Predominant Biphenyl Dioxygenase From Legacy Polychlorinated Biphenyl (PCB)-Contaminated Soil Is a Part of Unusual Gene Cluster and Transforms Flavone and Flavanone
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34721309
PubMed Central
PMC8552027
DOI
10.3389/fmicb.2021.644708
Knihovny.cz E-resources
- Keywords
- aromatic ring-hydroxylating dioxygenases, biphenyl dioxygenase, flavonoids, functional metagenomics, polychlorinated biphenyls, secondary plant metabolites,
- Publication type
- Journal Article MeSH
In this study, the diversity of bphA genes was assessed in a 13C-enriched metagenome upon stable isotope probing (SIP) of microbial populations in legacy PCB-contaminated soil with 13C-biphenyl (BP). In total, 13 bphA sequence variants (SVs) were identified in the final amplicon dataset. Of these, one SV comprised 59% of all sequences, and when it was translated into a protein sequence, it exhibited 87, 77.4, and 76.7% identity to its homologs from Pseudomonas furukawaii KF707, Cupriavidus sp. WS, and Pseudomonas alcaliphila B-367, respectively. This same BphA sequence also contained unusual amino acid residues, Alanine, Valine, and Serine in region III, which had been reported to be crucial for the substrate specificity of the corresponding biphenyl dioxygenase (BPDO), and was accordingly designated BphA_AVS. The DNA locus of 18 kbp containing the BphA_AVS-coding sequence retrieved from the metagenome was comprised of 16 ORFs and was most likely borne by Paraburkholderia sp. The BPDO corresponding to bphAE_AVS was cloned and heterologously expressed in E. coli, and its substrate specificity toward PCBs and a spectrum of flavonoids was assessed. Although depleting a rather narrow spectrum of PCB congeners, the efficient transformation of flavone and flavanone was demonstrated through dihydroxylation of the B-ring of the molecules. The homology-based functional assignment of the putative proteins encoded by the rest of ORFs in the AVS region suggests their potential involvement in the transformation of aromatic compounds, such as flavonoids. In conclusion, this study contributes to the body of information on the involvement of soil-borne BPDOs in the metabolism of flavonoid compounds, and our paper provides a more advanced context for understanding the interactions between plants, microbes and anthropogenic compounds in the soil.
Faculty of Science Institute for Environmental Studies Charles University Prague Czechia
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czechia
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czechia
See more in PubMed
Arumugam K., Bağcı C., Bessarab I., Beier S., Buchfink B., Górska A., et al. (2019). Annotated bacterial chromosomes from frame-shift-corrected long-read metagenomic data. Microbiome 7:61. 10.1186/s40168-019-0665-y PubMed DOI PMC
Austen R., Dunn N. (1977). A comparative study of the NAH and TOL catabolic plasmids in Pseudomonas putida. Aust. J. Biol. Sci. 30 357–366. 10.1071/BI9770357 PubMed DOI
Barriault D., Lepine F., Mohammadi M., Milot S., Leberre N., Sylvestre M. (2004). Revisiting the regiospecificity of Burkholderia xenovorans LB400 biphenyl dioxygenase toward 2,2′-dichlorobiphenyl and 2,3,2′,3′-tetrachlorobiphenyl. J. Biol. Chem. 279 47489–47496. 10.1074/jbc.M406808200 PubMed DOI
Barriault D., Plante M. M., Sylvestre M. (2002). Family shuffling of a targeted bphA region to engineer biphenyl dioxygenase. J. Bacteriol. 184 3794–3800. PubMed PMC
Barriault D., Sylvestre M. (2004). Evolution of the biphenyl dioxygenase BphA from Burkholderia xenovorans LB400 by random mutagenesis of multiple sites in region III. J. Biol. Chem. 279 47480–47488. PubMed
Barriault D., Vedadi M., Powlowski J., Sylvestre M. (1999). Cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase and cis-1,2-dihydro-1,2-dihydroxynaphathalene dehydrogenase catalyze dehydrogenation of the same range of substrates. Biochem. Biophys. Res. Commun. 260 181–187. 10.1006/bbrc.1999.0706 PubMed DOI
Buchfink B., Xie C., Huson D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12 59–60. 10.1038/nmeth.3176 PubMed DOI
