A Mason-Pfizer Monkey virus Gag-GFP fusion vector allows visualization of capsid transport in live cells and demonstrates a role for microtubules

. 2013 ; 8 (12) : e83863. [epub] 20131226

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24386297

Grantová podpora
R01 CA027834 NCI NIH HHS - United States
R01-CA-27834 NCI NIH HHS - United States

Immature capsids of the Betaretrovirus, Mason-Pfizer Monkey virus (M-PMV), are assembled in the pericentriolar region of the cell, and are then transported to the plasma membrane for budding. Although several studies, utilizing mutagenesis, biochemistry, and immunofluorescence, have defined the role of some viral and host cells factors involved in these processes, they have the disadvantage of population analysis, rather than analyzing individual capsid movement in real time. In this study, we created an M-PMV vector in which the enhanced green fluorescent protein, eGFP, was fused to the carboxyl-terminus of the M-PMV Gag polyprotein, to create a Gag-GFP fusion that could be visualized in live cells. In order to express this fusion protein in the context of an M-PMV proviral backbone, it was necessary to codon-optimize gag, optimize the Kozak sequence preceding the initiating methionine, and mutate an internal methionine codon to one for alanine (M100A) to prevent internal initiation of translation. Co-expression of this pSARM-Gag-GFP-M100A vector with a WT M-PMV provirus resulted in efficient assembly and release of capsids. Results from fixed-cell immunofluorescence and pulse-chase analyses of wild type and mutant Gag-GFP constructs demonstrated comparable intracellular localization and release of capsids to untagged counterparts. Real-time, live-cell visualization and analysis of the GFP-tagged capsids provided strong evidence for a role for microtubules in the intracellular transport of M-PMV capsids. Thus, this M-PMV Gag-GFP vector is a useful tool for identifying novel virus-cell interactions involved in intracellular M-PMV capsid transport in a dynamic, real-time system.

Zobrazit více v PubMed

Choi G, Park S, Choi B, Hong S, Lee J et al. (1999) Identification of a cytoplasmic targeting/retention signal in a retroviral Gag polyprotein. J Virol 73: 5431-5437. PubMed: 10364290. PubMed PMC

Sfakianos JN, LaCasse RA, Hunter E (2003) The M-PMV cytoplasmic targeting-retention signal directs nascent Gag polypeptides to a pericentriolar region of the cell. Traffic 4: 660-670. doi:10.1034/j.1600-0854.2003.00125.x. PubMed: 12956869. PubMed DOI

Rhee SS, Hunter E (1990) A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus. Cell 63: 77-86. doi:10.1016/0092-8674(90)90289-Q. PubMed: 2170021. PubMed DOI

Prchal J, Junkova P, Strmiskova M, Lipov J, Hynek R et al. (2011) Expression and purification of myristoylated matrix protein of Mason-Pfizer monkey virus for NMR and MS measurements. Protein Expr Purif 79: 122-127. doi:10.1016/j.pep.2011.05.010. PubMed: 21640189. PubMed DOI PMC

Stansell E, Apkarian R, Haubova S, Diehl WE, Tytler EM et al. (2007) Basic residues in the Mason-Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J Virol 81: 8977-8988. doi:10.1128/JVI.00657-07. PubMed: 17596311. PubMed DOI PMC

Stansell E, Tytler E, Walter MR, Hunter E (2004) An early stage of Mason-Pfizer monkey virus budding is regulated by the hydrophobicity of the Gag matrix domain core. J Virol 78: 5023-5031. doi:10.1128/JVI.78.10.5023-5031.2004. PubMed: 15113883. PubMed DOI PMC

Song C, Dubay SR, Hunter E (2003) A tyrosine motif in the cytoplasmic domain of mason-pfizer monkey virus is essential for the incorporation of glycoprotein into virions. J Virol 77: 5192-5200. doi:10.1128/JVI.77.9.5192-5200.2003. PubMed: 12692221. PubMed DOI PMC

Chung HY, Morita E, von Schwedler U, Müller B, Kräusslich HG et al. (2008) NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. J Virol 82: 4884-4897. doi:10.1128/JVI.02667-07. PubMed: 18321968. PubMed DOI PMC

Sakalian M, Hunter E (1999) Separate assembly and transport domains within the Gag precursor of Mason-Pfizer monkey virus. J Virol 73: 8073-8082. PubMed: 10482556. PubMed PMC

Sfakianos JN, Hunter E (2003) M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic 4: 671-680. doi:10.1034/j.1600-0854.2003.00126.x. PubMed: 12956870. PubMed DOI

Punnonen EL, Ryhänen K, Marjomäki VS (1998) At reduced temperature, endocytic membrane traffic is blocked in multivesicular carrier endosomes in rat cardiac myocytes. Eur J Cell Biol 75: 344-352. doi:10.1016/S0171-9335(98)80067-8. PubMed: 9628320. PubMed DOI

Song C, Micoli K, Bauerova H, Pichova I, Hunter E (2005) Amino acid residues in the cytoplasmic domain of the Mason-Pfizer monkey virus glycoprotein critical for its incorporation into virions. J Virol 79: 11559-11568. doi:10.1128/JVI.79.18.11559-11568.2005. PubMed: 16140733. PubMed DOI PMC

Müller B, Daecke J, Fackler OT, Dittmar MT, Zentgraf H et al. (2004) Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J Virol 78: 10803-10813. doi:10.1128/JVI.78.19.10803-10813.2004. PubMed: 15367647. PubMed DOI PMC

Lux K, Goerlitz N, Schlemminger S, Perabo L, Goldnau D et al. (2005) Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking. J Virol 79: 11776-11787. doi:10.1128/JVI.79.18.11776-11787.2005. PubMed: 16140755. PubMed DOI PMC

Desai P, Person S (1998) Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J Virol 72: 7563-7568. PubMed: 9696854. PubMed PMC

Chopra HC, Mason MM (1970) A new virus in a spontaneous mammary tumor of a rhesus monkey. Cancer Res 30: 2081-2086. PubMed: 4195910. PubMed

Jensen EM, Zelljadt I, Chopra HC, Mason MM (1970) Isolation and propagation of a virus from a spontaneous mammary carcinoma of a rhesus monkey. Cancer Res 30: 2388-2393. PubMed: 4990901. PubMed

Mason MM, Bogden AE, Ilievski V, Esber HJ, Baker JR et al. (1972) History of a rhesus monkey adenocarcinoma containing virus particles resembling oncogenic RNA viruses. J Natl Cancer Inst 48: 1323-1331. PubMed: 4624149. PubMed

Gluzman Y (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23: 175-182. doi:10.1016/0092-8674(81)90282-8. PubMed: 6260373. PubMed DOI

Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36: 59-74. doi:10.1099/0022-1317-36-1-59. PubMed: 886304. PubMed DOI

Kessler SW (1975) Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. J Immunol 115: 1617-1624. PubMed: 1102604. PubMed

Linkert M, Rueden CT, Allan C, Burel JM, Moore W et al. (2010) Metadata matters: access to image data in the real world. J Cell Biol 189: 777-782. doi:10.1083/jcb.201004104. PubMed: 20513764. PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676-682. doi:10.1038/nmeth.2019. PubMed: 22743772. PubMed DOI PMC

Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151: 182-195. doi:10.1016/j.jsb.2005.06.002. PubMed: 16043363. PubMed DOI

Bradac J, Hunter E (1984) Polypeptides of Mason-Pfizer monkey virus. I. Synthesis and processing of the gag-gene products. Virology 138: 260-275. doi:10.1016/0042-6822(84)90350-7. PubMed: 6333757. PubMed DOI

Chatterjee S, Bradac J, Hunter E (1985) A rapid screening procedure for the isolation of nonconditional replication mutants of Mason-Pfizer monkey virus: identification of a mutant defective in pol. Virology 141: 65-76. doi:10.1016/0042-6822(85)90183-7. PubMed: 2579506. PubMed DOI

Amorim MJ, Bruce EA, Read EK, Foeglein A, Mahen R et al. (2011) A Rab11- and microtubule-dependent mechanism for cytoplasmic transport of influenza A virus viral. RNA - J Virol 85: 4143-4156. doi:10.1128/JVI.02606-10. PubMed DOI PMC

Chambers R, Takimoto T (2010) Trafficking of Sendai virus nucleocapsids is mediated by intracellular vesicles. PLOS ONE 5: e10994. doi:10.1371/journal.pone.0010994. PubMed: 20543880. PubMed DOI PMC

Döhner K, Nagel CH, Sodeik B (2005) Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol 13: 320-327. doi:10.1016/j.tim.2005.05.010. PubMed: 15950476. PubMed DOI

Hollinshead M, Rodger G, Van Eijl H, Law M, Hollinshead R et al. (2001) Vaccinia virus utilizes microtubules for movement to the cell surface. J Cell Biol 154: 389-402. doi:10.1083/jcb.200104124. PubMed: 11470826. PubMed DOI PMC

Rhee SS, Hunter E (1987) Myristylation is required for intracellular transport but not for assembly of D-type retrovirus capsids. J Virol 61: 1045-1053. PubMed: 3493352. PubMed PMC

Kohoutová Z, Rumlová M, Andreánsky M, Sakalian M, Hunter E et al. (2009) The impact of altered polyprotein ratios on the assembly and infectivity of Mason-Pfizer monkey virus. Virology 384: 59-68. doi:10.1016/j.virol.2008.10.048. PubMed: 19062065. PubMed DOI PMC

Murray JW, Bananis E, Wolkoff AW (2000) Reconstitution of ATP-dependent movement of endocytic vesicles along microtubules in vitro: an oscillatory bidirectional process. Mol Biol Cell 11: 419-433. doi:10.1091/mbc.11.2.419. PubMed: 10679004. PubMed DOI PMC

Penfold ME, Armati P, Cunningham AL (1994) Axonal transport of herpes simplex virions to epidermal cells: evidence for a specialized mode of virus transport and assembly. Proc Natl Acad Sci U S A 91: 6529-6533. doi:10.1073/pnas.91.14.6529. PubMed: 7517552. PubMed DOI PMC

Rietdorf J, Ploubidou A, Reckmann I, Holmström A, Frischknecht F et al. (2001) Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat Cell Biol 3: 992-1000. doi:10.1038/ncb1101-992. PubMed: 11715020. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...