Myristoylation drives dimerization of matrix protein from mouse mammary tumor virus
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26728401
PubMed Central
PMC4700671
DOI
10.1186/s12977-015-0235-8
PII: 10.1186/s12977-015-0235-8
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- buněčné linie MeSH
- krysa rodu Rattus MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- multimerizace proteinu * MeSH
- posttranslační úpravy proteinů * MeSH
- proteiny virové matrix chemie metabolismus MeSH
- simulace molekulární dynamiky MeSH
- virus myšího tumoru prsní žlázy chemie fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny virové matrix MeSH
BACKGROUND: Myristoylation of the matrix (MA) domain mediates the transport and binding of Gag polyproteins to the plasma membrane (PM) and is required for the assembly of most retroviruses. In betaretroviruses, which assemble immature particles in the cytoplasm, myristoylation is dispensable for assembly but is crucial for particle transport to the PM. Oligomerization of HIV-1 MA stimulates the transition of the myristoyl group from a sequestered to an exposed conformation, which is more accessible for membrane binding. However, for other retroviruses, the effect of MA oligomerization on myristoyl group exposure has not been thoroughly investigated. RESULTS: Here, we demonstrate that MA from the betaretrovirus mouse mammary tumor virus (MMTV) forms dimers in solution and that this process is stimulated by its myristoylation. The crystal structure of N-myristoylated MMTV MA, determined at 1.57 Å resolution, revealed that the myristoyl groups are buried in a hydrophobic pocket at the dimer interface and contribute to dimer formation. Interestingly, the myristoyl groups in the dimer are mutually swapped to achieve energetically stable binding, as documented by molecular dynamics modeling. Mutations within the myristoyl binding site resulted in reduced MA dimerization and extracellular particle release. CONCLUSIONS: Based on our experimental, structural, and computational data, we propose a model for dimerization of MMTV MA in which myristoyl groups stimulate the interaction between MA molecules. Moreover, dimer-forming MA molecules adopt a sequestered conformation with their myristoyl groups entirely buried within the interaction interface. Although this differs from the current model proposed for lentiviruses, in which oligomerization of MA triggers exposure of myristoyl group, it appears convenient for intracellular assembly, which involves no apparent membrane interaction and allows the myristoyl group to be sequestered during oligomerization.
Zobrazit více v PubMed
Ross SR. Mouse mammary tumor virus molecular biology and oncogenesis. Viruses. 2010;2:2000–2012. doi: 10.3390/v2092000. PubMed DOI PMC
Swanstrom R, Wills JW: Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus. HE, editors. Retroviruses. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1997. p. 263–334. PubMed
Maurer-Stroh S, Eisenhaber F. Myristoylation of viral and bacterial proteins. Trends Microbiol. 2004;12:178–185. doi: 10.1016/j.tim.2004.02.006. PubMed DOI
Dick RA, Vogt VM. Membrane interaction of retroviral Gag proteins. Front Microbiol. 2014;5:1–11. doi: 10.3389/fmicb.2014.00187. PubMed DOI PMC
Zhou W, Parent LJ, Wills JW, Resh MD. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol. 1994;68:2556–2569. PubMed PMC
Bryant M, Ratner L. Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci USA. 1990;87:523–527. doi: 10.1073/pnas.87.2.523. PubMed DOI PMC
