Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

A Mason-Pfizer Monkey virus Gag-GFP fusion vector allows visualization of capsid transport in live cells and demonstrates a role for microtubules

J. Clark, P. Grznarova, E. Stansell, W. Diehl, J. Lipov, P. Spearman, T. Ruml, E. Hunter,

. 2013 ; 8 (12) : e83863.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc14074371

Immature capsids of the Betaretrovirus, Mason-Pfizer Monkey virus (M-PMV), are assembled in the pericentriolar region of the cell, and are then transported to the plasma membrane for budding. Although several studies, utilizing mutagenesis, biochemistry, and immunofluorescence, have defined the role of some viral and host cells factors involved in these processes, they have the disadvantage of population analysis, rather than analyzing individual capsid movement in real time. In this study, we created an M-PMV vector in which the enhanced green fluorescent protein, eGFP, was fused to the carboxyl-terminus of the M-PMV Gag polyprotein, to create a Gag-GFP fusion that could be visualized in live cells. In order to express this fusion protein in the context of an M-PMV proviral backbone, it was necessary to codon-optimize gag, optimize the Kozak sequence preceding the initiating methionine, and mutate an internal methionine codon to one for alanine (M100A) to prevent internal initiation of translation. Co-expression of this pSARM-Gag-GFP-M100A vector with a WT M-PMV provirus resulted in efficient assembly and release of capsids. Results from fixed-cell immunofluorescence and pulse-chase analyses of wild type and mutant Gag-GFP constructs demonstrated comparable intracellular localization and release of capsids to untagged counterparts. Real-time, live-cell visualization and analysis of the GFP-tagged capsids provided strong evidence for a role for microtubules in the intracellular transport of M-PMV capsids. Thus, this M-PMV Gag-GFP vector is a useful tool for identifying novel virus-cell interactions involved in intracellular M-PMV capsid transport in a dynamic, real-time system.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14074371
003      
CZ-PrNML
005      
20141006122229.0
007      
ta
008      
141006s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0083863 $2 doi
035    __
$a (PubMed)24386297
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Clark, Jasmine $u Emory Vaccine Center at the Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America.
245    12
$a A Mason-Pfizer Monkey virus Gag-GFP fusion vector allows visualization of capsid transport in live cells and demonstrates a role for microtubules / $c J. Clark, P. Grznarova, E. Stansell, W. Diehl, J. Lipov, P. Spearman, T. Ruml, E. Hunter,
520    9_
$a Immature capsids of the Betaretrovirus, Mason-Pfizer Monkey virus (M-PMV), are assembled in the pericentriolar region of the cell, and are then transported to the plasma membrane for budding. Although several studies, utilizing mutagenesis, biochemistry, and immunofluorescence, have defined the role of some viral and host cells factors involved in these processes, they have the disadvantage of population analysis, rather than analyzing individual capsid movement in real time. In this study, we created an M-PMV vector in which the enhanced green fluorescent protein, eGFP, was fused to the carboxyl-terminus of the M-PMV Gag polyprotein, to create a Gag-GFP fusion that could be visualized in live cells. In order to express this fusion protein in the context of an M-PMV proviral backbone, it was necessary to codon-optimize gag, optimize the Kozak sequence preceding the initiating methionine, and mutate an internal methionine codon to one for alanine (M100A) to prevent internal initiation of translation. Co-expression of this pSARM-Gag-GFP-M100A vector with a WT M-PMV provirus resulted in efficient assembly and release of capsids. Results from fixed-cell immunofluorescence and pulse-chase analyses of wild type and mutant Gag-GFP constructs demonstrated comparable intracellular localization and release of capsids to untagged counterparts. Real-time, live-cell visualization and analysis of the GFP-tagged capsids provided strong evidence for a role for microtubules in the intracellular transport of M-PMV capsids. Thus, this M-PMV Gag-GFP vector is a useful tool for identifying novel virus-cell interactions involved in intracellular M-PMV capsid transport in a dynamic, real-time system.
650    _2
$a biologický transport $7 D001692
650    _2
$a kapsida $x metabolismus $7 D002213
650    _2
$a buněčná membrána $x metabolismus $7 D002462
650    _2
$a viabilita buněk $7 D002470
650    _2
$a fluorescenční barviva $x metabolismus $7 D005456
650    _2
$a genové produkty gag $x genetika $x metabolismus $7 D015683
650    _2
$a genetické vektory $x genetika $7 D005822
650    _2
$a zelené fluorescenční proteiny $x genetika $x metabolismus $7 D049452
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a lidé $7 D006801
650    _2
$a kinetika $7 D007700
650    _2
$a Masonův-Pfizerův opičí virus $x genetika $x metabolismus $x fyziologie $7 D016093
650    _2
$a mikrotubuly $x metabolismus $x virologie $7 D008870
650    _2
$a molekulární zobrazování $7 D057054
650    _2
$a pohyb $7 D009068
650    _2
$a transport proteinů $7 D021381
650    _2
$a proviry $x genetika $x metabolismus $x fyziologie $7 D011533
650    _2
$a rekombinantní fúzní proteiny $x genetika $x metabolismus $7 D011993
650    _2
$a sestavení viru $7 D019065
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Grznarova, Petra $u Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Czech Republic.
700    1_
$a Stansell, Elizabeth $u Emory Vaccine Center at the Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America.
700    1_
$a Diehl, William $u Emory Vaccine Center at the Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America.
700    1_
$a Lipov, Jan $u Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Czech Republic.
700    1_
$a Spearman, Paul $u Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America.
700    1_
$a Ruml, Tomas $u Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Czech Republic.
700    1_
$a Hunter, Eric $u Emory Vaccine Center at the Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America ; Department of Pathology, Emory University, Atlanta, Georgia, United States of America.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 8, č. 12 (2013), s. e83863
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24386297 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20141006 $b ABA008
991    __
$a 20141006122706 $b ABA008
999    __
$a ok $b bmc $g 1042254 $s 873283
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 8 $c 12 $d e83863 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20141006

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...