Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26635740
PubMed Central
PMC4652016
DOI
10.3389/fmicb.2015.01268
Knihovny.cz E-zdroje
- Klíčová slova
- Comamonas testosteroni, Pseudomonas gessardii, Pseudomonas veronii, biodegradation, dioxygenase, naphthalene, polyaromatic hydrocarbons, stable isotope probing,
- Publikační typ
- časopisecké články MeSH
Given that the degradation of aromatic pollutants in anaerobic environments such as sediment is generally very slow, aeration could be an efficient bioremediation option. Using stable isotope probing (SIP) coupled with pyrosequencing analysis of 16S rRNA genes, we identified naphthalene-utilizing populations in aerated polyaromatic hydrocarbon (PAH)-polluted sediment. The results showed that naphthalene was metabolized at both 10 and 20°C following oxygen delivery, with increased degradation at 20°C as compared to 10°C-a temperature more similar to that found in situ. Naphthalene-derived (13)C was primarily assimilated by pseudomonads. Additionally, Stenotrophomonas, Acidovorax, Comamonas, and other minor taxa were determined to incorporate (13)C throughout the measured time course. The majority of SIP-detected bacteria were also isolated in pure cultures, which facilitated more reliable identification of naphthalene-utilizing populations as well as proper differentiation between primary consumers and cross-feeders. The pseudomonads acquiring the majority of carbon were identified as Pseudomonas veronii and Pseudomonas gessardii. Stenotrophomonads and Acidovorax defluvii, however, were identified as cross-feeders unable to directly utilize naphthalene as a growth substrate. PAH degradation assays with the isolated bacteria revealed that all pseudomonads as well as Comamonas testosteroni degraded acenaphthene, fluorene, and phenanthrene in addition to naphthalene. Furthermore, P. veronii and C. testosteroni were capable of transforming anthracene, fluoranthene, and pyrene. Screening of isolates for naphthalene dioxygenase genes using a set of in-house designed primers for Gram-negative bacteria revealed the presence of such genes in pseudomonads and C. testosteroni. Overall, our results indicated an apparent dominance of pseudomonads in the sequestration of carbon from naphthalene and potential degradation of other PAHs upon aeration of the sediment at both 20 and 10°C.
Zobrazit více v PubMed
Ahn T. S., Lee G. H., Song H. G. (2005). Biodegradation of phenanthrene by psychrotrophic bacteria from Lake Baikal. J. Microbiol. Biotechnol. 15, 1135–1139.
Berry D., Ben Mahfoudh K., Wagner M., Loy A. (2011). Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77, 7846–7849. 10.1128/AEM.05220-11 PubMed DOI PMC
Bouchez M., Blanchet D., Vandecasteele J. P. (1995). Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl. Microbiol. Biotechnol. 43, 156–164. 10.1007/BF00170638 PubMed DOI
Brakstad O. G., Nonstad I., Faksness L. G., Brandvik P. J. (2008). Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb. Ecol. 55, 540–552. 10.1007/s00248-007-9299-x PubMed DOI
Bučková M., Puškarová A., Chovanová K., Kraková L., Ferianc P., Pangallo D. (2013). A simple strategy for investigating the diversity and hydrocarbon degradation abilities of cultivable bacteria from contaminated soil. World J. Microbiol. Biotechnol. 29, 1085–1098. 10.1007/s11274-013-1277-5 PubMed DOI
Cerniglia C. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351–368. 10.1007/BF00129093 DOI
Cerniglia C. E., Sutherland J. B. (2010). Degradation of polycyclic aromatic hydrocarbons by fungi, in Handbook of Hydrocarbon and Lipid Microbiology, ed Timmis K. N. (Berlin; Heidelberg: Springer; ), 2079–2110. 10.1007/978-3-540-77587-4_151 DOI