Göttlinger HG, Sodroski JG, Haseltine WA. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA. 1989;86:5781–5785. doi: 10.1073/pnas.86.15.5781. PubMed DOI PMC
Freed EO, Orenstein JM, Buckler-White AJ, Martin MA. Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J Virol. 1994;68:5311–5320. PubMed PMC
Ono A, Freed EO. Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus. J Virol. 1999;73:4136–4144. PubMed PMC
Rhee SS, Hunter E. Myristylation is required for intracellular transport but not for assembly of D-type retrovirus capsids. J Virol. 1987;61:1045–1053. PubMed PMC
Zábranský A, Hadravová R, Stokrová J, Sakalian M, Pichová I. Premature processing of mouse mammary tumor virus Gag polyprotein impairs intracellular capsid assembly. Virology. 2009;384:33–37. doi: 10.1016/j.virol.2008.10.038. PubMed DOI
Hamard-Peron E, Muriaux D. Retroviral matrix and lipids, the intimate interaction. Retrovirology. 2011;8:15. doi: 10.1186/1742-4690-8-15. PubMed DOI PMC
Chukkapalli V, Ono A. Molecular determinants that regulate plasma membrane association of HIV-1 Gag. J Mol Biol. 2011;410:512–524. doi: 10.1016/j.jmb.2011.04.015. PubMed DOI PMC
Vlach J, Lipov J, Rumlová M, Veverka V, Lang J, Srb P, Knejzlík Z, Pichová I, Hunter E, Hrabal R, Ruml T. D-retrovirus morphogenetic switch driven by the targeting signal accessibility to Tctex-1 of dynein. Proc Natl Acad Sci USA. 2008;105:10565–10570. doi: 10.1073/pnas.0801765105. PubMed DOI PMC
Zhang G, Sharon D, Jovel J, Liu L, Wine E, Tahbaz N, Indik S, Mason A. Pericentriolar targeting of the mouse mammary tumor virus GAG protein. PLoS One. 2015;10:e0131515. doi: 10.1371/journal.pone.0131515. PubMed DOI PMC
Rhee SS, Hunter E: Amino acid substitutions within the matrix protein of type D retroviruses affect assembly, transport and membrane association of a capsid. EMBO J 1991;10:535–546. PubMed PMC
Stansell E, Tytler E, Walter MR, Hunter E: An early stage of Mason-Pfizer monkey virus budding is regulated by the hydrophobicity of the Gag matrix domain core. J Virol 2004;78:5023–5031. PubMed PMC
Stansell E, Apkarian R, Haubova S, Diehl WE, Tytler EM, Hunter E: Basic residues in the Mason-Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J Virol 2007;81:8977–88. PubMed PMC
Murakami T, Freed EO. Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol. 2000;74:3548–3554. doi: 10.1128/JVI.74.8.3548-3554.2000. PubMed DOI PMC
Massiah MA, Starich MR, Paschall C, Summers MF, Christensen AM, Sundquist WI. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. J Mol Biol. 1994;244:198–223. doi: 10.1006/jmbi.1994.1719. PubMed DOI
Rao Z, Belyaev AS, Fry E, Roy P, Jones IM, Stuart DI. Crystal structure of SIV matrix antigen and implications for virus assembly. Nature. 1995;378:743–747. doi: 10.1038/378743a0. PubMed DOI
Matthews S, Mikhailov M, Burny A, Roy P. The solution structure of the bovine leukaemia virus matrix protein and similarity with lentiviral matrix proteins. EMBO J. 1996;15:3267–3274. PubMed PMC
Christensen AM, Massiah MA, Turner BG, Sundquist WI, Summers MF. Three-dimensional structure of the HTLV-II matrix protein and comparative analysis of matrix proteins from the different classes of pathogenic human retroviruses. J Mol Biol. 1996;264:1117–1131. doi: 10.1006/jmbi.1996.0700. PubMed DOI
Conte MR, Klikova M, Hunter E, Ruml T, Matthews S. The three-dimensional solution structure of the matrix protein from the type D retrovirus, the Mason-Pfizer monkey virus, and implications for the morphology of retroviral assembly. EMBO J. 1997;16:5819–5826. doi: 10.1093/emboj/16.19.5819. PubMed DOI PMC
McDonnell JM, Fushman D, Cahill SM, Zhou W, Wolven A, Wilson CB, Nelle TD, Resh MD, Wills J, Cowburn D. Solution structure and dynamics of the bioactive retroviral M domain from Rous sarcoma virus. J Mol Biol. 1998;279:921–928. doi: 10.1006/jmbi.1998.1788. PubMed DOI
Hatanaka H, Iourin O, Rao Z, Fry E, Kingsman A, Stuart DI. Structure of equine infectious anemia virus matrix protein. J Virol. 2002;76:1876–1883. doi: 10.1128/JVI.76.4.1876-1883.2002. PubMed DOI PMC
Riffel N, Harlos K, Iourin O, Rao Z, Kingsman A, Stuart D, Fry E. Atomic resolution structure of Moloney murine leukemia virus matrix protein and its relationship to other retroviral matrix proteins. Structure. 2002;10:1627–1636. doi: 10.1016/S0969-2126(02)00896-1. PubMed DOI
Saad JS, Ablan SD, Ghanam RH, Kim A, Andrews K, Nagashima K, Soheilian F, Freed EO, Summers MF. Structure of the myristylated human immunodeficiency virus type 2 matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in membrane targeting. J Mol Biol. 2008;382:434–447. doi: 10.1016/j.jmb.2008.07.027. PubMed DOI PMC
Serrière J, Robert X, Perez M, Gouet P, Guillon C. Biophysical characterization and crystal structure of the Feline Immunodeficiency Virus p15 matrix protein. Retrovirology. 2013;10:64. doi: 10.1186/1742-4690-10-64. PubMed DOI PMC
Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci USA. 2004;101:517–522. doi: 10.1073/pnas.0305665101. PubMed DOI PMC
Brown L, Cox C, Baptiste J, Summers H, Button R, Bahlow K, Spurrier V, Kyser J, Luttge B, Kuo L, Freed E, Summers M. NMR Structure of the myristylated feline immunodeficiency virus matrix protein. Viruses. 2015;7:2210–2229. doi: 10.3390/v7052210. PubMed DOI PMC
Prchal J, Srb P, Hunter E, Ruml T, Hrabal R. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding. J Mol Biol. 2012;423:427–438. doi: 10.1016/j.jmb.2012.07.021. PubMed DOI PMC
Hill CP, Worthylake DK, Bancroft DP, Christensen AM, Sundquist WI. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci USA. 1996;93:3099–3104. doi: 10.1073/pnas.93.7.3099. PubMed DOI PMC
Vlach J, Srb P, Prchal J, Grocký M, Lang J, Ruml T, Hrabal R. Nonmyristoylated matrix protein from the Mason-Pfizer monkey virus forms oligomers. J Mol Biol. 2009;390:967–980. doi: 10.1016/j.jmb.2009.05.063. PubMed DOI
Fledderman EL, Fujii K, Ghanam RH, Waki K, Prevelige PE, Freed EO, Saad JS. Myristate exposure in the human immunodeficiency virus type 1 matrix protein is modulated by pH. Biochemistry. 2010;49:9551–9562. doi: 10.1021/bi101245j. PubMed DOI PMC
Martin DDO, Beauchamp E, Berthiaume LG. Post-translational myristoylation: fat matters in cellular life and death. Biochimie. 2011;93:18–31. doi: 10.1016/j.biochi.2010.10.018. PubMed DOI
Doležal M, Zábranský A, Hrabal R, Ruml T, Pichová I, Rumlová M. One-step separation of myristoylated and nonmyristoylated retroviral matrix proteins. Protein Expr Purif. 2013;92:94–99. doi: 10.1016/j.pep.2013.09.003. PubMed DOI
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774–797. doi: 10.1016/j.jmb.2007.05.022. PubMed DOI
Zábranský A, Hoboth P, Hadravová R, Stokrová J, Sakalian M, Pichová I. The noncanonical Gag domains p8 and n are critical for assembly and release of mouse mammary tumor virus. J Virol. 2010;84:11555–11559. doi: 10.1128/JVI.00652-10. PubMed DOI PMC
Zábranský A, Sakalian M, Pichová I. Localization of self-interacting domains within betaretrovirus Gag polyproteins. Virology. 2005;332:659–666. doi: 10.1016/j.virol.2004.12.007. PubMed DOI
Sfakianos JN, Hunter E. M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic. 2003;4:671–680. doi: 10.1034/j.1600-0854.2003.00126.x. PubMed DOI