Callahan B. J., Mcmurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13 581–583. 10.1038/nmeth.3869 PubMed DOI PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10:421. 10.1186/1471-2105-10-421 PubMed DOI PMC
Cesco S., Mimmo T., Tonon G., Tomasi N., Pinton R., Terzano R., et al. (2012). Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol. Fertil. Soils 48 123–149. 10.1007/s00374-011-0653-2 DOI
Cesco S., Neumann G., Tomasi N., Pinton R., Weisskopf L. (2010). Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329 1–25. 10.1007/s11104-009-0266-9 DOI
Chebrou H., Hurtubise Y., Barriault D., Sylvestre M. (1999). Heterologous expression and characterization of the purified oxygenase component of Rhodococcus globerulus P6 biphenyl dioxygenase and of chimeras derived from it. J. Bacteriol. 181 4805–4811. PubMed PMC
Chung S.-Y., Maeda M., Song E., Horikoshij K., Kudo T. (1994). A Gram-positive Polychlorinated Biphenyl-degrading Bacterium, Rhodococcus erythropolis Strain TA421, Isolated from a Termite Ecosystem. Biosci. Biotechnol. Biochem. 58 2111–2113. 10.1271/bbb.58.2111 DOI
Cortes-Tolalpa L., Norder J., Van Elsas J. D., Falcao Salles J. (2018). Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate. Appl. Microbiol. Biotechnol. 102 2913–2927. 10.1007/s00253-017-8714-6 PubMed DOI PMC
Dhindwal S., Gomez-Gil L., Neau D. B., Pham T. T. M., Sylvestre M., Eltis L. D., et al. (2016). Structural basis of the enhanced pollutant-degrading capabilities of an engineered biphenyl dioxygenase. J. Bacteriol. 198 1499–1512. 10.1128/JB.00952-15 PubMed DOI PMC
Di Tommaso P., Moretti S., Xenarios I., Orobitg M., Montanyola A., Chang J. M., et al. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 39, W13–W17. 10.1093/nar/gkr245 PubMed DOI PMC
Díaz E., Ferrández A., García J. L. (1998). Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J. Bacteriol. 180 2915–2923. 10.1128/jb.180.11.2915-2923.1998 PubMed DOI PMC
Erickson B. D., Mondello F. J. (1992). Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J. Bacteriol. 174 2903–2912. 10.1128/jb.174.9.2903-2912.1992 PubMed DOI PMC
Focht D. D. (1995). Strategies for the improvement of aerobic metabolism of polychlorinated biphenyls. Curr. Opin. Biotechnol. 6 341–346. 10.1016/0958-1669(95)80057-3 DOI
Fukuda M., Yasukochi Y., Kikuchi Y., Nagata Y., Kimbara K., Horiuchi H., et al. (1994). Identification of the bphA and bphB genes of Pseudomonas sp. strains KKS102 involved in degradation of biphenyl and polychlorinated biphenyls. Biochem. Biophys. Res. Commun. 202 850–856. 10.1006/bbrc.1994.2008 PubMed DOI
Furukawa K. (2000). Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs). J. Gen. Appl. Microbiol. 46 283–296. PubMed
Furukawa K., Hayase N., Taira K., Tomizuka N. (1989). Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon. J. Bacteriol. 171 5467–5472. PubMed PMC
Furukawa K., Suenaga H., Goto M. (2004). Biphenyl dioxygenases: functional versatilities and directed evolution. J. Bacteriol. 186 5189–5196. PubMed PMC
Garrido-Sanz D., Sansegundo-Lobato P., Redondo-Nieto M., Šuman J., Cajthaml T., Blanco-Romero E., et al. (2020). Analysis of the biodegradative and adaptive potential of the novel polychlorinated biphenyl degrader Rhodococcus sp. WAY2 revealed by its complete genome sequence. Microb. Genomics 6:000363. 10.1099/mgen.0.000363 PubMed DOI PMC
Gómez-Gil L., Kumar P., Barriault D., Bolin J. T., Sylvestre M., Eltis L. D. (2007). Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J. Bacteriol. 189 5705–5715. 10.1128/jb.01476-06 PubMed DOI PMC
Han J., Kim S.-Y., Jung J., Lim Y., Ahn J.-H., Kim S.-I., et al. (2005). Epoxide formation on the aromatic B Ring of Flavanone by Biphenyl Dioxygenase of Pseudomonas pseudoalcaligenes KF707. Appl. Environ. Microbiol. 71 5354–5361. 10.1128/aem.71.9.5354-5361.2005 PubMed DOI PMC
Hernández M., Neufeld J. D., Dumont M. G. (2017). “Enhancing functional metagenomics of complex microbial communities using stable isotopes,” in Functional Metagenomics: Tools and Applications, eds Charles T. C., Liles M. R., Sessitsch A. (Cham: Springer; ), 139–150.