Chauhan A., Layton A. C., Williams D. E., Smartt A. E., Ripp S., Karpinets T. V., et al. . (2011). Draft genome sequence of the polycyclic aromatic hydrocarbon-degrading, genetically engineered bioluminescent bioreporter Pseudomonas fluorescens HK44. J. Bacteriol. 193, 5009–5010. 10.1128/JB.05530-11 PubMed DOI PMC
Chen Y., Murrell J. C. (2010). When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol. 18, 157–163. 10.1016/j.tim.2010.02.002 PubMed DOI
Chen Y., Vohra J., Murrell J. C. (2010). Applications of DNA-stable isotope probing in bioremediation studies. Methods Mol. Biol. 599, 129–139. 10.1007/978-1-60761-439-5_9 PubMed DOI
Cole J. R., Tiedje J. M. (2014). History and impact of RDP: a legacy from Carl Woese to microbiology. RNA Biol. 11, 239–243. 10.4161/rna.28306 PubMed DOI PMC
Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., et al. . (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145. 10.1093/nar/gkn879 PubMed DOI PMC
Denome S. A., Stanley D. C., Olson E. S., Young K. D. (1993). Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J. Bacteriol. 175, 6890–6901. PubMed PMC
di Gennaro P., Conforti P., Lasagni M., Bestetti G., Bernasconi S., Orsini F., et al. . (2006). Dioxygenation of naphthalene by Pseudomonas fluorescens N3 dioxygenase: optimization of the process parameters. Biotechnol. Bioeng. 93, 511–518. 10.1002/bit.20736 PubMed DOI
Eriksson M., Sodersten E., Yu Z., Dalhammar G., Mohn W. W. (2003). Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl. Environ. Microbiol. 69, 275–284. 10.1128/AEM.69.1.275-284.2003 PubMed DOI PMC
Fish J. A., Chai B., Wang Q., Sun Y., Brown C. T., Tiedje J. M., et al. . (2013). FunGene: the functional gene pipeline and repository. Front. Microbiol. 4:291. 10.3389/fmicb.2013.00291 PubMed DOI PMC
Fuenmayor S. L., Wild M., Boyes A. L., Williams P. A. (1998). A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J. Bacteriol. 180, 2522–2530. PubMed PMC
Gentry T. J., Wang G., Rensing C., Pepper I. L. (2004). Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels. Microb. Ecol. 48, 90–102. 10.1007/s00248-003-1048-1 PubMed DOI
Goyal A. K., Zylstra G. J. (1996). Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl. Environ. Microbiol. 62, 230–236. PubMed PMC
Goyal A. K., Zylstra G. J. (1997). Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. J. Ind. Microbiol. Biotechnol. 19, 401–407. 10.1038/sj.jim.2900476 PubMed DOI
Habe H., Omori T. (2003). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Biochem. 67, 225–243. 10.1271/bbb.67.225 PubMed DOI
Ho Y., Jackson M., Yang Y., Mueller J. G., Pritchard P. H. (2000). Characterization of fluoranthene- and pyrene-degrading bacteria isolated from PAH-contaminated soils and sediments. J. Ind. Microbiol. Biotechnol. 24, 100–112. 10.1038/sj.jim.2900774 DOI
Jeon C. O., Park M., Ro H. S., Park W., Madsen E. L. (2006). The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl. Environ. Microbiol. 72, 1086–1095. 10.1128/AEM.72.2.1086-1095.2006 PubMed DOI PMC
Jeon C. O., Park W., Ghiorse W. C., Madsen E. L. (2004). Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int. J. Syst. Evol. Microbiol. 54, 93–97. 10.1099/ijs.0.02636-0 PubMed DOI
Jeon C. O., Park W., Padmanabhan P., Derito C., Snape J. R., Madsen E. L. (2003). Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc. Natl. Acad. Sci. U.S.A. 100, 13591–13596. 10.1073/pnas.1735529100 PubMed DOI PMC
Jerina D. M., Selander H., Yagi H., Wells M. C., Davey J. F., Mahadevan V., et al. . (1976). Dihydrodiols from anthracene and phenanthrene. J. Am. Chem. Soc. 98, 5988–5996. 10.1021/ja00435a035 PubMed DOI
Jones M. D., Crandell D. W., Singleton D. R., Aitken M. D. (2011). Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ. Microbiol. 13, 2623–2632. 10.1111/j.1462-2920.2011.02501.x PubMed DOI PMC
