Immunity to TBEV Related Flaviviruses with Reduced Pathogenicity Protects Mice from Disease but Not from TBEV Entry into the CNS
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TBNAGER
Bundesministerium für Bildung und Forschung
AvH professorship
Alexander von Humboldt-Stiftung
398066876/GRK 2485/1
Deutsche Forschungsgemeinschaft
20-14325s, 20-30500s
Grantová Agentura České Republiky
PubMed
33652698
PubMed Central
PMC7996866
DOI
10.3390/vaccines9030196
PII: vaccines9030196
Knihovny.cz E-zdroje
- Klíčová slova
- CNS, Langat virus, neuronal damage, tick-borne encephalitis virus, virus induced immunity,
- Publikační typ
- časopisecké články MeSH
Tick-borne encephalitis virus (TBEV) is a leading cause of vector-borne viral encephalitis with expanding endemic regions across Europe. In this study we tested in mice the efficacy of preinfection with a closely related low-virulent flavivirus, Langat virus (LGTV strain TP21), or a naturally avirulent TBEV strain (TBEV-280) in providing protection against lethal infection with the highly virulent TBEV strain (referred to as TBEV-Hypr). We show that prior infection with TP21 or TBEV-280 is efficient in protecting mice from lethal TBEV-Hypr challenge. Histopathological analysis of brains from nonimmunized mice revealed neuronal TBEV infection and necrosis. Neuroinflammation, gliosis, and neuronal necrosis was however also observed in some of the TP21 and TBEV-280 preinfected mice although at reduced frequency as compared to the nonimmunized TBEV-Hypr infected mice. qPCR detected the presence of viral RNA in the CNS of both TP21 and TBEV-280 immunized mice after TBEV-Hypr challenge, but significantly reduced compared to mock-immunized mice. Our results indicate that although TBEV-Hypr infection is effectively controlled in the periphery upon immunization with low-virulent LGTV or naturally avirulent TBEV 280, it may still enter the CNS of these animals. These findings contribute to our understanding of causes for vaccine failure in individuals vaccinated with TBE vaccines.
Center of Behavioral Brain Sciences Otto von Guericke University 39120 Magdeburg Germany
Department of Virology Paul Ehrlich Institut 63225 Langen Germany
Innate Immunity and Infection Helmholtz Centre for Infection Research 38124 Braunschweig Germany
Veterinary Research Institute Hudcova 70 CZ 62100 Brno Czech Republic
Zobrazit více v PubMed
Mandl C.W., Ecker M., Holzmann H., Kunz C., Heinz F.X. Infectious cDNA clones of tick-borne encephalitis virus European subtype prototypic strain Neudoerfl and high virulence strain Hypr. J. Gen. Virol. 1997;78:1049–1057. doi: 10.1099/0022-1317-78-5-1049. PubMed DOI
Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antiviral Res. 2003;57:129–146. doi: 10.1016/S0166-3542(02)00206-1. PubMed DOI
Dai X., Shang G., Lu S., Yang J., Xu J. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg. Microbes Infect. 2018;7:74. doi: 10.1038/s41426-018-0081-6. PubMed DOI PMC
Kovalev S.Y., Mukhacheva T.A. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history. Infect. Genet. Evol. 2017;55:159–165. doi: 10.1016/j.meegid.2017.09.014. PubMed DOI
Blom K., Cuapio A., Sandberg J.T., Varnaite R., Michaelsson J., Bjorkstrom N.K., Sandberg J.K., Klingstrom J., Lindquist L., Gredmark Russ S., et al. Cell-Mediated Immune Responses and Immunopathogenesis of Human Tick-Borne Encephalitis Virus-Infection. Front. Immunol. 2018;9:2174. doi: 10.3389/fimmu.2018.02174. PubMed DOI PMC
Růžek D., Dobler G., Mantke O.D. Tick-borne encephalitis: Pathogenesis and clinical implications. Travel Med. Infect. Dis. 2010;8:223–232. doi: 10.1016/j.tmaid.2010.06.004. PubMed DOI
Heinz F.X., Holzmann H., Essl A., Kundi M. Field effectiveness of vaccination against tick-borne encephalitis. Vaccine. 2007;25:7559–7567. doi: 10.1016/j.vaccine.2007.08.024. PubMed DOI
Kubinski M., Beicht J., Gerlach T., Volz A., Sutter G., Rimmelzwaan G.F. Tick-borne encephalitis virus: A quest for better vaccines against a virus on the rise. Vaccines. 2020;8:451. doi: 10.3390/vaccines8030451. PubMed DOI PMC
Beran J., Lattanzi M., Xie F., Moraschini L., Galgani I. Second five-year follow-up after a booster vaccination against tick-borne encephalitis following different primary vaccination schedules demonstrates at least 10 years antibody persistence. Vaccine. 2019;37:4623–4629. doi: 10.1016/j.vaccine.2017.12.081. PubMed DOI
Minor P.D. Live attenuated vaccines: Historical successes and current challenges. Virology. 2015;479–480:379–392. doi: 10.1016/j.virol.2015.03.032. PubMed DOI
Seligman S.J., Gould E.A. Live flavivirus vaccines: Reasons for caution. Lancet. 2004;363:2073–2075. doi: 10.1016/S0140-6736(04)16459-3. PubMed DOI
Rumyantsev A.A., Murphy B.R., Pletnev A.G. A tick-borne Langat virus mutant that is temperature sensitive and host range restricted in neuroblastoma cells and lacks neuroinvasiveness for immunodeficient mice. J. Virol. 2006;80:1427–1439. doi: 10.1128/JVI.80.3.1427-1439.2006. PubMed DOI PMC
Mitrova E., Mayer V. A live vaccine against tick-borne encephalitis; integrated studies, H. Histopathology of mice peripherally immunized with E5 “14” virus and challenged with virulent virus. Acta Virol. 1975;3:219–228. PubMed
Mayer V., Pogady J., Starek M., Hrbka J. A live vaccine against tick borne encephalitis: Integrated studies. III. Response of man to a single dose of the E5’14’ clone (Langat virus) Acta Virol. 1975;19:229–236. PubMed
Gritsun T.S., Frolova T.V., Pogodina V.V., Lashkevich V.A., Venugopal K., Gould E.A. Nucleotide and deduced amino acid sequence of the envelope gene of the Vasilchenko strain of TBE virus; comparison with other flaviviruses. Virus Res. 1993;27:201–209. doi: 10.1016/0168-1702(93)90082-X. PubMed DOI
Turtle L., Bali T., Buxton G., Chib S., Chan S., Soni M., Hussain M., Isenman H., Fadnis P., Venkataswamy M.M., et al. Human T cell responses to Japanese encephalitis virus in health and disease. J. Exp. Med. 2016;213:1331–1352. doi: 10.1084/jem.20151517. PubMed DOI PMC
Garber C., Soung A., Vollmer L.L., Kanmogne M., Last A., Brown J., Klein R.S. T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses. Nat. Neurosci. 2019;22:1276–1288. doi: 10.1038/s41593-019-0427-y. PubMed DOI PMC
Růžek D., Salát J., Palus M., Gritsun T.S., Gould E.A., Dyková I., Skallová A., Jelínek J., Kopecký J., Grubhoffer L. CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology. 2009;384:1–6. doi: 10.1016/j.virol.2008.11.023. PubMed DOI
Gelpi E., Preusser M., Laggner U., Garzuly F., Holzmann H., Heinz F.X., Budka H. Inflammatory response in human tick-borne encephalitis: Analysis of postmortem brain tissue. J. Neurovirol. 2006;12:322–327. doi: 10.1080/13550280600848746. PubMed DOI
Cornelius A.D.A., Hosseini S., Schreier S., Fritzsch D., Weichert L., Michaelsen-Preusse K., Fendt M., Kröger A. Langat virus infection affects hippocampal neuron morphology and function in mice without disease signs. J. Neuroinflamm. 2020;17:278. doi: 10.1186/s12974-020-01951-w. PubMed DOI PMC
Růžek D., Gritsun T.S., Forrester N.L., Gould E.A., Kopecký J., Golovchenko M., Rudenko N., Grubhoffer L. Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology. 2008;374:249–255. doi: 10.1016/j.virol.2008.01.010. PubMed DOI
Gordon Smith C.E. A virus resembling Russian spring-summer encephalitis virus from an ixodid tick in Malaya. Nature. 1956;178:581–582. doi: 10.1038/178581a0. PubMed DOI
