We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity. Our findings offer unique insights into the mechanisms of viral manipulation of host cellular processes, highlighting a sophisticated strategy that viruses employ to leverage cellular machinery for their replication. This study adds valuable knowledge to the understanding of viral-host interactions but also suggests a common evolutionary history between cellular processes and viral mechanisms. This finding opens a unique perspective on the export mechanism of intron-retaining mRNAs in the packaging of viral genetic information and potentially develop ways to stop it.
- MeSH
- buněčné jádro metabolismus virologie MeSH
- DEAD-box RNA-helikasy metabolismus genetika MeSH
- genom virový MeSH
- HEK293 buňky MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus * genetika metabolismus fyziologie MeSH
- replikace viru genetika fyziologie MeSH
- RNA virová * metabolismus genetika MeSH
- RNA-helikasy metabolismus genetika MeSH
- sestavení viru * genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The matrix protein (MA) of the Mason-Pfizer monkey virus (M-PMV) plays a key role in the transport and budding of immature retroviral particles from the host cell. Natural N-terminal myristoylation of MA is essential for the targeting of the particles to the plasma membrane and participates in the interaction of MA with membranes phospholipids. The mutation Y28F/Y67F in MA reduces budding and thus causes the accumulation of viral particles under the cytoplasmic membrane. To investigate the impact of Y28F/Y67F mutation on the structure of MA, we prepared this protein in amount and quality suitable for NMR spectroscopy. We report backbone, side-chain and myristoyl residue assignments of the Y28F/Y67F mutant of the M-PMV matrix protein, which will be used to study the interaction with membrane phospholipids and to determine the structure of the mutant matrix protein.
- MeSH
- kyselina myristová metabolismus MeSH
- Masonův-Pfizerův opičí virus metabolismus MeSH
- mutantní proteiny chemie MeSH
- nukleární magnetická rezonance biomolekulární * MeSH
- proteiny virové matrix chemie MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- sekundární struktura proteinů MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The intracellular transport of Mason-Pfizer monkey virus (M-PMV) assembled capsids from the pericentriolar region to the plasma membrane (PM) requires trafficking of envelope glycoprotein (Env) to the assembly site via the recycling endosome. However, it is unclear if Env-containing vesicles play a direct role in trafficking capsids to the PM. Using live cell microscopy, we demonstrate, for the first time, anterograde co-transport of Gag and Env. Nocodazole disruption of microtubules had differential effects on Gag and Env trafficking, with pulse-chase assays showing a delayed release of Env-deficient virions. Particle tracking demonstrated an initial loss of linear movement of GFP-tagged capsids and mCherry-tagged Env, followed by renewed movement of Gag but not Env at 4h post-treatment. Thus, while delayed capsid trafficking can occur in the absence of microtubules, efficient anterograde transport of capsids appears to be mediated by microtubule-associated Env-containing vesicles.
- MeSH
- AIDS opičí metabolismus virologie MeSH
- buněčná membrána virologie MeSH
- Cercopithecus aethiops MeSH
- genové produkty env genetika metabolismus MeSH
- genové produkty gag genetika metabolismus MeSH
- Macaca mulatta MeSH
- Masonův-Pfizerův opičí virus genetika metabolismus MeSH
- mikrotubuly metabolismus virologie MeSH
- transport proteinů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core - a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a β-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the β-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS: Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the β-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal β-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION: Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the β-hairpin in mature M-PMV CA.
- MeSH
- AIDS opičí genetika metabolismus MeSH
- buněčné linie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- mutace genetika MeSH
- sekundární struktura proteinů genetika MeSH
- sekvence aminokyselin MeSH
- sestavení viru genetika MeSH
- virion genetika metabolismus MeSH
- virové plášťové proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Immature capsids of the Betaretrovirus, Mason-Pfizer Monkey virus (M-PMV), are assembled in the pericentriolar region of the cell, and are then transported to the plasma membrane for budding. Although several studies, utilizing mutagenesis, biochemistry, and immunofluorescence, have defined the role of some viral and host cells factors involved in these processes, they have the disadvantage of population analysis, rather than analyzing individual capsid movement in real time. In this study, we created an M-PMV vector in which the enhanced green fluorescent protein, eGFP, was fused to the carboxyl-terminus of the M-PMV Gag polyprotein, to create a Gag-GFP fusion that could be visualized in live cells. In order to express this fusion protein in the context of an M-PMV proviral backbone, it was necessary to codon-optimize gag, optimize the Kozak sequence preceding the initiating methionine, and mutate an internal methionine codon to one for alanine (M100A) to prevent internal initiation of translation. Co-expression of this pSARM-Gag-GFP-M100A vector with a WT M-PMV provirus resulted in efficient assembly and release of capsids. Results from fixed-cell immunofluorescence and pulse-chase analyses of wild type and mutant Gag-GFP constructs demonstrated comparable intracellular localization and release of capsids to untagged counterparts. Real-time, live-cell visualization and analysis of the GFP-tagged capsids provided strong evidence for a role for microtubules in the intracellular transport of M-PMV capsids. Thus, this M-PMV Gag-GFP vector is a useful tool for identifying novel virus-cell interactions involved in intracellular M-PMV capsid transport in a dynamic, real-time system.
- MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- fluorescenční barviva metabolismus MeSH
- genetické vektory genetika MeSH
- genové produkty gag genetika metabolismus MeSH
- HEK293 buňky MeSH
- kapsida metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus genetika metabolismus fyziologie MeSH
- mikrotubuly metabolismus virologie MeSH
- molekulární zobrazování MeSH
- pohyb MeSH
- proviry genetika metabolismus fyziologie MeSH
- rekombinantní fúzní proteiny genetika metabolismus MeSH
- sestavení viru MeSH
- transport proteinů MeSH
- viabilita buněk MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Despite extensive data demonstrating that immature retroviral particle assembly can take place either at the plasma membrane or at a distinct location within the cytoplasm, targeting of viral precursor proteins to either assembly site still remains poorly understood. Biochemical data presented here suggest that Tctex-1, a light chain of the molecular motor dynein, is involved in the intracellular targeting of Mason-Pfizer monkey virus (M-PMV) polyproteins to the cytoplasmic assembly site. Comparison of the three-dimensional structures of M-PMV wild-type matrix protein (wt MA) with a single amino acid mutant (R55F), which redirects assembly from a cytoplasmic site to the plasma membrane, revealed different mutual orientations of their C- and N-terminal domains. This conformational change buries a putative intracellular targeting motif located between both domains in the hydrophobic pocket of the MA molecule, thereby preventing the interaction with cellular transport mechanisms.
- MeSH
- biologické modely MeSH
- biologický transport MeSH
- buněčná membrána metabolismus virologie MeSH
- Cercopithecus aethiops MeSH
- COS buňky MeSH
- cytoplazma metabolismus MeSH
- dyneiny metabolismus MeSH
- fenotyp MeSH
- financování organizované MeSH
- genomová oblast t-komplexu MeSH
- jaderné proteiny fyziologie chemie metabolismus MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus metabolismus MeSH
- mutace MeSH
- proteiny asociované s mikrotubuly fyziologie chemie metabolismus MeSH
- Retroviridae metabolismus MeSH
- terciární struktura proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH