Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment

. 2015 ; 6 () : 1268. [epub] 20151119

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26635740

Given that the degradation of aromatic pollutants in anaerobic environments such as sediment is generally very slow, aeration could be an efficient bioremediation option. Using stable isotope probing (SIP) coupled with pyrosequencing analysis of 16S rRNA genes, we identified naphthalene-utilizing populations in aerated polyaromatic hydrocarbon (PAH)-polluted sediment. The results showed that naphthalene was metabolized at both 10 and 20°C following oxygen delivery, with increased degradation at 20°C as compared to 10°C-a temperature more similar to that found in situ. Naphthalene-derived (13)C was primarily assimilated by pseudomonads. Additionally, Stenotrophomonas, Acidovorax, Comamonas, and other minor taxa were determined to incorporate (13)C throughout the measured time course. The majority of SIP-detected bacteria were also isolated in pure cultures, which facilitated more reliable identification of naphthalene-utilizing populations as well as proper differentiation between primary consumers and cross-feeders. The pseudomonads acquiring the majority of carbon were identified as Pseudomonas veronii and Pseudomonas gessardii. Stenotrophomonads and Acidovorax defluvii, however, were identified as cross-feeders unable to directly utilize naphthalene as a growth substrate. PAH degradation assays with the isolated bacteria revealed that all pseudomonads as well as Comamonas testosteroni degraded acenaphthene, fluorene, and phenanthrene in addition to naphthalene. Furthermore, P. veronii and C. testosteroni were capable of transforming anthracene, fluoranthene, and pyrene. Screening of isolates for naphthalene dioxygenase genes using a set of in-house designed primers for Gram-negative bacteria revealed the presence of such genes in pseudomonads and C. testosteroni. Overall, our results indicated an apparent dominance of pseudomonads in the sequestration of carbon from naphthalene and potential degradation of other PAHs upon aeration of the sediment at both 20 and 10°C.

Zobrazit více v PubMed

Ahn T. S., Lee G. H., Song H. G. (2005). Biodegradation of phenanthrene by psychrotrophic bacteria from Lake Baikal. J. Microbiol. Biotechnol. 15, 1135–1139.

Berry D., Ben Mahfoudh K., Wagner M., Loy A. (2011). Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77, 7846–7849. 10.1128/AEM.05220-11 PubMed DOI PMC

Bouchez M., Blanchet D., Vandecasteele J. P. (1995). Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl. Microbiol. Biotechnol. 43, 156–164. 10.1007/BF00170638 PubMed DOI

Brakstad O. G., Nonstad I., Faksness L. G., Brandvik P. J. (2008). Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb. Ecol. 55, 540–552. 10.1007/s00248-007-9299-x PubMed DOI

Bučková M., Puškarová A., Chovanová K., Kraková L., Ferianc P., Pangallo D. (2013). A simple strategy for investigating the diversity and hydrocarbon degradation abilities of cultivable bacteria from contaminated soil. World J. Microbiol. Biotechnol. 29, 1085–1098. 10.1007/s11274-013-1277-5 PubMed DOI

Cerniglia C. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351–368. 10.1007/BF00129093 DOI

Cerniglia C. E., Sutherland J. B. (2010). Degradation of polycyclic aromatic hydrocarbons by fungi, in Handbook of Hydrocarbon and Lipid Microbiology, ed Timmis K. N. (Berlin; Heidelberg: Springer; ), 2079–2110. 10.1007/978-3-540-77587-4_151 DOI

Chauhan A., Layton A. C., Williams D. E., Smartt A. E., Ripp S., Karpinets T. V., et al. . (2011). Draft genome sequence of the polycyclic aromatic hydrocarbon-degrading, genetically engineered bioluminescent bioreporter Pseudomonas fluorescens HK44. J. Bacteriol. 193, 5009–5010. 10.1128/JB.05530-11 PubMed DOI PMC

Chen Y., Murrell J. C. (2010). When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol. 18, 157–163. 10.1016/j.tim.2010.02.002 PubMed DOI

