D-retrovirus morphogenetic switch driven by the targeting signal accessibility to Tctex-1 of dynein
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 CA027834
NCI NIH HHS - United States
R37 CA027834
NCI NIH HHS - United States
PubMed
18647839
PubMed Central
PMC2492450
DOI
10.1073/pnas.0801765105
PII: 0801765105
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- biologický transport MeSH
- buněčná membrána metabolismus virologie MeSH
- Cercopithecus aethiops MeSH
- COS buňky MeSH
- cytoplazma metabolismus MeSH
- dyneiny metabolismus MeSH
- fenotyp MeSH
- genomová oblast t-komplexu MeSH
- jaderné proteiny chemie metabolismus fyziologie MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus metabolismus MeSH
- mutace MeSH
- proteiny asociované s mikrotubuly chemie metabolismus fyziologie MeSH
- Retroviridae metabolismus MeSH
- terciární struktura proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dyneiny MeSH
- jaderné proteiny MeSH
- proteiny asociované s mikrotubuly MeSH
Despite extensive data demonstrating that immature retroviral particle assembly can take place either at the plasma membrane or at a distinct location within the cytoplasm, targeting of viral precursor proteins to either assembly site still remains poorly understood. Biochemical data presented here suggest that Tctex-1, a light chain of the molecular motor dynein, is involved in the intracellular targeting of Mason-Pfizer monkey virus (M-PMV) polyproteins to the cytoplasmic assembly site. Comparison of the three-dimensional structures of M-PMV wild-type matrix protein (wt MA) with a single amino acid mutant (R55F), which redirects assembly from a cytoplasmic site to the plasma membrane, revealed different mutual orientations of their C- and N-terminal domains. This conformational change buries a putative intracellular targeting motif located between both domains in the hydrophobic pocket of the MA molecule, thereby preventing the interaction with cellular transport mechanisms.
Zobrazit více v PubMed
Hunter E. Macromolecular Interactions in the assembly of HIV and other retroviruses. Sem Virol. 1994;5:71–83.
Sfakianos JN, LaCasse RA, Hunter E. The M-PMV cytoplasmic targeting-retention signal directs nascent Gag polypeptides to a pericentriolar region of the cell. Traffic. 2003;4:660–670. PubMed
Freed EO. Viral late domains. J Virol. 2002;76:4679–4687. PubMed PMC
Freed EO, Orenstein JM, Bucklerwhite AJ, Martin MA. Single amino-acid changes in the human-immunodeficiency-virus type-1 matrix protein block virus particle-production. J Virol. 1994;68:5311–5320. PubMed PMC
Cannon PM, et al. Structure-function studies of the human immunodeficiency virus type 1 matrix protein, p17. J Virol. 1997;71:3474–3483. PubMed PMC
Soneoka Y, Kingsman SM, Kingsman AJ. Mutagenesis analysis of the murine leukemia virus matrix protein: Identification of regions important for membrane localization and intracellular transport. J Virol. 1997;71:5549–5559. PubMed PMC
Bryant M, Ratner L. Myristoylation-dependent replication and assembly of human immunodeficiency virus-1. Proc Natl Acad Sci USA. 1990;87:523–527. PubMed PMC
Rhee SS, Hunter E. Myristylation is required for intracellular-transport but not for assembly of D-type retrovirus capsids. J Virol. 1987;61:1045–1053. PubMed PMC
Zhou W, Parent LJ, Wills JW, Resh MD. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol. 1994;68:2556–2569. PubMed PMC
Tang C, et al. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci USA. 2004;101:517–522. PubMed PMC
Saad JS, et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci USA. 2006;103:11364–11369. PubMed PMC
Conte MR, Klikova M, Hunter E, Ruml T, Matthews S. The three-dimensional solution structure of the matrix protein from the type D retovirus, the Mason-Pfizer monkey virus, and implications for the morphology of retroviral assembly. EMBO J. 1997;16:5819–5826. PubMed PMC
Hatanaka H, et al. Structure of equine infectious anemia virus matrix protein. J Virol. 2002;76:1876–1883. PubMed PMC
Riffel N, et al. Atomic resolution structure of Moloney murine leukemia virus matrix protein and its relationship to other retroviral matrix proteins. Structure. 2002;10:1627–1636. PubMed
Rhee SS, Hunter E. A single amino acid substitutiton within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus. Cell. 1990;63:77–86. PubMed
Yasuda J, Hunter E. Role of matrix protein in the type D retrovirus replication cycle: Importance of the arginine residue at position 55. Virology. 2000;268:533–538. PubMed
Choi G, et al. Identification of a cytoplasmic targeting retention signal in a retroviral Gag polyprotein. J Virol. 1999;73:5431–5437. PubMed PMC
Vlach J, et al. Letter to the editor: Assignment of H-1, C-13, and N-15 resonances of WT matrix protein and its R55F mutant from Mason-Pfizer monkey virus. J Biomol NMR. 2005;31:381–382. PubMed
Karcher RL, Deacon SW, Gelfand VI. Motor-cargo interactions: The key to transport specificity. Trends Cell Biol. 2002;12:21–27. PubMed
Sfakianos JN, Hunter E. M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic. 2003;4:671–680. PubMed
Mok YK, Lo KWH, Zhang MJ. Structure of Tctex-1 and its interaction with cytoplasmic dynein intermediate chain. J Biol Chem. 2001;276:14067–14074. PubMed
Sugai M, et al. PTH/PTH-related protein receptor interacts directly with Tctex-1 through its COOH terminus. Biochem Biophys Res Commun. 2003;311:24–31. PubMed
Song C, Hunter E. Variable sensitivity to substitutions in the N-terminal heptad repeat of Mason-Pfizer monkey virus transmembrane protein. J Virol. 2003;77:7779–7785. PubMed PMC
Lo KW, et al. Interaction of the DYNLT (TCTEX1/RP3) light chains and the intermediate chains reveals novel intersubunit regulation during assembly of the dynein complex. J Biol Chem. 2007;282:36871–36878. PubMed
Delaglio F, et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6:277–293. PubMed
Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc. 1982;104:4559–4570.
Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM. The Xplor-NIH NMR molecular structure determination package. J Magn Reson. 2003;160:65–73. PubMed
Cordier F, Dingley AJ, Grzesiek S. A doublet-separated sensitivity-enhanced HSQC for the determination of scalar and dipolar one-bond J-couplings. J Biomol NMR. 1999;13:175–180. PubMed
Wei YF, Werner MH. iDC: A comprehensive toolkit for the analysis of residual dipolar couplings for macromolecular structure determination. J Biomol NMR. 2006;35:17–25. PubMed
In vitro methods for testing antiviral drugs
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging
Myristoylation drives dimerization of matrix protein from mouse mammary tumor virus
HIV-1 protease-induced apoptosis
Direct evidence for intracellular anterograde co-transport of M-PMV Gag and Env on microtubules
Interaction of Mason-Pfizer monkey virus matrix protein with plasma membrane
The G-patch domain of Mason-Pfizer monkey virus is a part of reverse transcriptase