Kahng H. Y., Nam K., Kukor J., Yoon B. J., Lee D. H., Oh D. C., et al. . (2002). PAH utilization by Pseudomonas rhodesiae KK1 isolated from a former manufactured-gas plant site. Appl. Microbiol. Biotechnol. 60, 475–480. 10.1007/s00253-002-1137-y PubMed DOI
Kim Y.-H., Engesser K.-H., Cerniglia C. (2005). Numerical and genetic analysis of polycyclic aromatic hydrocarbon-degrading mycobacteria. Microb. Ecol. 50, 110–119. 10.1007/s00248-004-0126-3 PubMed DOI
Koubek J., Macková M., Macek T., Uhlik O. (2013). Diversity of chlorobiphenyl-metabolizing bacteria and their biphenyl dioxygenases in contaminated sediment. Chemosphere 93, 1548–1555. 10.1016/j.chemosphere.2013.07.073 PubMed DOI
Kuiper I., Bloemberg G. V., Lugtenberg B. J. (2001). Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol. Plant Microbe Interact. 14, 1197–1205. 10.1094/MPMI.2001.14.10.1197 PubMed DOI
Kunin V., Engelbrektson A., Ochman H., Hugenholtz P. (2010). Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12, 118–123. 10.1111/j.1462-2920.2009.02051.x PubMed DOI
Kurkela S., Lehväslaiho H., Palva E. T., Teeri T. H. (1988). Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene 73, 355–362. 10.1016/0378-1119(88)90500-8 PubMed DOI
Kurzawova V., Stursa P., Uhlik O., Norkova K., Strohalm M., Lipov J., et al. . (2012). Plant-microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil. N. Biotechnol. 30, 15–22. 10.1016/j.nbt.2012.06.004 PubMed DOI
Lai Q., Li W., Wang B., Yu Z., Shao Z. (2012). Complete genome sequence of the pyrene-degrading bacterium Cycloclasticus sp. strain P1. J. Bacteriol. 194, 6677. 10.1128/jb.01837-12 PubMed DOI PMC
Laurie A. D., Lloyd-Jones G. (1999). The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J. Bacteriol. 181, 531–540. PubMed PMC
Leewis M. C., Reynolds C. M., Leigh M. B. (2013). Long-term effects of nutrient addition and phytoremediation on diesel and crude oil contaminated soils in subarctic Alaska. Cold Reg. Sci. Technol. 96, 129–138. 10.1016/j.coldregions.2013.08.011 PubMed DOI PMC
Leigh M. B., Fletcher J. S., Fu X., Schmitz F. J. (2002). Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36, 1579–1583. 10.1021/es015702i PubMed DOI
Leigh M. B., Pellizari V. H., Uhlik O., Sutka R., Rodrigues J., Ostrom N. E., et al. . (2007). Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 1, 134–148. 10.1038/ismej.2007.26 PubMed DOI
Lu X.-Y., Zhang T., Fang H.-P. (2011). Bacteria-mediated PAH degradation in soil and sediment. Appl. Microbiol. Biotechnol. 89, 1357–1371. 10.1007/s00253-010-3072-7 PubMed DOI
Moser R., Stahl U. (2001). Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl. Microbiol. Biotechnol. 55, 609–618. 10.1007/s002530000489 PubMed DOI
Neufeld J. D., Wagner M., Murrell J. C. (2007). Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 1, 103–110. 10.1038/ismej.2007.30 PubMed DOI
Okere U. V., Cabrerizo A., Dachs J., Jones K. C., Semple K. T. (2012). Biodegradation of phenanthrene by indigenous microorganisms in soils from Livingstone Island, Antarctica. FEMS Microbiol. Lett. 329, 69–77. 10.1111/j.1574-6968.2012.02501.x PubMed DOI
Padmanabhan P., Padmanabhan S., Derito C., Gray A., Gannon D., Snape J. R., et al. . (2003). Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl. Environ. Microbiol. 69, 1614–1622. 10.1128/AEM.69.3.1614-1622.2003 PubMed DOI PMC
Peng R.-H., Xiong A.-S., Xue Y., Fu X.-Y., Gao F., Zhao W., et al. . (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 32, 927–955. 10.1111/j.1574-6976.2008.00127.x PubMed DOI
Pothuluri J. V., Cerniglia C. E. (1994). Microbial metabolism of polycyclic aromatic hydrocarbons, in Biological Degradation and Bioremediation Toxic Chemicals, ed Chaudry G. R. (London, UK: Chapman and Hall; ), 92–124.
Quince C., Lanzen A., Davenport R. J., Turnbaugh P. J. (2011). Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38. 10.1186/1471-2105-12-38 PubMed DOI PMC
R Development Core Team (2009). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Rentz J. A., Alvarez P. J. J., Schnoor J. L. (2005). Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: implications for phytoremediation. Environ. Pollut. 136, 477–484. 10.1016/j.envpol.2004.12.034 PubMed DOI
Rentz J. A., Alvarez P. J. J., Schnoor J. L. (2008). Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02. Environ. Pollut. 151, 669–677. 10.1016/j.envpol.2007.02.018 PubMed DOI
Resnick S. M., Gibson D. T. (1996). Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl. Environ. Microbiol. 62, 4073–4080. PubMed PMC
Samanta S. K., Singh O. V., Jain R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol. 20, 243–248. 10.1016/S0167-7799(02)01943-1 PubMed DOI
Schloss P. D. (2013). Secondary structure improves OTU assignments of 16S rRNA gene sequences. ISME J. 7, 457–460. 10.1038/ismej.2012.102 PubMed DOI PMC
Schloss P. D., Gevers D., Westcott S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310. 10.1371/journal.pone.0027310 PubMed DOI PMC
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. . (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC
Selifonov S. A., Grifoll M., Eaton R. W., Chapman P. J. (1996). Oxidation of naphthenoaromatic and methyl-substituted aromatic compounds by naphthalene 1,2-dioxygenase. Appl. Environ. Microbiol. 62, 507–514. PubMed PMC
Shuttleworth K. L., Cerniglia C. E. (1995). Environmental aspects of PAH biodegradation. Appl. Biochem. Biotechnol. 54, 291–302. 10.1007/BF02787927 PubMed DOI
Shuttleworth K. L., Cerniglia C. E. (1996). Bacterial degradation of low concentrations of phenanthrene and inhibition by naphthalene. Microb. Ecol. 31, 305–317. 10.1007/BF00171574 PubMed DOI
Simon M. J., Osslund T. D., Saunders R., Ensley B. D., Suggs S., Harcourt A., et al. . (1993). Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127, 31–37. 10.1016/0378-1119(93)90613-8 PubMed DOI
Singleton D. R., Powell S. N., Sangaiah R., Gold A., Ball L. M., Aitken M. D. (2005). Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl. Environ. Microbiol. 71, 1202–1209. 10.1128/AEM.71.3.1202-1209.2005 PubMed DOI PMC
Singleton D. R., Richardson S. D., Aitken M. D. (2011). Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil. Biodegradation 22, 1061–1073. 10.1007/s10532-011-9463-3 PubMed DOI PMC
Sørensen S. R., Johnsen A. R., Jensen A., Jacobsen C. S. (2010). Presence of psychrotolerant phenanthrene-mineralizing bacterial populations in contaminated soils from the Greenland High Arctic. FEMS Microbiol. Lett. 305, 148–154. 10.1111/j.1574-6968.2010.01920.x PubMed DOI
Stringfellow W. T., Aitken M. D. (1995). Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Appl. Environ. Microbiol. 61, 357–362. PubMed PMC
Suzuki M. T., Giovannoni S. J. (1996). Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625–630. PubMed PMC
Takizawa N., Kaida N., Torigoe S., Moritani T., Sawada T., Satoh S., et al. . (1994). Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J. Bacteriol. 176, 2444–2449. PubMed PMC
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. 10.1093/molbev/msr121 PubMed DOI PMC
Thompson J. R., Marcelino L. A., Polz M. F. (2002). Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res. 30, 2083–2088. 10.1093/nar/30.9.2083 PubMed DOI PMC
Uhlik O., Jecna K., Mackova M., Vlcek C., Hroudova M., Demnerova K., et al. . (2009). Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl. Environ. Microbiol. 75, 6471–6477. 10.1128/AEM.00466-09 PubMed DOI PMC
Uhlik O., Leewis M. C., Strejcek M., Musilova L., Mackova M., Leigh M. B., et al. . (2013a). Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol. Adv. 31, 154–165. 10.1016/j.biotechadv.2012.09.003 PubMed DOI PMC
Uhlik O., Musilova L., Ridl J., Hroudova M., Vlcek C., Koubek J., et al. . (2013b). Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl. Microbiol. Biotechnol. 97, 9245–9256. 10.1007/s00253-012-4627-6 PubMed DOI
Uhlik O., Strejcek M., Junkova P., Sanda M., Hroudova M., Vlcek C., et al. . (2011). Matrix-Assisted Laser Desorption Ionization (MALDI)-Time of Flight Mass Spectrometry- and MALDI Biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microbiol. 77, 6858–6866. 10.1128/AEM.05465-11 PubMed DOI PMC
Uhlik O., Wald J., Strejcek M., Musilova L., Ridl J., Hroudova M., et al. . (2012). Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS ONE 7:e40653. 10.1371/journal.pone.0040653 PubMed DOI PMC
van der Meer J. R., de Vos W. M., Harayama S., Zehnder A. J. (1992). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56, 677–694. PubMed PMC
van Herwijnen R., Wattiau P., Bastiaens L., Daal L., Jonker L., Springael D., et al. . (2003). Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Res. Microbiol. 154, 199–206. 10.1016/S0923-2508(03)00039-1 PubMed DOI
Whitman B. E., Lueking D. R., Mihelcic J. R. (1998). Naphthalene uptake by a Pseudomonas fluorescens isolate. Can. J. Microbiol. 44, 1086–1093. 10.1139/cjm-44-11-1086 PubMed DOI
Zhang Z., Schwartz S., Wagner L., Miller W. (2000). A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214. 10.1089/10665270050081478 PubMed DOI