Direct evidence for intracellular anterograde co-transport of M-PMV Gag and Env on microtubules
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R37 CA027834
NCI NIH HHS - United States
P51 OD011132
NIH HHS - United States
CA-27834
NCI NIH HHS - United States
P51 RR000165
NCRR NIH HHS - United States
R01 CA027834
NCI NIH HHS - United States
R03 TW000050
FIC NIH HHS - United States
PubMed
24418544
PubMed Central
PMC4219502
DOI
10.1016/j.virol.2013.11.006
PII: S0042-6822(13)00619-3
Knihovny.cz E-zdroje
- Klíčová slova
- Anterograde transport, Cytoskeleton, Envelope, Gag, Live cell-imaging, M-PMV,
- MeSH
- AIDS opičí metabolismus virologie MeSH
- buněčná membrána virologie MeSH
- Cercopithecus aethiops MeSH
- genové produkty env genetika metabolismus MeSH
- genové produkty gag genetika metabolismus MeSH
- Macaca mulatta MeSH
- Masonův-Pfizerův opičí virus genetika metabolismus MeSH
- mikrotubuly metabolismus virologie MeSH
- transport proteinů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- genové produkty env MeSH
- genové produkty gag MeSH
The intracellular transport of Mason-Pfizer monkey virus (M-PMV) assembled capsids from the pericentriolar region to the plasma membrane (PM) requires trafficking of envelope glycoprotein (Env) to the assembly site via the recycling endosome. However, it is unclear if Env-containing vesicles play a direct role in trafficking capsids to the PM. Using live cell microscopy, we demonstrate, for the first time, anterograde co-transport of Gag and Env. Nocodazole disruption of microtubules had differential effects on Gag and Env trafficking, with pulse-chase assays showing a delayed release of Env-deficient virions. Particle tracking demonstrated an initial loss of linear movement of GFP-tagged capsids and mCherry-tagged Env, followed by renewed movement of Gag but not Env at 4h post-treatment. Thus, while delayed capsid trafficking can occur in the absence of microtubules, efficient anterograde transport of capsids appears to be mediated by microtubule-associated Env-containing vesicles.
Zobrazit více v PubMed
Bremner KH, Scherer J, Yi J, Vershinin M, Gross SP, Vallee RB. Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe. 2009;6:523–535. PubMed PMC
Brody BA, Kimball MG, Hunter E. Mutations within the transmembrane glycoprotein of Mason-Pfizer monkey virus: loss of SU-TM association and effects on infectivity. Virology. 1994;202:673–683. PubMed
Brown CR, Doxsey SJ, Hong-Brown LQ, Martin RL, Welch WJ. Molecular chaperones and the centrosome. A role for TCP-1 in microtubule nucleation. J Biol Chem. 1996;271:824–832. PubMed
Choi G, Park S, Choi B, Hong S, Lee J, Hunter E, Rhee SS. Identification of a cytoplasmic targeting retention signal in a retroviral Gag polyprotein. J Virol. 1999;73:5431–5437. PubMed PMC
Clark J, Grznarova P, Stansell E, Diehl W, Lipov J, Spearman P, Ruml T, Hunter E. PLOS ONE. in press. PubMed PMC
Durham HD. The effect of beta, β′-iminidipropionitrile (IDPN) on cytoske-letal organization in cultured human skin fibroblasts. Cell Biol Int Rep. 1986;10:599–610. PubMed
Forest T, Barnard S, Baines JD. Active intracellular movement of herpes-virus capsids. Nat Cell Biol. 2005;7:429–431. PubMed
Gazzola M, Burckhardt CJ, Bayati B, Engelke M, Greber UF, Koumoutsakos P. A stochastic model for microtubule motors describes the in vivo cytoplasmic transport of human adenovirus. PLos Comput Biol. 2009;5:e1000623. PubMed PMC
Glotzer JB, Michou AI, Baker A, Saltik M, Cotten M. Microtubule-independent motility and nuclear targeting of adenovirus with fluorescently labeled genomes. J Virol. 2001;75:2421–2434. PubMed PMC
Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981;23:175–182. PubMed
Griffin JW, Fahnestock KE, Price DL, Cork LC. Cytoskeletal disorganization induced by local application of beta, β′-iminodiproprionitrile and 2,5-hexanedione. Ann Neurol. 1983;14:55–61. PubMed
Hendricks AG, Perlson E, Ross JL, Schroeder HW, Tokito M, Holzbaur ELF. Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr Biol. 2010;20:697–702. PubMed PMC
Hollinshead M, Rodger G, Eijl HV, Law M, Hollinshead R, Vaux DJT, Smith GL. Vaccinia virus utilizes microtubules for movement to the cell surface. J Cell Biol. 2001;154:389–402. PubMed PMC
Hong S, Choi G, Park S, Chung AS, Hunter E, Rhee SS. Type D retrovirus Gag polyprotein interacts with the cytosolic chaperonin TRiC. J Virol. 2001;75:2526–2534. PubMed PMC