Chen Y., Vohra J., Murrell J. C. (2010). Applications of DNA-stable isotope probing in bioremediation studies. Methods Mol. Biol. 599, 129–139. 10.1007/978-1-60761-439-5_9 PubMed DOI

Cole J. R., Tiedje J. M. (2014). History and impact of RDP: a legacy from Carl Woese to microbiology. RNA Biol. 11, 239–243. 10.4161/rna.28306 PubMed DOI PMC

Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., et al. . (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145. 10.1093/nar/gkn879 PubMed DOI PMC

Denome S. A., Stanley D. C., Olson E. S., Young K. D. (1993). Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J. Bacteriol. 175, 6890–6901. PubMed PMC

di Gennaro P., Conforti P., Lasagni M., Bestetti G., Bernasconi S., Orsini F., et al. . (2006). Dioxygenation of naphthalene by Pseudomonas fluorescens N3 dioxygenase: optimization of the process parameters. Biotechnol. Bioeng. 93, 511–518. 10.1002/bit.20736 PubMed DOI

Eriksson M., Sodersten E., Yu Z., Dalhammar G., Mohn W. W. (2003). Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl. Environ. Microbiol. 69, 275–284. 10.1128/AEM.69.1.275-284.2003 PubMed DOI PMC

Fish J. A., Chai B., Wang Q., Sun Y., Brown C. T., Tiedje J. M., et al. . (2013). FunGene: the functional gene pipeline and repository. Front. Microbiol. 4:291. 10.3389/fmicb.2013.00291 PubMed DOI PMC

Fuenmayor S. L., Wild M., Boyes A. L., Williams P. A. (1998). A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J. Bacteriol. 180, 2522–2530. PubMed PMC

Gentry T. J., Wang G., Rensing C., Pepper I. L. (2004). Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels. Microb. Ecol. 48, 90–102. 10.1007/s00248-003-1048-1 PubMed DOI

Goyal A. K., Zylstra G. J. (1996). Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl. Environ. Microbiol. 62, 230–236. PubMed PMC

Goyal A. K., Zylstra G. J. (1997). Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. J. Ind. Microbiol. Biotechnol. 19, 401–407. 10.1038/sj.jim.2900476 PubMed DOI

Habe H., Omori T. (2003). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Biochem. 67, 225–243. 10.1271/bbb.67.225 PubMed DOI

Ho Y., Jackson M., Yang Y., Mueller J. G., Pritchard P. H. (2000). Characterization of fluoranthene- and pyrene-degrading bacteria isolated from PAH-contaminated soils and sediments. J. Ind. Microbiol. Biotechnol. 24, 100–112. 10.1038/sj.jim.2900774 DOI

Jeon C. O., Park M., Ro H. S., Park W., Madsen E. L. (2006). The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl. Environ. Microbiol. 72, 1086–1095. 10.1128/AEM.72.2.1086-1095.2006 PubMed DOI PMC

Jeon C. O., Park W., Ghiorse W. C., Madsen E. L. (2004). Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int. J. Syst. Evol. Microbiol. 54, 93–97. 10.1099/ijs.0.02636-0 PubMed DOI

Jeon C. O., Park W., Padmanabhan P., Derito C., Snape J. R., Madsen E. L. (2003). Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc. Natl. Acad. Sci. U.S.A. 100, 13591–13596. 10.1073/pnas.1735529100 PubMed DOI PMC

Jerina D. M., Selander H., Yagi H., Wells M. C., Davey J. F., Mahadevan V., et al. . (1976). Dihydrodiols from anthracene and phenanthrene. J. Am. Chem. Soc. 98, 5988–5996. 10.1021/ja00435a035 PubMed DOI

Jones M. D., Crandell D. W., Singleton D. R., Aitken M. D. (2011). Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ. Microbiol. 13, 2623–2632. 10.1111/j.1462-2920.2011.02501.x PubMed DOI PMC