Palus M., Vojtíšková J., Salát J., Kopecký J., Grubhoffer L., Lipoldová M., Demant P., Růžek D. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J. Neuroinflamm. 2013;10:1–13. doi: 10.1186/1742-2094-10-77. PubMed DOI PMC
Schwaiger M., Cassinotti P. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J. Clin. Virol. 2003;27:136–145. doi: 10.1016/S1386-6532(02)00168-3. PubMed DOI
Kurhade C., Zegenhagen L., Weber E., Nair S., Michaelsen-Preusse K., Spanier J., Gekara N.O., Kröger A., Överby A.K. Type I Interferon response in olfactory bulb, the site of tick-borne flavivirus accumulation, is primarily regulated by IPS-1. J. Neuroinflamm. 2016;13 doi: 10.1186/s12974-016-0487-9. PubMed DOI PMC
Attig F., Spitzbarth I., Kalkuhl A., Deschl U., Puff C., Baumgärtner W., Ulrich R. Reactive oxygen species are key mediators of demyelination in canine distemper leukoencephalitis but not in theiler’s murine encephalomyelitis. Int. J. Mol. Sci. 2019;20:3217. doi: 10.3390/ijms20133217. PubMed DOI PMC
Niedrig M., Klockmann U., Lang W., Roeder J., Burk S., DModrow S., Pauli G. Monoclonal antibodies directed against tick-borne encephalitis virus with neutralizing activity in vivo. Acta Virol. 1994;38:141–149. PubMed
Fares M., Cochet-Bernoin M., Gonzalez G., Montero-Menei C.N., Blanchet O., Benchoua A., Boissart C., Lecollinet S., Richardson J., Haddad N., et al. Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. J. Neuroinflamm. 2020;17:76. doi: 10.1186/s12974-020-01756-x. PubMed DOI PMC
Růžek D., Vancová M., Tesařová M., Ahantarig A., Kopecký J., Grubhoffer L. Morphological changes in human neural cells following tick-borne encephalitis virus infection. J. Gen. Virol. 2009;90:1649–1658. doi: 10.1099/vir.0.010058-0. PubMed DOI
Sendi P., Hirzel C., Pfister S., Ackermann-Gäumann R., Grandgirard D., Hewer E., Nirkko A.C. Fatal outcome of European tick-borne encephalitis after vaccine failure. Front. Neurol. 2017;8:119. doi: 10.3389/fneur.2017.00119. PubMed DOI PMC
Andersson C.R., Vene S., Insulander M., Lindquist L., Lundkvist Å., Günther G. Vaccine failures after active immunisation against tick-borne encephalitis. Vaccine. 2010;28:2827–2831. doi: 10.1016/j.vaccine.2010.02.001. PubMed DOI
Potokar M., Korva M., Jorgačevski J., Avšič-Županc T., Zorec R. Tick-Borne Encephalitis Virus Infects Rat Astrocytes but Does Not Affect Their Viability. PLoS One. 2014;9:e86219. doi: 10.1371/journal.pone.0086219. PubMed DOI PMC
Palus M., Bílý T., Elsterová J., Langhansová H., Salát J., Vancová M., Růžek D. Infection and injury of human astrocytes by tick-borne encephalitis virus. J. Gen. Virol. 2014;95:2411–2426. doi: 10.1099/vir.0.068411-0. PubMed DOI
Myint K.S.A., Kipar A., Jarman R.G., Gibbons R.V., Perng G.C., Flanagan B., Mongkolsirichaikul D., Van Gessel Y., Solomon T. Neuropathogenesis of Japanese Encephalitis in a Primate Model. PLoS Negl. Trop. Dis. 2014;8:e2980. doi: 10.1371/journal.pntd.0002980. PubMed DOI PMC
Ho C.-Y., Ames H.M., Tipton A., Vezina G., Liu J.S., Scafidi J., Torii M., Rodriguez F.J., du Plessis A., DeBiasi R.L. Differential neuronal susceptibility and apoptosis in congenital Zika virus infection. Ann. Neurol. 2017;82:121–127. doi: 10.1002/ana.24968. PubMed DOI
Pokorna Formanova P., Palus M., Salat J., Hönig V., Stefanik M., Svoboda P., Ruzek D. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J. Neuroinflamm. 2019;16 doi: 10.1186/s12974-019-1596-z. PubMed DOI PMC
Prajeeth C.K., Kronisch J., Khorooshi R., Knier B., Toft-Hansen H., Gudi V., Floess S., Huehn J., Owens T., Korn T., et al. Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties. J. Neuroinflamm. 2017;14:204. doi: 10.1186/s12974-017-0978-3. PubMed DOI PMC