Jouvenet N, Monaghan P, Way M, Wileman T. Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin. J Virol. 2004;78:7990–8001. PubMed PMC
Kumar N, Robidoux J, Daniel KW, Guzman G, Floering LM, Collins S. Requirement of vimentin filament assembly for β3-adrenergic receptor activation of ERK MAP kinase and lipolysis. J Biol Chem. 2007;282:9244–9250. PubMed
Lee GE, Murray JW, Wolkoff AW, Wilson DW. Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro. J Virol. 2006;80:4264–4275. PubMed PMC
Martinez NW, Xue X, Berro RG, Kreitzer G, Resh MD. Kinesin KIF4 regulates intracellular trafficking and stability of the human immunideficiency virus Type 1 Gag polyprotein. J Virol. 2008;82:9937–9950. PubMed PMC
Miranda-Saksena M, Armati P, Boadle RA, Holland DJ, Cunningham AL. Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons. J Virol. 2000;74:1827–1839. PubMed PMC
Parker SD, Hunter E. Activation of the Mason-Pfizer monkey virus protease within immature capsids in vitro. PNAS. 2001;98:14631–14636. PubMed PMC
Quinones GB, Danowski BA, Devaraj A, Singh V, Ligon LA. The posttranslational modification of tubulin undergoes a switch from dyrosination to acetylation as epithelial cells become polarized. Mol Biol Cell. 2011;22:1045–1057. PubMed PMC
Rhee SS, Hunter E. A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus. Cell. 1990a;63:77–86. PubMed
Rhee SS, Hunter E. Structural role of the matrix protein of type D retroviruses in gag polyprotein stability and capsid assembly. J Virol. 1990b;64:4383–4389. PubMed PMC
Rhee SS, Hunter E. Amino acid substitutions within the matrix domain of type D retroviruses affect assembly, transport and membrane association of a capsid. EMBO J. 1991;10:535–546. PubMed PMC
Ross JL, Shuman H, Holzbaur EL, Goldman YE. Kinesin and dynein-dynactin at intersecting microtubules: motor density affects dynein function. Biophys J. 2008;94:3115–3125. PubMed PMC
Sakalian M, Hunter E. Separate assembly and transport domains within the gag precursor of Mason-Pfizer monkey virus. J Virol. 1999;73:8073–8082. PubMed PMC
Salzwedel K, Berger E. Complementation of diverse HIV-1 Env defects through cooperative subunit interactions: a general property of the functional trimer. Retrovirology. 2009;6:75. PubMed PMC
Sathish N, Zhu FX, Yuan Y. Kaposi's sarcoma-associated herpesvirus ORF45 interacts with kinesin-2 transporting viral capsid-tegument complexes along microtubules. PLos Pathog. 2009;5:e1000332. PubMed PMC
Sbalzarini IF, Koumoutsakos P. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol. 2005;151:182–195. PubMed
Sfakianos JN, Hunter E. M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic. 2003;4:671–680. PubMed
Sfakianos JN, LaCasse RA, Hunter E. The M-PMV cytoplasmic targeting-retention signal directs mascent gag polypeptides to a pericentriolar region of the cell. Traffic. 2003;4:660–670. PubMed
Shah JV, Flanagan LA, Janmey PA, Leterrier JF. Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/ dynactin. Mol Biol Cell. 2000;11:3495–3508. PubMed PMC
Stansell E, Apkarian R, Haubova S, Diehl WE, Tytler EM, Hunter E. Basic residues in the Mason-Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J Virol. 2007;81:8977–8988. PubMed PMC
Stansell E, Tytler E, Walter MR, Hunter E. An early stage of Mason-Pfizer monkey virus budding is regulated by the hydrophobicity of the gag matrix domain core. J Virol. 2004;78:5023–5031. PubMed PMC
Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill RP, Greber UF. Microtubule-dependent plus- and minus-end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol. 1999;144 PubMed PMC
Ullrich O, Reinsch S, Urbe S, Zerial M, Parton RG. Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol. 1996;135:913–924. PubMed PMC
Vlach J, Lipov J, Rumlova M, Veverka V, Lang J, Srb P, Knejzlik Z, Pichova I, Hunter E, Hrabal R, Ruml T. D-retrovirus morphogenetic switch driven by the targeting signal accessibility to Tctex-1 of dynein. Proc Natl Acad Sci USA. 2008;105:10565–10570. PubMed PMC
Yasudo J, Hunter E. A proline-rich motif (PPPY) in the Gag polyprotein of Mason-Pfizer monkey virus plays a maturation-independent role in virion release. J Virol. 1998;72:4095–4103. PubMed PMC
Yea C, Dembowy J, Pacione L, Brown M. Microtubule-mediated and microtubule-independent transport of adenovirus Type 5 in HEK293 cells. J Virol. 2007;81:6899–6908. PubMed PMC