Kahng H. Y., Nam K., Kukor J., Yoon B. J., Lee D. H., Oh D. C., et al. . (2002). PAH utilization by Pseudomonas rhodesiae KK1 isolated from a former manufactured-gas plant site. Appl. Microbiol. Biotechnol. 60, 475–480. 10.1007/s00253-002-1137-y PubMed DOI

Kim Y.-H., Engesser K.-H., Cerniglia C. (2005). Numerical and genetic analysis of polycyclic aromatic hydrocarbon-degrading mycobacteria. Microb. Ecol. 50, 110–119. 10.1007/s00248-004-0126-3 PubMed DOI

Koubek J., Macková M., Macek T., Uhlik O. (2013). Diversity of chlorobiphenyl-metabolizing bacteria and their biphenyl dioxygenases in contaminated sediment. Chemosphere 93, 1548–1555. 10.1016/j.chemosphere.2013.07.073 PubMed DOI

Kuiper I., Bloemberg G. V., Lugtenberg B. J. (2001). Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol. Plant Microbe Interact. 14, 1197–1205. 10.1094/MPMI.2001.14.10.1197 PubMed DOI

Kunin V., Engelbrektson A., Ochman H., Hugenholtz P. (2010). Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12, 118–123. 10.1111/j.1462-2920.2009.02051.x PubMed DOI

Kurkela S., Lehväslaiho H., Palva E. T., Teeri T. H. (1988). Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene 73, 355–362. 10.1016/0378-1119(88)90500-8 PubMed DOI

Kurzawova V., Stursa P., Uhlik O., Norkova K., Strohalm M., Lipov J., et al. . (2012). Plant-microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil. N. Biotechnol. 30, 15–22. 10.1016/j.nbt.2012.06.004 PubMed DOI

Lai Q., Li W., Wang B., Yu Z., Shao Z. (2012). Complete genome sequence of the pyrene-degrading bacterium Cycloclasticus sp. strain P1. J. Bacteriol. 194, 6677. 10.1128/jb.01837-12 PubMed DOI PMC

Laurie A. D., Lloyd-Jones G. (1999). The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J. Bacteriol. 181, 531–540. PubMed PMC

Leewis M. C., Reynolds C. M., Leigh M. B. (2013). Long-term effects of nutrient addition and phytoremediation on diesel and crude oil contaminated soils in subarctic Alaska. Cold Reg. Sci. Technol. 96, 129–138. 10.1016/j.coldregions.2013.08.011 PubMed DOI PMC

Leigh M. B., Fletcher J. S., Fu X., Schmitz F. J. (2002). Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36, 1579–1583. 10.1021/es015702i PubMed DOI

Leigh M. B., Pellizari V. H., Uhlik O., Sutka R., Rodrigues J., Ostrom N. E., et al. . (2007). Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 1, 134–148. 10.1038/ismej.2007.26 PubMed DOI

Lu X.-Y., Zhang T., Fang H.-P. (2011). Bacteria-mediated PAH degradation in soil and sediment. Appl. Microbiol. Biotechnol. 89, 1357–1371. 10.1007/s00253-010-3072-7 PubMed DOI

Moser R., Stahl U. (2001). Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl. Microbiol. Biotechnol. 55, 609–618. 10.1007/s002530000489 PubMed DOI

Neufeld J. D., Wagner M., Murrell J. C. (2007). Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 1, 103–110. 10.1038/ismej.2007.30 PubMed DOI

Okere U. V., Cabrerizo A., Dachs J., Jones K. C., Semple K. T. (2012). Biodegradation of phenanthrene by indigenous microorganisms in soils from Livingstone Island, Antarctica. FEMS Microbiol. Lett. 329, 69–77. 10.1111/j.1574-6968.2012.02501.x PubMed DOI

Padmanabhan P., Padmanabhan S., Derito C., Gray A., Gannon D., Snape J. R., et al. . (2003). Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl. Environ. Microbiol. 69, 1614–1622. 10.1128/AEM.69.3.1614-1622.2003 PubMed DOI PMC

Peng R.-H., Xiong A.-S., Xue Y., Fu X.-Y., Gao F., Zhao W., et al. . (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 32, 927–955. 10.1111/j.1574-6976.2008.00127.x PubMed DOI

Pothuluri J. V., Cerniglia C. E. (1994). Microbial metabolism of polycyclic aromatic hydrocarbons, in Biological Degradation and Bioremediation Toxic Chemicals, ed Chaudry G. R. (London, UK: Chapman and Hall; ), 92–124.

