polychlorinated biphenyls and their hydroxylated metabolites (OH-PCBs) in pregnant women from eastern Slovakia. Environ. Health Perspect. 115:20-27. PubMed PMC
Pavlikova, D., T. Macek, M. Mackova, and M. Pavlik. 2007. Monitoring native vegetation on a dumpsite of PCB-contaminated soil. Int. J. Phytoremediat. 9:71-78. PubMed
Rezek, J., T. Macek, M. Mackova, J. Triska, and K. Ruzickova. 2008. Hydroxy-PCBs, methoxy-PCBs and hydroxy-methoxy-PCBs: metabolites of polychlorinated biphenyls formed in vitro by tobacco cells. Environ. Sci. Technol. 42:5746-5751. PubMed
Ryslava, E., T. Macek, M. Mackova, and Z. Krejcik. 2004. Detection of polychlorinated biphenyl-degrading bacteria in soil, p. 839-842. In W. Verstraete (ed.), Environmental biotechnology. Taylor & Francis Group plc, London, United Kingdom.
Sakai, M., S. Ezaki, N. Suzuki, and R. Kurane. 2005. Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101. Appl. Microbiol. Biotechnol. 68:111-116. PubMed
Shyu, C., T. Soule, S. J. Bent, J. A. Foster, and L. J. Forney. 2007. MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microb. Ecol. 53:562-570. PubMed
Sylvestre, M., M. Sirois, Y. Hurtubise, J. Bergeron, D. Ahmad, F. Shareck, D. Barriault, I. Guillemette, and J. M. Juteau. 1996. Sequencing of Comamonas testosteroni strain B-356-biphenyl/chlorobiphenyl dioxygenase genes: evolutionary relationships among Gram-negative bacterial biphenyl dioxygenases. Gene 174:195-202. PubMed
Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. PubMed
Tillmann, S., C. Strompl, K. N. Timmis, and W. R. Abraham. 2005. Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol. Ecol. 52:207-217. PubMed
Uhlik, O., K. Jecna, M. B. Leigh, M. Mackova, and T. Macek. 2009. DNA-based stable isotope probing: a link between community structure and function. Sci. Total Environ. 407:3611-3619. PubMed
Vaillancourt, F. H., M. A. Haro, N. M. Drouin, Z. Karim, H. Maaroufi, and L. D. Eltis. 2003. Characterization of extradiol dioxygenases from a polychlorinated biphenyl-degrading strain that possess higher specificities for chlorinated metabolites. J. Bacteriol. 185:1253-1260. PubMed PMC
Vezina, J., D. Barriault, and M. Sylvestre. 2008. Diversity of the C-terminal portion of the biphenyl dioxygenase large subunit. J. Mol. Microbiol. Biotechnol. 15:139-151. PubMed
Yu, Y., M. Breitbart, P. McNairnie, and F. Rohwer. 2006. FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7:57. PubMed PMC
Hunting Down Frame Shifts: Ecological Analysis of Diverse Functional Gene Sequences
Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment
Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation
Phyto/rhizoremediation studies using long-term PCB-contaminated soil
GENBANK
FJ532314, FJ532315, FJ532316, FJ532317, FJ532318, FJ532319, FJ532320, FJ532321, FJ532322, FJ532323, FJ532324, FJ532325, FJ532326, FJ532327, FJ532328, FJ532329, FJ532330, FJ532331, FJ532332, FJ532333, FJ532334, FJ532335, FJ532336, FJ532337, FJ532338, FJ532339, FJ532340, FJ532341, FJ532342, FJ532343, FJ532344, FJ532345