Hu J., Wu J., Qu X. (2018). Decomposition characteristics of organic materials and their effects on labile and recalcitrant organic carbon fractions in a semi-arid soil under plastic mulch and drip irrigation. J. Arid Land 10 115–128. 10.1007/s40333-017-0035-1 DOI
Iwai S., Chai B., Sul W. J., Cole J. R., Hashsham S. A., Tiedje J. M. (2010). Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J. 4 279–285. PubMed PMC
Iwashina T. (2015). Contribution to flower colors of flavonoids including anthocyanins: a review. Nat. Prod. Commun. 10 529–544. PubMed
Jones D. T., Taylor W. R., Thornton J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8, 275–282. 10.1093/bioinformatics/8.3.275 PubMed DOI
Kagami O., Shindo K., Kyojima A., Takeda K., Ikenaga H., Furukawa K., et al. (2008). Protein engineering on biphenyl dioxygenase for conferring activity to convert 7-hydroxyflavone and 5,7-dihydroxyflavone (chrysin). J. Biosci. Bioeng. 106 121–127. 10.1263/jbb.106.121 PubMed DOI
Kim S. Y., Jung J., Lim Y., Ahn J. H., Kim S. I., Hur H. G. (2003). Cis-2′, 3′-dihydrodiol production on flavone B-ring by biphenyl dioxygenase from Pseudomonas pseudoalcaligenes KF707 expressed in Escherichia coli. Antonie Van Leeuwenhoek 84 261–268. 10.1023/a:1026081824334 PubMed DOI
Kraus T. E. C., Dahlgren R. A., Zasoski R. J. (2003). Tannins in nutrient dynamics of forest ecosystems - a review. Plant Soil 256 41–66.
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547– 1549. 10.1093/molbev/msy096 PubMed DOI PMC
Kumamaru T., Suenaga H., Mitsuoka M., Watanabe T., Furukawa K. (1998). Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol. 16 663–666. 10.1038/nbt0798-663 PubMed DOI
Kweon O., Kim S. J., Baek S., Chae J. C., Adjei M. D., Baek D. H., et al. (2008). A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochem. 9:11. 10.1186/1471-2091-9-11 PubMed DOI PMC
Lee N., Kwon D. Y. (2016). Characteristics of a recombinant 2,3-dihydroxybiphenyl 1,2-dioxygenase from Comamonas sp. Expressed in Escherichia coli. Indian J. Microbiol. 56 467–475. 10.1007/s12088-016-0599-z PubMed DOI PMC
Li A., Qu Y., Zhou J., Ma F. (2009). Enzyme–substrate interaction and characterization of a 2,3-dihydroxybiphenyl 1,2-dioxygenase from Dyella ginsengisoli LA-4. FEMS Microbiol. Lett. 292 231–239. 10.1111/j.1574-6968.2009.01487.x PubMed DOI
Lin J. J., Smith M., Jessee J., Bloom F. (1992). DH11S: an Escherichia coli strain for preparation of single-stranded DNA from phagemid vectors. Biotechniques 12 718–721. PubMed
Liu C.-W., Murray J. D. (2016). The role of flavonoids in nodulation host-range specificity: an update. Plants 5:33. PubMed PMC
Mackova M., Dowling D., Macek T. (eds) (2006). Phytoremediation and Rhizoremediation. Dordrecht: Springer.