Detje C.N., Lienenklaus S., Chhatbar C., Spanier J., Prajeeth C.K., Soldner C., Tovey M.G., Schlüter D., Weiss S., Stangel M., et al. Upon Intranasal Vesicular Stomatitis Virus Infection, Astrocytes in the Olfactory Bulb Are Important Interferon Beta Producers That Protect from Lethal Encephalitis. J. Virol. 2015;89:2731–2738. doi: 10.1128/JVI.02044-14. PubMed DOI PMC
Weber E., Finsterbusch K., Lindquist R., Nair S., Lienenklaus S., Gekara N.O., Janik D., Weiss S., Kalinke U., Overby A.K., et al. Type I Interferon Protects Mice from Fatal Neurotropic Infection with Langat Virus by Systemic and Local Antiviral Responses. J. Virol. 2014;88:12202–12212. doi: 10.1128/JVI.01215-14. PubMed DOI PMC
Burda J.E., Sofroniew M.V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 2014;81:229–248. doi: 10.1016/j.neuron.2013.12.034. PubMed DOI PMC
Wang Q., Xin X., Wang T., Wan J., Ou Y., Yang Z., Yu Q., Zhu L., Guo Y., Wu Y., et al. Japanese Encephalitis Virus Induces Apoptosis and Encephalitis by Activating the PERK Pathway. J. Virol. 2019;93 doi: 10.1128/JVI.00887-19. PubMed DOI PMC
Chen Z., Wang X., Ashraf U., Zheng B., Ye J., Zhou D., Zhang H., Song Y., Chen H., Zhao S., et al. Activation of neuronal N-methyl-d-aspartate receptor plays a pivotal role in Japanese encephalitis virus-induced neuronal cell damage. J. Neuroinflamm. 2018;15:238. doi: 10.1186/s12974-018-1280-8. PubMed DOI PMC
Leyssen P., Paeshuyse J., Charlier N., Van Lommel A., Drosten C., De Clercq E., Neyts J. Impact of direct virus-induced neuronal dysfunction and immunological damage on the progression of flavivirus (Modoc) encephalitis in a murine model. J. Neurovirol. 2003;9:69–78. doi: 10.1080/13550280390173319. PubMed DOI
Maximova O.A., Faucette L.J., Ward J.M., Murphy B.R., Pletnev A.G. Cellular inflammatory response to flaviviruses in the central nervous system of a primate host. J. Histochem. Cytochem. 2009;57:973–989. doi: 10.1369/jhc.2009.954180. PubMed DOI PMC
Prikhod’ko G.G., Prikhod’ko E.A., Cohen J.I., Pletnev A.G. Infection with Langat flavivirus or expression of the envelope protein induces apoptotic cell death. Virology. 2001;286:328–335. doi: 10.1006/viro.2001.0980. PubMed DOI
Ghoshal A., Das S., Ghosh S., Mishra M.K., Sharma V., Koli P., Sen E., Basu A. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia. 2007;55:483–496. doi: 10.1002/glia.20474. PubMed DOI
Chen C.J., Ou Y.C., Lin S.Y., Raung S.L., Liao S.L., Lai C.Y., Chen S.Y., Chen J.H. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J. Gen. Virol. 2010;91:1028–1037. doi: 10.1099/vir.0.013565-0. PubMed DOI
Ngono A.E., Young M.P., Bunz M., Xu Z., Hattakam S., Vizcarra E., Regla-Nava J.A., Tang W.W., Yamabhai M., Wen J., et al. CD4+ T cells promote humoral immunity and viral control during Zika virus infection. PLoS Pathog. 2019;15 doi: 10.1371/journal.ppat.1007474. PubMed DOI PMC
Ngono A.E., Vizcarra E.A., Tang W.W., Sheets N., Joo Y., Kim K., Gorman M.J., Diamond M.S., Shresta S. Mapping and Role of the CD8+ T Cell Response During Primary Zika Virus Infection in Mice. Cell Host Microbe. 2017;21:35–46. doi: 10.1016/j.chom.2016.12.010. PubMed DOI PMC
Huang H., Li S., Zhang Y., Han X., Jia B., Liu H., Liu D., Tan S., Wang Q., Bi Y., et al. CD8+ T Cell Immune Response in Immunocompetent Mice during Zika Virus Infection. J. Virol. 2017;91 doi: 10.1128/JVI.00900-17. PubMed DOI PMC
Shrestha B., Samuel M.A., Diamond M.S. CD8+ T Cells Require Perforin to Clear West Nile Virus from Infected Neurons. J. Virol. 2006;80:119–129. doi: 10.1128/JVI.80.1.119-129.2006. PubMed DOI PMC
The Role of IFITM Proteins in Tick-Borne Encephalitis Virus Infection