Clark J, Grznarova P, Stansell E, Diehl W, Lipov J, Spearman P, Ruml T, Hunter E. A Mason-Pfizer Monkey virus Gag-GFP fusion vector allows visualization of capsid transport in live cells and demonstrates a role for microtubules. PLoS One. 2013;8:e83863. doi: 10.1371/journal.pone.0083863. PubMed DOI PMC
Pereira LE, Clark J, Grznarova P, Wen X, LaCasse R, Ruml T, Spearman P, Hunter E. Direct evidence for intracellular anterograde co-transport of M-PMV Gag and Env on microtubules. Virology. 2014;449:109–119. doi: 10.1016/j.virol.2013.11.006. PubMed DOI PMC
Sakalian M, Hunter E. Separate assembly and transport domains within the Gag precursor of Mason-Pfizer monkey virus. J Virol. 1999;73:8073–8082. PubMed PMC
Knejzlík Z, Smékalová Z, Ruml T, Sakalian M. Multimerization of the p12 domain is necessary for Mason-Pfizer monkey virus Gag assembly in vitro. Virology. 2007;365:260–270. doi: 10.1016/j.virol.2007.03.053. PubMed DOI PMC
Sakalian M, Dittmer SS, Gandy AD, Rapp ND, Zábranský A, Hunter E. The Mason-Pfizer monkey virus internal scaffold domain enables in vitro assembly of human immunodeficiency virus type 1 Gag. J Virol. 2002;76:10811–10820. doi: 10.1128/JVI.76.21.10811-10820.2002. PubMed DOI PMC
Sommerfelt MA, Rhee SS, Hunter E. Importance of p12 protein in Mason-Pfizer monkey virus assembly and infectivity. J Virol. 1992;66:7005–7011. PubMed PMC
Srb P, Vlach J, Prchal J, Grocký M, Ruml T, Lang J, Hrabal R. Oligomerization of a retroviral matrix protein is facilitated by backbone flexibility on nanosecond time scale. J Phys Chem B. 2011;115:2634–2644. doi: 10.1021/jp110420m. PubMed DOI PMC
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Mueller U, Darowski N, Fuchs MR, Förster R, Hellmig M, Paithankar KS, Pühringer S, Steffien M, Zocher G, Weiss MS. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J Synchrotron Radiat. 2012;19:442–449. doi: 10.1107/S0909049512006395. PubMed DOI PMC
Kabsch W. XDS. Acta Crystallogr Sect D Biol Crystallogr 2010; 66:125–132. PubMed PMC
Sheldrick GM. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 4):479–485. doi: 10.1107/S0907444909038360. PubMed DOI PMC
Pape T, Schneider TR. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J Appl Crystallogr. 2004;37:843–844. doi: 10.1107/S0021889804018047. DOI
Schneider TR, Sheldrick GM. Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr. 2002;58:1772–1779. doi: 10.1107/S0907444902011678. PubMed DOI
Cowtan K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr. 2006;62:1002–1011. doi: 10.1107/S0907444906022116. PubMed DOI
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Pannu NS, Murshudov GN, Dodson EJ, Read RJ. Incorporation of prior phase information strengthens maximum-likelihood structure refinement. Acta Crystallogr D Biol Crystallogr. 1998;54:1285–1294. doi: 10.1107/S0907444998004119. PubMed DOI
Žáková L, Kletvíková E, Veverka V, Lepšík M, Watson CJ, Turkenburg JP, Jiráček J, Brzozowski AM. Structural integrity of the B24 site in human insulin is important for hormone functionality. J Biol Chem. 2013;288:10230–10240. doi: 10.1074/jbc.M112.448050. PubMed DOI PMC
Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, T.E. Cheatham I, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, et al.: AMBER 14. 2014.
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C: Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Genet 2006;712–725. PubMed PMC
Bayly CCI, Cieplak P, Cornell WD, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys… 1993; 97:10269–80.
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general Amber force field. J Comput Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI