Mason-Pfizer Monkey Virus Envelope Glycoprotein Cycling and Its Vesicular Co-Transport with Immature Particles
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
GA17-24281S
Grantová Agentura České Republiky - International
PubMed
30347798
PubMed Central
PMC6212865
DOI
10.3390/v10100575
PII: v10100575
Knihovny.cz E-zdroje
- Klíčová slova
- Mason-Pfizer monkey virus, endosomes, envelope, intracellular trafficking, transport, virus-like particles,
- MeSH
- AIDS opičí virologie MeSH
- buněčná membrána metabolismus virologie MeSH
- endozomy metabolismus virologie MeSH
- genové produkty env genetika metabolismus MeSH
- Masonův-Pfizerův opičí virus genetika fyziologie MeSH
- sestavení viru MeSH
- transport proteinů MeSH
- transportní vezikuly metabolismus virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genové produkty env MeSH
The envelope glycoprotein (Env) plays a crucial role in the retroviral life cycle by mediating primary interactions with the host cell. As described previously and expanded on in this paper, Env mediates the trafficking of immature Mason-Pfizer monkey virus (M-PMV) particles to the plasma membrane (PM). Using a panel of labeled RabGTPases as endosomal markers, we identified Env mostly in Rab7a- and Rab9a-positive endosomes. Based on an analysis of the transport of recombinant fluorescently labeled M-PMV Gag and Env proteins, we propose a putative mechanism of the intracellular trafficking of M-PMV Env and immature particles. According to this model, a portion of Env is targeted from the trans-Golgi network (TGN) to Rab7a-positive endosomes. It is then transported to Rab9a-positive endosomes and back to the TGN. It is at the Rab9a vesicles where the immature particles may anchor to the membranes of the Env-containing vesicles, preventing Env recycling to the TGN. These Gag-associated vesicles are then transported to the plasma membrane.
Zobrazit více v PubMed
Chopra H.C., Mason M.M. A new virus in a spontaneous mammary tumor of a rhesus monkey. Cancer Res. 1970;30:2081–2086. PubMed
Kramarsky B., Sarkar N.H., Moore D.H. Ultrastructural comparison of a virus from a Rhesus-monkey mammary carcinoma with four oncogenic RNA viruses. Proc. Natl. Acad. Sci. USA. 1971;68:1603–1607. doi: 10.1073/pnas.68.7.1603. PubMed DOI PMC
Kohoutova Z., Rumlova M., Andreansky M., Sakalian M., Hunter E., Pichova I., Ruml T. The impact of altered polyprotein ratios on the assembly and infectivity of Mason-Pfizer monkey virus. Virology. 2009;384:59–68. doi: 10.1016/j.virol.2008.10.048. PubMed DOI PMC
Vlach J., Lipov J., Rumlova M., Veverka V., Lang J., Srb P., Knejzlik Z., Pichova I., Hunter E., Hrabal R., et al. D-retrovirus morphogenetic switch driven by the targeting signal accessibility to Tctex-1 of dynein. Proc. Natl. Acad. Sci. USA. 2008;105:10565–10570. doi: 10.1073/pnas.0801765105. PubMed DOI PMC
Sfakianos J.N., LaCasse R.A., Hunter E. The M-PMV cytoplasmic targeting-retention signal directs nascent Gag polypeptides to a pericentriolar region of the cell. Traffic. 2003;4:660–670. doi: 10.1034/j.1600-0854.2003.00125.x. PubMed DOI
Sakalian M., Hunter E. Separate assembly and transport domains within the Gag precursor of Mason-Pfizer monkey virus. J. Virol. 1999;73:8073–8082. PubMed PMC
Hong S., Choi G., Park S., Chung A.S., Hunter E., Rhee S.S. Type D retrovirus Gag polyprotein interacts with the cytosolic chaperonin TRiC. J. Virol. 2001;75:2526–2534. doi: 10.1128/JVI.75.6.2526-2534.2001. PubMed DOI PMC
Ulbrich P., Haubova S., Nermut M.V., Hunter E., Rumlova M., Ruml T. Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J. Virol. 2006;80:7089–7099. doi: 10.1128/JVI.02694-05. PubMed DOI PMC
Song C., Dubay S.R., Hunter E. A Tyrosine Motif in the Cytoplasmic Domain of Mason-Pfizer Monkey Virus Is Essential for the Incorporation of Glycoprotein into Virions. J. Virol. 2003;77:5192–5200. doi: 10.1128/JVI.77.9.5192-5200.2003. PubMed DOI PMC
Sfakianos J.N., Hunter E. M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic. 2003;4:671–680. doi: 10.1034/j.1600-0854.2003.00126.x. PubMed DOI
Pereira L.E., Clark J., Grznarova P., Wen X., Lacasse R., Ruml T., Spearman P., Hunter E. Direct evidence for intracellular anterograde co-transport of M-PMV Gag and Env on microtubules. Virology. 2014;449:109–119. doi: 10.1016/j.virol.2013.11.006. PubMed DOI PMC