Quince C., Lanzen A., Davenport R. J., Turnbaugh P. J. (2011). Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38. 10.1186/1471-2105-12-38 PubMed DOI PMC

R Development Core Team (2009). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rentz J. A., Alvarez P. J. J., Schnoor J. L. (2005). Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: implications for phytoremediation. Environ. Pollut. 136, 477–484. 10.1016/j.envpol.2004.12.034 PubMed DOI

Rentz J. A., Alvarez P. J. J., Schnoor J. L. (2008). Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02. Environ. Pollut. 151, 669–677. 10.1016/j.envpol.2007.02.018 PubMed DOI

Resnick S. M., Gibson D. T. (1996). Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl. Environ. Microbiol. 62, 4073–4080. PubMed PMC

Samanta S. K., Singh O. V., Jain R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol. 20, 243–248. 10.1016/S0167-7799(02)01943-1 PubMed DOI

Schloss P. D. (2013). Secondary structure improves OTU assignments of 16S rRNA gene sequences. ISME J. 7, 457–460. 10.1038/ismej.2012.102 PubMed DOI PMC

Schloss P. D., Gevers D., Westcott S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310. 10.1371/journal.pone.0027310 PubMed DOI PMC

Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. . (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC

Selifonov S. A., Grifoll M., Eaton R. W., Chapman P. J. (1996). Oxidation of naphthenoaromatic and methyl-substituted aromatic compounds by naphthalene 1,2-dioxygenase. Appl. Environ. Microbiol. 62, 507–514. PubMed PMC

Shuttleworth K. L., Cerniglia C. E. (1995). Environmental aspects of PAH biodegradation. Appl. Biochem. Biotechnol. 54, 291–302. 10.1007/BF02787927 PubMed DOI

Shuttleworth K. L., Cerniglia C. E. (1996). Bacterial degradation of low concentrations of phenanthrene and inhibition by naphthalene. Microb. Ecol. 31, 305–317. 10.1007/BF00171574 PubMed DOI

Simon M. J., Osslund T. D., Saunders R., Ensley B. D., Suggs S., Harcourt A., et al. . (1993). Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127, 31–37. 10.1016/0378-1119(93)90613-8 PubMed DOI

Singleton D. R., Powell S. N., Sangaiah R., Gold A., Ball L. M., Aitken M. D. (2005). Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl. Environ. Microbiol. 71, 1202–1209. 10.1128/AEM.71.3.1202-1209.2005 PubMed DOI PMC

Singleton D. R., Richardson S. D., Aitken M. D. (2011). Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil. Biodegradation 22, 1061–1073. 10.1007/s10532-011-9463-3 PubMed DOI PMC

Sørensen S. R., Johnsen A. R., Jensen A., Jacobsen C. S. (2010). Presence of psychrotolerant phenanthrene-mineralizing bacterial populations in contaminated soils from the Greenland High Arctic. FEMS Microbiol. Lett. 305, 148–154. 10.1111/j.1574-6968.2010.01920.x PubMed DOI

Stringfellow W. T., Aitken M. D. (1995). Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Appl. Environ. Microbiol. 61, 357–362. PubMed PMC

Suzuki M. T., Giovannoni S. J. (1996). Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625–630. PubMed PMC

Takizawa N., Kaida N., Torigoe S., Moritani T., Sawada T., Satoh S., et al. . (1994). Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J. Bacteriol. 176, 2444–2449. PubMed PMC

Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. 10.1093/molbev/msr121 PubMed DOI PMC

Thompson J. R., Marcelino L. A., Polz M. F. (2002). Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res. 30, 2083–2088. 10.1093/nar/30.9.2083 PubMed DOI PMC

Uhlik O., Jecna K., Mackova M., Vlcek C., Hroudova M., Demnerova K., et al. . (2009). Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl. Environ. Microbiol. 75, 6471–6477. 10.1128/AEM.00466-09 PubMed DOI PMC

Uhlik O., Leewis M. C., Strejcek M., Musilova L., Mackova M., Leigh M. B., et al. . (2013a). Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol. Adv. 31, 154–165. 10.1016/j.biotechadv.2012.09.003 PubMed DOI PMC

Uhlik O., Musilova L., Ridl J., Hroudova M., Vlcek C., Koubek J., et al. . (2013b). Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl. Microbiol. Biotechnol. 97, 9245–9256. 10.1007/s00253-012-4627-6 PubMed DOI

Uhlik O., Strejcek M., Junkova P., Sanda M., Hroudova M., Vlcek C., et al. . (2011). Matrix-Assisted Laser Desorption Ionization (MALDI)-Time of Flight Mass Spectrometry- and MALDI Biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microbiol. 77, 6858–6866. 10.1128/AEM.05465-11 PubMed DOI PMC

Uhlik O., Wald J., Strejcek M., Musilova L., Ridl J., Hroudova M., et al. . (2012). Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS ONE 7:e40653. 10.1371/journal.pone.0040653 PubMed DOI PMC

van der Meer J. R., de Vos W. M., Harayama S., Zehnder A. J. (1992). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56, 677–694. PubMed PMC

van Herwijnen R., Wattiau P., Bastiaens L., Daal L., Jonker L., Springael D., et al. . (2003). Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Res. Microbiol. 154, 199–206. 10.1016/S0923-2508(03)00039-1 PubMed DOI

Whitman B. E., Lueking D. R., Mihelcic J. R. (1998). Naphthalene uptake by a Pseudomonas fluorescens isolate. Can. J. Microbiol. 44, 1086–1093. 10.1139/cjm-44-11-1086 PubMed DOI

Zhang Z., Schwartz S., Wagner L., Miller W. (2000). A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214. 10.1089/10665270050081478 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

DNA stable isotope probing on soil treated by plant biostimulation and flooding revealed the bacterial communities involved in PCB degradation

. 2022 Nov 10 ; 12 (1) : 19232. [epub] 20221110

Predominant Biphenyl Dioxygenase From Legacy Polychlorinated Biphenyl (PCB)-Contaminated Soil Is a Part of Unusual Gene Cluster and Transforms Flavone and Flavanone

. 2021 ; 12 () : 644708. [epub] 20211014

Exploring the Potential of Micrococcus luteus Culture Supernatant With Resuscitation-Promoting Factor for Enhancing the Culturability of Soil Bacteria

. 2021 ; 12 () : 685263. [epub] 20210629

Biphenyl 2,3-Dioxygenase in Pseudomonas alcaliphila JAB1 Is Both Induced by Phenolics and Monoterpenes and Involved in Their Transformation

. 2021 ; 12 () : 657311. [epub] 20210430

Genomic analysis of dibenzofuran-degrading Pseudomonas veronii strain Pvy reveals its biodegradative versatility

. 2021 Feb 09 ; 11 (2) : .

Whole-Cell MALDI-TOF MS Versus 16S rRNA Gene Analysis for Identification and Dereplication of Recurrent Bacterial Isolates

. 2018 ; 9 () : 1294. [epub] 20180619

Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants

. 2018 ; 13 () : 3. [epub] 20180201

Differential Impacts of Willow and Mineral Fertilizer on Bacterial Communities and Biodegradation in Diesel Fuel Oil-Contaminated Soil

. 2016 ; 7 () : 837. [epub] 20160602

Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil

. 2016 Feb 26 ; 6 () : 22145. [epub] 20160226

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace