Immunity to TBEV Related Flaviviruses with Reduced Pathogenicity Protects Mice from Disease but Not from TBEV Entry into the CNS

. 2021 Feb 26 ; 9 (3) : . [epub] 20210226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33652698

Grantová podpora
TBNAGER Bundesministerium für Bildung und Forschung
AvH professorship Alexander von Humboldt-Stiftung
398066876/GRK 2485/1 Deutsche Forschungsgemeinschaft
20-14325s, 20-30500s Grantová Agentura České Republiky

Tick-borne encephalitis virus (TBEV) is a leading cause of vector-borne viral encephalitis with expanding endemic regions across Europe. In this study we tested in mice the efficacy of preinfection with a closely related low-virulent flavivirus, Langat virus (LGTV strain TP21), or a naturally avirulent TBEV strain (TBEV-280) in providing protection against lethal infection with the highly virulent TBEV strain (referred to as TBEV-Hypr). We show that prior infection with TP21 or TBEV-280 is efficient in protecting mice from lethal TBEV-Hypr challenge. Histopathological analysis of brains from nonimmunized mice revealed neuronal TBEV infection and necrosis. Neuroinflammation, gliosis, and neuronal necrosis was however also observed in some of the TP21 and TBEV-280 preinfected mice although at reduced frequency as compared to the nonimmunized TBEV-Hypr infected mice. qPCR detected the presence of viral RNA in the CNS of both TP21 and TBEV-280 immunized mice after TBEV-Hypr challenge, but significantly reduced compared to mock-immunized mice. Our results indicate that although TBEV-Hypr infection is effectively controlled in the periphery upon immunization with low-virulent LGTV or naturally avirulent TBEV 280, it may still enter the CNS of these animals. These findings contribute to our understanding of causes for vaccine failure in individuals vaccinated with TBE vaccines.

Zobrazit více v PubMed

Mandl C.W., Ecker M., Holzmann H., Kunz C., Heinz F.X. Infectious cDNA clones of tick-borne encephalitis virus European subtype prototypic strain Neudoerfl and high virulence strain Hypr. J. Gen. Virol. 1997;78:1049–1057. doi: 10.1099/0022-1317-78-5-1049. PubMed DOI

Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antiviral Res. 2003;57:129–146. doi: 10.1016/S0166-3542(02)00206-1. PubMed DOI

Dai X., Shang G., Lu S., Yang J., Xu J. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg. Microbes Infect. 2018;7:74. doi: 10.1038/s41426-018-0081-6. PubMed DOI PMC

Kovalev S.Y., Mukhacheva T.A. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history. Infect. Genet. Evol. 2017;55:159–165. doi: 10.1016/j.meegid.2017.09.014. PubMed DOI

Blom K., Cuapio A., Sandberg J.T., Varnaite R., Michaelsson J., Bjorkstrom N.K., Sandberg J.K., Klingstrom J., Lindquist L., Gredmark Russ S., et al. Cell-Mediated Immune Responses and Immunopathogenesis of Human Tick-Borne Encephalitis Virus-Infection. Front. Immunol. 2018;9:2174. doi: 10.3389/fimmu.2018.02174. PubMed DOI PMC

Růžek D., Dobler G., Mantke O.D. Tick-borne encephalitis: Pathogenesis and clinical implications. Travel Med. Infect. Dis. 2010;8:223–232. doi: 10.1016/j.tmaid.2010.06.004. PubMed DOI

Heinz F.X., Holzmann H., Essl A., Kundi M. Field effectiveness of vaccination against tick-borne encephalitis. Vaccine. 2007;25:7559–7567. doi: 10.1016/j.vaccine.2007.08.024. PubMed DOI

Kubinski M., Beicht J., Gerlach T., Volz A., Sutter G., Rimmelzwaan G.F. Tick-borne encephalitis virus: A quest for better vaccines against a virus on the rise. Vaccines. 2020;8:451. doi: 10.3390/vaccines8030451. PubMed DOI PMC

Beran J., Lattanzi M., Xie F., Moraschini L., Galgani I. Second five-year follow-up after a booster vaccination against tick-borne encephalitis following different primary vaccination schedules demonstrates at least 10 years antibody persistence. Vaccine. 2019;37:4623–4629. doi: 10.1016/j.vaccine.2017.12.081. PubMed DOI

Minor P.D. Live attenuated vaccines: Historical successes and current challenges. Virology. 2015;479–480:379–392. doi: 10.1016/j.virol.2015.03.032. PubMed DOI

Seligman S.J., Gould E.A. Live flavivirus vaccines: Reasons for caution. Lancet. 2004;363:2073–2075. doi: 10.1016/S0140-6736(04)16459-3. PubMed DOI

Rumyantsev A.A., Murphy B.R., Pletnev A.G. A tick-borne Langat virus mutant that is temperature sensitive and host range restricted in neuroblastoma cells and lacks neuroinvasiveness for immunodeficient mice. J. Virol. 2006;80:1427–1439. doi: 10.1128/JVI.80.3.1427-1439.2006. PubMed DOI PMC

Mitrova E., Mayer V. A live vaccine against tick-borne encephalitis; integrated studies, H. Histopathology of mice peripherally immunized with E5 “14” virus and challenged with virulent virus. Acta Virol. 1975;3:219–228. PubMed

Mayer V., Pogady J., Starek M., Hrbka J. A live vaccine against tick borne encephalitis: Integrated studies. III. Response of man to a single dose of the E5’14’ clone (Langat virus) Acta Virol. 1975;19:229–236. PubMed

Gritsun T.S., Frolova T.V., Pogodina V.V., Lashkevich V.A., Venugopal K., Gould E.A. Nucleotide and deduced amino acid sequence of the envelope gene of the Vasilchenko strain of TBE virus; comparison with other flaviviruses. Virus Res. 1993;27:201–209. doi: 10.1016/0168-1702(93)90082-X. PubMed DOI

Turtle L., Bali T., Buxton G., Chib S., Chan S., Soni M., Hussain M., Isenman H., Fadnis P., Venkataswamy M.M., et al. Human T cell responses to Japanese encephalitis virus in health and disease. J. Exp. Med. 2016;213:1331–1352. doi: 10.1084/jem.20151517. PubMed DOI PMC

Garber C., Soung A., Vollmer L.L., Kanmogne M., Last A., Brown J., Klein R.S. T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses. Nat. Neurosci. 2019;22:1276–1288. doi: 10.1038/s41593-019-0427-y. PubMed DOI PMC

Růžek D., Salát J., Palus M., Gritsun T.S., Gould E.A., Dyková I., Skallová A., Jelínek J., Kopecký J., Grubhoffer L. CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology. 2009;384:1–6. doi: 10.1016/j.virol.2008.11.023. PubMed DOI

Gelpi E., Preusser M., Laggner U., Garzuly F., Holzmann H., Heinz F.X., Budka H. Inflammatory response in human tick-borne encephalitis: Analysis of postmortem brain tissue. J. Neurovirol. 2006;12:322–327. doi: 10.1080/13550280600848746. PubMed DOI

Cornelius A.D.A., Hosseini S., Schreier S., Fritzsch D., Weichert L., Michaelsen-Preusse K., Fendt M., Kröger A. Langat virus infection affects hippocampal neuron morphology and function in mice without disease signs. J. Neuroinflamm. 2020;17:278. doi: 10.1186/s12974-020-01951-w. PubMed DOI PMC

Růžek D., Gritsun T.S., Forrester N.L., Gould E.A., Kopecký J., Golovchenko M., Rudenko N., Grubhoffer L. Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology. 2008;374:249–255. doi: 10.1016/j.virol.2008.01.010. PubMed DOI

Gordon Smith C.E. A virus resembling Russian spring-summer encephalitis virus from an ixodid tick in Malaya. Nature. 1956;178:581–582. doi: 10.1038/178581a0. PubMed DOI

Palus M., Vojtíšková J., Salát J., Kopecký J., Grubhoffer L., Lipoldová M., Demant P., Růžek D. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J. Neuroinflamm. 2013;10:1–13. doi: 10.1186/1742-2094-10-77. PubMed DOI PMC

Schwaiger M., Cassinotti P. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J. Clin. Virol. 2003;27:136–145. doi: 10.1016/S1386-6532(02)00168-3. PubMed DOI

Kurhade C., Zegenhagen L., Weber E., Nair S., Michaelsen-Preusse K., Spanier J., Gekara N.O., Kröger A., Överby A.K. Type I Interferon response in olfactory bulb, the site of tick-borne flavivirus accumulation, is primarily regulated by IPS-1. J. Neuroinflamm. 2016;13 doi: 10.1186/s12974-016-0487-9. PubMed DOI PMC

Attig F., Spitzbarth I., Kalkuhl A., Deschl U., Puff C., Baumgärtner W., Ulrich R. Reactive oxygen species are key mediators of demyelination in canine distemper leukoencephalitis but not in theiler’s murine encephalomyelitis. Int. J. Mol. Sci. 2019;20:3217. doi: 10.3390/ijms20133217. PubMed DOI PMC

Niedrig M., Klockmann U., Lang W., Roeder J., Burk S., DModrow S., Pauli G. Monoclonal antibodies directed against tick-borne encephalitis virus with neutralizing activity in vivo. Acta Virol. 1994;38:141–149. PubMed

Fares M., Cochet-Bernoin M., Gonzalez G., Montero-Menei C.N., Blanchet O., Benchoua A., Boissart C., Lecollinet S., Richardson J., Haddad N., et al. Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. J. Neuroinflamm. 2020;17:76. doi: 10.1186/s12974-020-01756-x. PubMed DOI PMC

Růžek D., Vancová M., Tesařová M., Ahantarig A., Kopecký J., Grubhoffer L. Morphological changes in human neural cells following tick-borne encephalitis virus infection. J. Gen. Virol. 2009;90:1649–1658. doi: 10.1099/vir.0.010058-0. PubMed DOI

Sendi P., Hirzel C., Pfister S., Ackermann-Gäumann R., Grandgirard D., Hewer E., Nirkko A.C. Fatal outcome of European tick-borne encephalitis after vaccine failure. Front. Neurol. 2017;8:119. doi: 10.3389/fneur.2017.00119. PubMed DOI PMC

Andersson C.R., Vene S., Insulander M., Lindquist L., Lundkvist Å., Günther G. Vaccine failures after active immunisation against tick-borne encephalitis. Vaccine. 2010;28:2827–2831. doi: 10.1016/j.vaccine.2010.02.001. PubMed DOI

Potokar M., Korva M., Jorgačevski J., Avšič-Županc T., Zorec R. Tick-Borne Encephalitis Virus Infects Rat Astrocytes but Does Not Affect Their Viability. PLoS One. 2014;9:e86219. doi: 10.1371/journal.pone.0086219. PubMed DOI PMC

Palus M., Bílý T., Elsterová J., Langhansová H., Salát J., Vancová M., Růžek D. Infection and injury of human astrocytes by tick-borne encephalitis virus. J. Gen. Virol. 2014;95:2411–2426. doi: 10.1099/vir.0.068411-0. PubMed DOI

Myint K.S.A., Kipar A., Jarman R.G., Gibbons R.V., Perng G.C., Flanagan B., Mongkolsirichaikul D., Van Gessel Y., Solomon T. Neuropathogenesis of Japanese Encephalitis in a Primate Model. PLoS Negl. Trop. Dis. 2014;8:e2980. doi: 10.1371/journal.pntd.0002980. PubMed DOI PMC

Ho C.-Y., Ames H.M., Tipton A., Vezina G., Liu J.S., Scafidi J., Torii M., Rodriguez F.J., du Plessis A., DeBiasi R.L. Differential neuronal susceptibility and apoptosis in congenital Zika virus infection. Ann. Neurol. 2017;82:121–127. doi: 10.1002/ana.24968. PubMed DOI

Pokorna Formanova P., Palus M., Salat J., Hönig V., Stefanik M., Svoboda P., Ruzek D. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J. Neuroinflamm. 2019;16 doi: 10.1186/s12974-019-1596-z. PubMed DOI PMC

Prajeeth C.K., Kronisch J., Khorooshi R., Knier B., Toft-Hansen H., Gudi V., Floess S., Huehn J., Owens T., Korn T., et al. Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties. J. Neuroinflamm. 2017;14:204. doi: 10.1186/s12974-017-0978-3. PubMed DOI PMC

Detje C.N., Lienenklaus S., Chhatbar C., Spanier J., Prajeeth C.K., Soldner C., Tovey M.G., Schlüter D., Weiss S., Stangel M., et al. Upon Intranasal Vesicular Stomatitis Virus Infection, Astrocytes in the Olfactory Bulb Are Important Interferon Beta Producers That Protect from Lethal Encephalitis. J. Virol. 2015;89:2731–2738. doi: 10.1128/JVI.02044-14. PubMed DOI PMC

Weber E., Finsterbusch K., Lindquist R., Nair S., Lienenklaus S., Gekara N.O., Janik D., Weiss S., Kalinke U., Overby A.K., et al. Type I Interferon Protects Mice from Fatal Neurotropic Infection with Langat Virus by Systemic and Local Antiviral Responses. J. Virol. 2014;88:12202–12212. doi: 10.1128/JVI.01215-14. PubMed DOI PMC

Burda J.E., Sofroniew M.V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 2014;81:229–248. doi: 10.1016/j.neuron.2013.12.034. PubMed DOI PMC

Wang Q., Xin X., Wang T., Wan J., Ou Y., Yang Z., Yu Q., Zhu L., Guo Y., Wu Y., et al. Japanese Encephalitis Virus Induces Apoptosis and Encephalitis by Activating the PERK Pathway. J. Virol. 2019;93 doi: 10.1128/JVI.00887-19. PubMed DOI PMC

Chen Z., Wang X., Ashraf U., Zheng B., Ye J., Zhou D., Zhang H., Song Y., Chen H., Zhao S., et al. Activation of neuronal N-methyl-d-aspartate receptor plays a pivotal role in Japanese encephalitis virus-induced neuronal cell damage. J. Neuroinflamm. 2018;15:238. doi: 10.1186/s12974-018-1280-8. PubMed DOI PMC

Leyssen P., Paeshuyse J., Charlier N., Van Lommel A., Drosten C., De Clercq E., Neyts J. Impact of direct virus-induced neuronal dysfunction and immunological damage on the progression of flavivirus (Modoc) encephalitis in a murine model. J. Neurovirol. 2003;9:69–78. doi: 10.1080/13550280390173319. PubMed DOI

Maximova O.A., Faucette L.J., Ward J.M., Murphy B.R., Pletnev A.G. Cellular inflammatory response to flaviviruses in the central nervous system of a primate host. J. Histochem. Cytochem. 2009;57:973–989. doi: 10.1369/jhc.2009.954180. PubMed DOI PMC

Prikhod’ko G.G., Prikhod’ko E.A., Cohen J.I., Pletnev A.G. Infection with Langat flavivirus or expression of the envelope protein induces apoptotic cell death. Virology. 2001;286:328–335. doi: 10.1006/viro.2001.0980. PubMed DOI

Ghoshal A., Das S., Ghosh S., Mishra M.K., Sharma V., Koli P., Sen E., Basu A. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia. 2007;55:483–496. doi: 10.1002/glia.20474. PubMed DOI

Chen C.J., Ou Y.C., Lin S.Y., Raung S.L., Liao S.L., Lai C.Y., Chen S.Y., Chen J.H. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J. Gen. Virol. 2010;91:1028–1037. doi: 10.1099/vir.0.013565-0. PubMed DOI

Ngono A.E., Young M.P., Bunz M., Xu Z., Hattakam S., Vizcarra E., Regla-Nava J.A., Tang W.W., Yamabhai M., Wen J., et al. CD4+ T cells promote humoral immunity and viral control during Zika virus infection. PLoS Pathog. 2019;15 doi: 10.1371/journal.ppat.1007474. PubMed DOI PMC

Ngono A.E., Vizcarra E.A., Tang W.W., Sheets N., Joo Y., Kim K., Gorman M.J., Diamond M.S., Shresta S. Mapping and Role of the CD8+ T Cell Response During Primary Zika Virus Infection in Mice. Cell Host Microbe. 2017;21:35–46. doi: 10.1016/j.chom.2016.12.010. PubMed DOI PMC

Huang H., Li S., Zhang Y., Han X., Jia B., Liu H., Liu D., Tan S., Wang Q., Bi Y., et al. CD8+ T Cell Immune Response in Immunocompetent Mice during Zika Virus Infection. J. Virol. 2017;91 doi: 10.1128/JVI.00900-17. PubMed DOI PMC

Shrestha B., Samuel M.A., Diamond M.S. CD8+ T Cells Require Perforin to Clear West Nile Virus from Infected Neurons. J. Virol. 2006;80:119–129. doi: 10.1128/JVI.80.1.119-129.2006. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Role of IFITM Proteins in Tick-Borne Encephalitis Virus Infection

. 2022 Jan 12 ; 96 (1) : e0113021. [epub] 20211006

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...