Clark J., Grznarova P., Stansell E., Diehl W., Lipov J., Spearman P., Ruml T., Hunter E. A Mason-Pfizer Monkey Virus Gag-GFP Fusion Vector Allows Visualization of Capsid Transport in Live Cells and Demonstrates a Role for Microtubules. PLoS ONE. 2013;8:e83863. doi: 10.1371/journal.pone.0083863. PubMed DOI PMC
Choudhury A., Dominguez M., Puri V., Sharma D.K., Narita K., Wheatley C.W., Marks D.L., Pagano R.E. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J. Clin. Investig. 2002;109:1541–1550. doi: 10.1172/JCI0215420. PubMed DOI PMC
Song C., Micoli K., Bauerova H., Pichova I., Hunter E. Amino acid residues in the cytoplasmic domain of the Mason-Pfizer monkey virus glycoprotein critical for its incorporation into virions. J. Virol. 2005;79:11559–11568. doi: 10.1128/JVI.79.18.11559-11568.2005. PubMed DOI PMC
Rumlova M., Ruml T., Pohl J., Pichova I. Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: Evidence for a potential role of retroviral protease in early stages of infection. Virology. 2003;310:310–318. doi: 10.1016/S0042-6822(03)00128-4. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schindelin J., Rueden C.T., Hiner M.C., Eliceiri K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 2015;82:518–529. doi: 10.1002/mrd.22489. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Costes S.V., Daelemans D., Cho E.H., Dobbin Z., Pavlakis G., Lockett S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 2004;86:3993–4003. doi: 10.1529/biophysj.103.038422. PubMed DOI PMC
Manders E.M.M., Verbeek F.J., Aten J.A. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 1993;169:375–382. doi: 10.1111/j.1365-2818.1993.tb03313.x. PubMed DOI
Li Q., Lau A., Morris T.J., Guo L., Fordyce C.B., Stanley E.F. A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: Analysis by quantitative immunocolocalization. J. Neurosci. Off. J. Soc. Neurosci. 2004;24:4070–4081. doi: 10.1523/JNEUROSCI.0346-04.2004. PubMed DOI PMC
Bohmova K., Hadravova R., Stokrova J., Tuma R., Ruml T., Pichova I., Rumlova M. Effect of dimerizing domains and basic residues on in vitro and in vivo assembly of Mason-Pfizer monkey virus and human immunodeficiency virus. J. Virol. 2010;84:1977–1988. doi: 10.1128/JVI.02022-09. PubMed DOI PMC
Muranyi W., Malkusch S., Muller B., Heilemann M., Krausslich H.G. Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. PLoS Pathog. 2013;9:e1003198. doi: 10.1371/journal.ppat.1003198. PubMed DOI PMC
Blot V., Lopez-Verges S., Breton M., Pique C., Berlioz-Torrent C., Grange M.P. The conserved dileucine- and tyrosine-based motifs in MLV and MPMV envelope glycoproteins are both important to regulate a common Env intracellular trafficking. Retrovirology. 2006;3:62. doi: 10.1186/1742-4690-3-62. PubMed DOI PMC
Bucci C., Parton R.G., Mather I.H., Stunnenberg H., Simons K., Hoflack B., Zerial M. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell. 1992;70:715–728. doi: 10.1016/0092-8674(92)90306-W. PubMed DOI
Vanlandingham P.A., Ceresa B.P. Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration. J. Boil. Chem. 2009;284:12110–12124. doi: 10.1074/jbc.M809277200. PubMed DOI PMC
Barbero P., Bittova L., Pfeffer S.R. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J. Cell Boil. 2002;156:511–518. doi: 10.1083/jcb.200109030. PubMed DOI PMC
Ullrich O., Reinsch S., Urbe S., Zerial M., Parton R.G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Boil. 1996;135:913–924. doi: 10.1083/jcb.135.4.913. PubMed DOI PMC
Postler T.S., Bixby J.G., Desrosiers R.C., Yuste E. Systematic analysis of intracellular trafficking motifs located within the cytoplasmic domain of simian immunodeficiency virus glycoprotein gp41. PLoS ONE. 2014;9:e114753. doi: 10.1371/journal.pone.0114753. PubMed DOI PMC
Postler T.S., Desrosiers R.C. The tale of the long tail: The cytoplasmic domain of HIV-1 gp41. J. Virol. 2013;87:2–15. doi: 10.1128/JVI.02053-12. PubMed DOI PMC
Postler T.S., Desrosiers R.C. The cytoplasmic domain of the HIV-1 glycoprotein gp41 induces NF-kappaB activation through TGF-beta-activated kinase 1. Cell Host Microbe. 2012;11:181–193. doi: 10.1016/j.chom.2011.12.005. PubMed DOI PMC
Tedbury P.R., Freed E.O. The cytoplasmic tail of retroviral envelope glycoproteins. Prog. Mol. Boil. Transl. Sci. 2015;129:253–284. PubMed PMC
Sonigo P., Barker C., Hunter E., Wain-Hobson S. Nucleotide sequence of Mason-Pfizer monkey virus: An immunosuppressive D-type retrovirus. Cell. 1986;45:375–385. doi: 10.1016/0092-8674(86)90323-5. PubMed DOI
Rhee S.S., Hunter E. Amino-Acid Substitutions within the Matrix Protein of Type-D Retroviruses Affect Assembly, Transport and Membrane Association of a Capsid. EMBO J. 1991;10:535–546. doi: 10.1002/j.1460-2075.1991.tb07980.x. PubMed DOI PMC
Rhee S.S., Hunter E. Myristylation Is Required for Intracellular-Transport but Not for Assembly of D-Type Retrovirus Capsids. J. Virol. 1987;61:1045–1053. PubMed PMC
Murakami T., Freed E.O. Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J. Virol. 2000;74:3548–3554. doi: 10.1128/JVI.74.8.3548-3554.2000. PubMed DOI PMC
Freed E.O., Martin M.A. Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J. Virol. 1995;69:1984–1989. PubMed PMC
Mammano F., Kondo E., Sodroski J., Bukovsky A., Gottlinger H.G. Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. J. Virol. 1995;69:3824–3830. PubMed PMC
Ladinsky M.S., Kremer J.R., Furcinitti P.S., McIntosh J.R., Howell K.E. HVEM tomography of the trans-Golgi network: Structural insights and identification of a lace-like vesicle coat. J. Cell Boil. 1994;127:29–38. doi: 10.1083/jcb.127.1.29. PubMed DOI PMC
Ladinsky M.S., Mastronarde D.N., McIntosh J.R., Howell K.E., Staehelin L.A. Golgi structure in three dimensions: Functional insights from the normal rat kidney cell. J. Cell Boil. 1999;144:1135–1149. doi: 10.1083/jcb.144.6.1135. PubMed DOI PMC
Chia P.Z., Gasnereau I., Lieu Z.Z., Gleeson P.A. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J. Cell Sci. 2011;124:2401–2413. doi: 10.1242/jcs.083782. PubMed DOI PMC
White J., Keller P., Stelzer E.H. Spatial partitioning of secretory cargo from Golgi resident proteins in live cells. BMC Cell Boil. 2001;2:19 PubMed PMC
Hunter E., Swanstrom R. Retrovirus envelope glycoproteins. Curr. Top. Microbiol. Immunol. 1990;157:187–253. PubMed
Prchal J., Srb P., Hunter E., Ruml T., Hrabal R. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding. J. Mol. Boil. 2012;423:427–438. doi: 10.1016/j.jmb.2012.07.021. PubMed DOI PMC
Lombardi D., Soldati T., Riederer M.A., Goda Y., Zerial M., Pfeffer S.R. Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J. 1993;12:677–682. doi: 10.1002/j.1460-2075.1993.tb05701.x. PubMed DOI PMC
Sharma D.K., Choudhury A., Singh R.D., Wheatley C.L., Marks D.L., Pagano R.E. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J. Boil. Chem. 2003;278:7564–7572. doi: 10.1074/jbc.M210457200. PubMed DOI
Cheryl Chia P.Z., Gleeson P.A. The Regulation of Endosome-to-Golgi Retrograde Transport by Tethers and Scaffolds. Traffic. 2011;12:939–947. doi: 10.1111/j.1600-0854.2011.01185.x. PubMed DOI
Patterson G.H., Hirschberg K., Polishchuk R.S., Gerlich D., Phair R.D., Lippincott-Schwartz J. Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell. 2008;133:1055–1067. doi: 10.1016/j.cell.2008.04.044. PubMed DOI PMC
Bonifacino J.S., Glick B.S. The mechanisms of vesicle budding and fusion. Cell. 2004;116:153–166. doi: 10.1016/S0092-8674(03)01079-1. PubMed DOI
Bonifacino J.S., Traub L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 2003;72:395–447. doi: 10.1146/annurev.biochem.72.121801.161800. PubMed DOI
Stansell E., Apkarian R., Haubova S., Diehl W.E., Tytler E.M., Hunter E. Basic residues in the Mason-Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J. Virol. 2007;81:8977–8988. doi: 10.1128/JVI.00657-07. PubMed DOI PMC
Dostalkova A., Kaufman F., Krizova I., Kultova A., Strohalmova K., Hadravova R., Ruml T., Rumlova M. Mutations in the Basic Region of the Mason-Pfizer Monkey Virus Nucleocapsid Protein Affect Reverse Transcription, Genomic RNA Packaging, and the Virus Assembly Site. J. Virol. 2018 doi: 10.1128/JVI.00106-18. PubMed DOI PMC
Sbalzarini I.F., Koumoutsakos P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Boil. 2005;151:182–195. doi: 10.1016/j.jsb.2005.06.002. PubMed DOI
Chenouard N., Smal I., de Chaumont F., Maska M., Sbalzarini I.F., Gong Y., Cardinale J., Carthel C., Coraluppi S., Winter M., et al. Objective comparison of particle tracking methods. Nat. Methods. 2014;11:281–289. doi: 10.1038/nmeth.2808. PubMed DOI PMC
Interaction Interface of Mason-Pfizer Monkey Virus Matrix and Envelope Proteins
The Current View of Retroviruses as Seen from the Shoulders of a Giant