Marin A. M., De La Torre J., Ricardo Marques, Oliveira A., Barison A., Satie Chubatsu L., et al. (2016). Genetic and functional characterization of a novel meta-pathway for degradation of naringenin in Herbaspirillum seropedicae SmR1. Environ. Microbiol. 18 4653–4661. 10.1111/1462-2920.13313 PubMed DOI
Marin A. M., Souza E. M., Pedrosa F. O., Souza L. M., Sassaki G. L., Baura V. A., et al. (2013). Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1. Microbiology 159 167–175. 10.1099/mic.0.061135-0 PubMed DOI
Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17 10–12. 10.14806/ej.17.1.200 DOI
Masai E., Yamada A., Healy J. M., Hatta T., Kimbara K., Fukuda M., et al. (1995). Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61 2079–2085. PubMed PMC
Mason J. R., Cammack R. (1992). The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu. Rev. Microbiol. 46 277–305. 10.1146/annurev.mi.46.100192.001425 PubMed DOI
Master E. R., Mohn W. W. (2001). Induction of bphA, encoding biphenyl dioxygenase, in two polychlorinated biphenyl-degrading bacteria, psychrotolerant Pseudomonas strain Cam-1 and mesophilic Burkholderia strain LB400. Appl. Environ. Microbiol. 67 2669–2676. 10.1128/AEM.67.6.2669-2676.2001 PubMed DOI PMC
Misawa N., Shindo K., Takahashi H., Suenaga H., Iguchi K., Okazaki H., et al. (2002). Hydroxylation of various molecules including heterocyclic aromatics using recombinant Escherichia coli cells expressing modified biphenyl dioxygenase genes. Tetrahedron 58 9605–9612. 10.1016/S0040-4020(02)01253-X DOI
Mohammadi M., Sylvestre M. (2005). Resolving the profile of metabolites generated during oxidation of Dibenzofuran and Chlorodibenzofurans by the Biphenyl Catabolic Pathway Enzymes. Chem. Biol. 12 835–846. 10.1016/j.chembiol.2005.05.017 PubMed DOI
Mohammadi M., Viger J.-F., Kumar P., Barriault D., Bolin J. T., Sylvestre M. (2011). Retuning Rieske-type Oxygenases to expand substrate range. J. Biol. Chem. 286 27612–27621. 10.1074/jbc.M111.255174 PubMed DOI PMC
Mondello F. J. (1989). Cloning and expression in Escherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. J. Bacteriol. 171 1725–1732. 10.1128/jb.171.3.1725-1732.1989 PubMed DOI PMC
Mondello F. J., Turcich M. P., Lobos J. H., Erickson B. D. (1997). Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl. Environ. Microbiol. 63 3096–3103. PubMed PMC
Nurk S., Meleshko D., Korobeynikov A., Pevzner P. A. (2017). metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27 824–834. 10.1101/gr.213959.116 PubMed DOI PMC
O’Leary N. A., Wright M. W., Brister J. R., Ciufo S., Haddad D., Mcveigh R., et al. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44 733–745. 10.1093/nar/gkv1189 PubMed DOI PMC
Parks D. H., Chuvochina M., Chaumeil P. A., Rinke C., Mussig A. J., Hugenholtz P. (2020). A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38 1079–1086. 10.1038/s41587-020-0501-8 PubMed DOI
Pham T. T., Pino Rodriguez N. J., Hijri M., Sylvestre M. (2015). Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A. PLoS One 10:e0126033. 10.1371/journal.pone.0126033 PubMed DOI PMC
Pham T. T., Sylvestre M. (2013). Has the bacterial biphenyl catabolic pathway evolved primarily to degrade biphenyl? The diphenylmethane case. J. Bacteriol. 195 3563–3574. 10.1128/JB.00161-13 PubMed DOI PMC
Pham T. T. M., Tu Y., Sylvestre M. (2012). Remarkable ability of Pandoraea pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids. Appl. Environ. Microbiol. 78 3560–3570. 10.1128/aem.00225-12 PubMed DOI PMC
Pieper D. H. (2005). Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 67 170–191. PubMed
Polivkova M., Suman J., Strejcek M., Kracmarova M., Hradilova M., Filipova A., et al. (2018). Diversity of root-associated microbial populations of Tamarix parviflora cultivated under various conditions. Appl. Soil Ecol. 125 264–272. 10.1016/j.apsoil.2018.02.002 DOI
R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Rausher M. D. (2001). Co-evolution and plant resistance to natural enemies. Nature 411 857–864. PubMed
Ridl J., Suman J., Fraraccio S., Hradilova M., Strejcek M., Cajthaml T., et al. (2018). Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants. Stand. Genomic Sci. 13:3. 10.1186/s40793-017-0306-7 PubMed DOI PMC
Robrock K. R., Mohn W. W., Eltis L. D., Alvarez-Cohen L. (2011). Biphenyl and ethylbenzene dioxygenases of Rhodococcus jostii RHA1 transform PBDEs. Biotechnol. Bioeng. 108 313–321. 10.1002/bit.22952 PubMed DOI
Sala-Trepat J. M., Evans W. C. (1971). The meta cleavage of catechol by Azotobacter species. Eur. J. Biochem. 20 400–413. 10.1111/j.1432-1033.1971.tb01406.x PubMed DOI
San-Miguel T., Perez-Bermudez P., Gavidia I. (2013). Production of soluble eukaryotic recombinant proteins in E. coli is favoured in early log-phase cultures induced at low temperature. Springerplus 2:89. 10.1186/2193-1801-2-89 PubMed DOI PMC
Seeger M., González M., Cámara B., Muñoz L., Ponce E., Mejías L., et al. (2003). Biotransformation of natural and synthetic isoflavonoids by two recombinant microbial enzymes. Appl. Environ. Microbiol. 69 5045–5050. 10.1128/aem.69.9.5045-5050.2003 PubMed DOI PMC
Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30 2068–2069. 10.1093/bioinformatics/btu153 PubMed DOI
Seo J., Kang S. I., Ryu J. Y., Lee Y. J., Park K. D., Kim M., et al. (2010). Location of flavone B-ring controls regioselectivity and stereoselectivity of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl. Microbiol. Biotechnol. 86 1451–1462. 10.1007/s00253-009-2389-6 PubMed DOI
Shaw L. J., Morris P., Hooker J. E. (2006). Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol. 8 1867–1880. 10.1111/j.1462-2920.2006.01141.x PubMed DOI
Shimada T., Nagayoshi H., Murayama N., Takenaka S., Katahira J., Kim V., et al. (2021). Liquid chromatography-tandem mass spectrometry analysis of oxidation of 2′-, 3′-, 4′- and 6-hydroxyflavanones by human cytochrome P450 enzymes. Xenobiotica 51 139–154. 10.1080/00498254.2020.1836433 PubMed DOI PMC
Shindo K., Kagiyama Y., Nakamura R., Hara A., Ikenaga H., Furukawa K., et al. (2003). Enzymatic synthesis of novel antioxidant flavonoids by Escherichia coli cells expressing modified metabolic genes involved in biphenyl catabolism. J. Mol. Catal. B Enzym. 23 9–16. 10.1016/S1381-1177(03)00038-9 DOI
Singer A. C. (2006). “The chemical ecology of pollutant biodegradation: bioremediation and Phytoremediation from mechanistic and ecological perspectives,” in Phytoremediation and Rhizoremediation, 9th Edn, eds Macková M., Dowling D., Macek T. (Dordrecht: Springer; ), 5–21.
Singer A. C., Crowley D. E., Thompson I. P. (2003). Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol. 21 123–130. 10.1016/S0167-7799(02)00041-0 PubMed DOI
Spence E. L., Kawamukai M., Sanvoisin J., Braven H., Bugg T. D. (1996). Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases. J. Bacteriol. 178 5249–5256. 10.1128/jb.178.17.5249-5256.1996 PubMed DOI PMC
Strejcek M., Wang Q., Ridl J., Uhlik O. (2015). Hunting down frame shifts: ecological analysis of diverse functional gene sequences. Front. Microbiol. 6:1267. 10.3389/fmicb.2015.01267 PubMed DOI PMC
Subramanian S., Stacey G., Yu O. (2007). Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci. 12 282–285. 10.1016/j.tplants.2007.06.006 PubMed DOI
Sul W. J., Park J., Quensen J. F., Iii, Rodrigues J. L., Seliger L., et al. (2009). DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl. Environ. Microbiol. 75 5501–5506. PubMed PMC
Sylvestre M., Sirois M., Hurtubise Y., Bergeron J., Ahmad D., Shareck F., et al. (1996). Sequencing of Comamonas testosteroni strain B-356-biphenyl/chlorobiphenyl dioxygenase genes: evolutionary relationships among Gram-negative bacterial biphenyl dioxygenases. Gene 174 195–202. PubMed
Taira K., Hirose J., Hayashida S., Furukawa K. (1992). Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J. Biol. Chem. 267 4844–4853. PubMed
Tan H.-M., Tang H.-Y., Joannou C., Abdel-Wahab N., Mason J. (1993). The Pseudomonas putida ML2 plasmid-encoded genes for benzene dioxygenase are unusual in codon usage and low in G+ C content. Gene 130 33–39. 10.1016/0378-1119(93)90343-2 PubMed DOI
Tellinghuisen J. (2001). Statistical error propagation. J. Phys. Chem. A 105 3917–3921. 10.1021/jp003484u DOI
The UniProt Consortium (2018). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47 D506–D515. 10.1093/nar/gky1049 PubMed DOI PMC
Thompson J. R., Marcelino L. A., Polz M. F. (2002). Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res. 30 2083–2088. PubMed PMC
Toussaint J.-P., Pham T., Barriault D., Sylvestre M. (2012). Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl. Microbiol. Biotechnol. 95 1589–1603. 10.1007/s00253-011-3824-z PubMed DOI
Uhlik O., Jecna K., Mackova M., Vlcek C., Hroudova M., Demnerova K., et al. (2009). Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl. Environ. Microbiol. 75 6471–6477. PubMed PMC
Uhlik O., Leewis M. C., Strejcek M., Musilova L., Mackova M., Leigh M. B., et al. (2013). Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol. Adv. 31 154–165. 10.1016/j.biotechadv.2012.09.003 PubMed DOI PMC
Uhlik O., Wald J., Strejcek M., Musilova L., Ridl J., Hroudova M., et al. (2012). Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS One 7:e40653. 10.1371/journal.pone.0040653 PubMed DOI PMC
Van der Geize R., Yam K., Heuser T., Wilbrink M. H., Hara H., Anderton M. C., et al. (2007). A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc. Natl. Acad. Sci. U.S.A. 104 1947–1952. PubMed PMC
Vergani L., Mapelli F., Suman J., Cajthaml T., Uhlik O., Borin S. (2019). Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils. PLoS One 14:e0221253. 10.1371/journal.pone.0221253 PubMed DOI PMC
Vézina J., Barriault D., Sylvestre M. (2007). Family shuffling of soil DNA to change the regiospecificity of Burkholderia xenovorans LB400 biphenyl dioxygenase. J. Bacteriol. 189 779–788. PubMed PMC
Vézina J., Barriault D., Sylvestre M. (2008). Diversity of the C-terminal portion of the biphenyl dioxygenase large subunit. J. Mol. Microbiol. Biotechnol. 15 139–151. PubMed
Wald J., Hroudova M., Jansa J., Vrchotova B., Macek T., Uhlik O. (2015). Pseudomonads rule degradation of polyaromatic hydrocarbons in aerated sediment. Front. Microbiol. 6:1268. 10.3389/fmicb.2015.01268 PubMed DOI PMC
Wang Y., Garnon J., Labbe D., Bergeron H., Lau P. C. (1995). Sequence and expression of the bpdC1C2BADE genes involved in the initial steps of biphenyl/chlorobiphenyl degradation by Rhodococcus sp. M5. Gene 164 117–122. 10.1016/0378-1119(95)00448-f PubMed DOI
Yang X., Liu X., Song L., Xie F., Zhang G., Qian S. (2007). Characterization and functional analysis of a novel gene cluster involved in biphenyl degradation in Rhodococcus sp. strain R04. J. Appl. Microbiol. 103 2214–2224. 10.1111/j.1365-2672.2007.03461.x PubMed DOI
Yang X., Xie F., Zhang G., Shi Y., Qian S. (2008). Purification, characterization, and substrate specificity of two 2,3-dihydroxybiphenyl 1,2-dioxygenase from Rhodococcus sp. R04, showing their distinct stability at various temperature. Biochimie 90 1530–1538. 10.1016/j.biochi.2008.05.020 PubMed DOI
Zhu L., Zhou J., Zhang R., Tang X., Wang J., Li Y., et al. (2020). Degradation mechanism of biphenyl and 4-4′-dichlorobiphenyl cis-dihydroxylation by non-heme 2,3 dioxygenases BphA: a QM/MM approach. Chemosphere 247 125844. 10.1016/j.chemosphere.2020.125844 PubMed DOI
Zubrova A., Michalikova K., Semerad J., Strejcek M., Cajthaml T., Suman J., et al. (2021). Biphenyl 2,3-dioxygenase in Pseudomonas alcaliphila JAB1 is both induced by phenolics and monoterpenes and involved in their transformation. Front. Microbiol. 12:657311. 10.3389/fmicb.2021.657311 PubMed DOI PMC