Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23805778
PubMed Central
PMC3700758
DOI
10.1186/1742-2094-10-77
PII: 1742-2094-10-77
Knihovny.cz E-zdroje
- MeSH
- buněčná imunita imunologie MeSH
- centrální nervový systém patologie MeSH
- chemokiny biosyntéza MeSH
- cytokiny biosyntéza MeSH
- genotyp MeSH
- klíšťová encefalitida imunologie patologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- membránové proteiny biosyntéza MeSH
- messenger RNA biosyntéza genetika MeSH
- mozek - chemie fyziologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- náchylnost k nemoci MeSH
- neutralizující protilátky biosyntéza MeSH
- odolnost vůči nemocem MeSH
- plakové testy MeSH
- protilátky virové biosyntéza genetika MeSH
- virová nálož MeSH
- viry klíšťové encefalitidy * MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemokiny MeSH
- cytokiny MeSH
- membránové proteiny MeSH
- messenger RNA MeSH
- neutralizující protilátky MeSH
- protilátky virové MeSH
BACKGROUND: The clinical course of tick-borne encephalitis (TBE), a disease caused by TBE virus, ranges from asymptomatic or mild influenza-like infection to severe debilitating encephalitis or encephalomyelitis. Despite the medical importance of this disease, some crucial steps in the development of encephalitis remain poorly understood. In particular, the basis of the disease severity is largely unknown. METHODS: TBE virus growth, neutralizing antibody response, key cytokine and chemokine mRNA production and changes in mRNA levels of cell surface markers of immunocompetent cells in brain were measured in mice with different susceptibilities to TBE virus infection. RESULTS: An animal model of TBE based on BALB/c-c-STS/A (CcS/Dem) recombinant congenic mouse strains showing different severities of the infection in relation to the host genetic background was developed. After subcutaneous inoculation of TBE virus, BALB/c mice showed medium susceptibility to the infection, STS mice were resistant, and CcS-11 mice were highly susceptible. The resistant STS mice showed lower and delayed viremia, lower virus production in the brain and low cytokine/chemokine mRNA production, but had a strong neutralizing antibody response. The most sensitive strain (CcS-11) failed in production of neutralizing antibodies, but exhibited strong cytokine/chemokine mRNA production in the brain. After intracerebral inoculation, all mouse strains were sensitive to the infection and had similar virus production in the brain, but STS mice survived significantly longer than CcS-11 mice. These two strains also differed in the expression of key cytokines/chemokines, particularly interferon gamma-induced protein 10 (IP-10/CXCL10) and monocyte chemotactic protein-1 (MCP-1/CCL2) in the brain. CONCLUSIONS: Our data indicate that the genetic control is an important factor influencing the clinical course of TBE. High neutralizing antibody response might be crucial for preventing host fatality, but high expression of various cytokines/chemokines during TBE can mediate immunopathology and be associated with more severe course of the infection and increased fatality.
Zobrazit více v PubMed
Růžek D, Gritsun TS, Forrester NL, Gould EA, Kopecký J, Golovchenko M, Rudenko N, Grubhoffer L. Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology. 2008;374:249–255. doi: 10.1016/j.virol.2008.01.010. PubMed DOI
Růžek D, Salát J, Palus M, Gritsun TS, Gould EA, Dyková I, Skallová A, Jelínek J, Kopecký J, Grubhoffer L. CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology. 2009;384:1–6. doi: 10.1016/j.virol.2008.11.023. PubMed DOI
Lipoldová M, Demant P. Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet. 2006;7:294–305. doi: 10.1038/nrg1832. PubMed DOI
Kindberg E, Vene S, Mickiene A, Lundkvist Å, Lindquist L, Svensson L. A functional Toll-like receptor 3 gene (TLR3) may be a risk factor for tick-borne encephalitis virus (TBEV) infection. J Infect Dis. 2011;203:523–528. doi: 10.1093/infdis/jiq082. PubMed DOI PMC
Kindberg E, Mickiene A, Ax C, Akerlind B, Vene S, Lindquist L, Lundkvist A, Svensson L. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis. 2008;197:266–269. doi: 10.1086/524709. PubMed DOI
Barkhash AV, Babenko VN, Kobzev VF, Romashchenko AG, Voevoda MI. Polymorphism in the human 2'-5'-oligoadenylate synthetase genes (OAS), associated with predisposition to severe forms of tick-borne encephalitis, in populations from North Eurasia. Mol Biol (Mosk) 2010;44:985–993. PubMed
Barkhash AV, Perelygin AA, Babenko VN, Brinton MA, Voevoda MI. Single nucleotide polymorphism in the promoter region of the CD209 gene is associated with human predisposition to severe forms of tick-borne encephalitis. Antiviral Res. 2012;93:64–68. doi: 10.1016/j.antiviral.2011.10.017. PubMed DOI
Urosevic N, Shellam GR. Host genetic resistance to Japanese encephalitis group viruses. Curr Top Microbiol Immunol. 2002;267:153–170. doi: 10.1007/978-3-642-59403-8_8. PubMed DOI
Brinton MA, Perelygin AA. Genetic resistance to flaviviruses. Adv Virus Res. 2003;60:43–85. PubMed
Demant P, Hart AA. Recombinant congenic strains–a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics. 1986;24:416–422. doi: 10.1007/BF00377961. PubMed DOI
Banus HA, van Kranen HJ, Mooi FR, Hoebee B, Nagelkerke NJ, Demant P, Kimman TG. Genetic control of Bordetella pertussis infection: identification of susceptibility loci using recombinant congenic strains of mice. Infect Immun. 2005;73:741–747. doi: 10.1128/IAI.73.2.741-747.2005. PubMed DOI PMC
Demant P, Lipoldova M, Svobodova M. Resistance to Leishmania major in mice. Science. 1996;274:1392. doi: 10.1126/science.274.5291.1392. PubMed DOI
Lipoldová M, Svobodová M, Krulová M, Havelková H, Badalová J, Nohýnková E, Holán V, Hart AA, Volf P, Demant P. Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun. 2000;1:200–206. doi: 10.1038/sj.gene.6363660. PubMed DOI
Badalová J, Svobodová M, Havelková H, Vladimirov V, Vojtíšková J, Engová J, Pilcík T, Volf P, Demant P, Lipoldová M. Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice. Genes Immun. 2002;3:187–195. doi: 10.1038/sj.gene.6363838. PubMed DOI
Vladimirov V, Badalová J, Svobodová M, Havelková H, Hart AA, Blazková H, Demant P, Lipoldová M. Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice. Infect Immun. 2003;71:2041–2046. doi: 10.1128/IAI.71.4.2041-2046.2003. PubMed DOI PMC
Havelková H, Badalová J, Svobodová M, Vojtísková J, Kurey I, Vladimirov V, Demant P, Lipoldová M. Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun. 2006;7:220–233. doi: 10.1038/sj.gene.6364290. PubMed DOI
Kurey I, Kobets T, Havelková H, Slapničková M, Quan L, Trtková K, Grekov I, Svobodová M, Stassen AP, Hutson A, Demant P, Lipoldová M. Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection. Immunogenetics. 2009;61:619–633. doi: 10.1007/s00251-009-0392-9. PubMed DOI PMC
Kobets T, Havelková H, Grekov I, Volkova V, Vojtíšková J, Slapničková M, Kurey I, Sohrabi Y, Svobodová M, Demant P, Lipoldová M. Genetics of host response to Leishmania tropica in mice—different control of skin pathology, chemokine reaction, and invasion into spleen and liver. PLoS Negl Trop Dis. 2012;6:e1667. doi: 10.1371/journal.pntd.0001667. PubMed DOI PMC
Fijneman RJ, de Vries SS, Jansen RC, Demant P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nat Genet. 1996;14:465–467. doi: 10.1038/ng1296-465. PubMed DOI
van Wezel T, Stassen AP, Moen CJ, Hart AA, van der Valk MA, Demant P. Gene interaction and single gene effects in colon tumour susceptibility in mice. Nat Genet. 1996;14:468–470. PubMed
Ruivenkamp CA, van Wezel T, Zanon C, Stassen AP, Vlcek C, Csikós T, Klous AM, Tripodis N, Perrakis A, Boerrigter L, Groot PC, Lindeman J, Mooi WJ, Meijjer GA, Scholten G, Dauwerse H, Paces V, van Zandwijk N, van Ommen GJ, Demant P. Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet. 2002;31:295–300. doi: 10.1038/ng903. PubMed DOI
Lipoldová M, Havelková H, Badalová J, Demant P. Novel loci controlling lymphocyte proliferative response to cytokines and their clustering with loci controlling autoimmune reactions, macrophage function and lung tumor susceptibility. Int J Cancer. 2005;114:394–399. doi: 10.1002/ijc.20731. PubMed DOI
Lipoldová M, Havelková H, Badalova J, Vojtísková J, Quan L, Krulova M, Sohrabi Y, Stassen AP, Demant P. Loci controlling lymphocyte production of interferon γ after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility. Cancer Immunol Immunother. 2010;59:203–213. doi: 10.1007/s00262-009-0739-y. PubMed DOI PMC
Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 1995;375:291–298. doi: 10.1038/375291a0. PubMed DOI
De Madrid AT, Porterfield JS. A simple micro-culture method for the study of group B arboviruses. Bull World Health Organ. 1969;40:113–121. PubMed PMC
Růžek D, Salát J, Singh SK, Kopecký J. Breakdown of the blood–brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One. 2011;6:e20472. doi: 10.1371/journal.pone.0020472. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Bárdoš V, Sixl W, Wisidagama CL, Halouzka J, Stünzner D, Hubálek Z, Withalm H. Prevalence of arbovirus antibodies in sera of animals in Sri Lanka. Bull World Health Organ. 1983;61:987–990. PubMed PMC
Clark DC, Brault AC, Hunsperger E. The contribution of rodent models to the pathological assessment of flaviviral infections of the central nervous system. Arch Virol. 2012;157:1423–1440. doi: 10.1007/s00705-012-1337-4. PubMed DOI PMC
Kyuwa S, Yamaguchi K, Toyoda Y, Fujiwara K, Hilgers J. Acute and late disease induced by murine coronavirus, strain JHM, in a series of recombinant inbred strains between BALB/cHeA and STS/A mice. Microb Pathog. 1992;12:95–104. doi: 10.1016/0882-4010(92)90112-2. PubMed DOI PMC
Šíma M, Havelková H, Quan L, Svobodová M, Jarosíková T, Vojtíšková J, Stassen AP, Demant P, Lipoldová M. Genetic control of resistance to Trypanosoma brucei brucei infection in mice. PLoS Negl Trop Dis. 2011;5:e1173. doi: 10.1371/journal.pntd.0001173. PubMed DOI PMC
Lipoldová M, Svobodová M, Havelková H, Krulová M, Badalová J, Nohýnková E, Hart AA, Schlegel D, Volf P, Demant P. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics. 2002;54:174–183. doi: 10.1007/s00251-002-0439-7. PubMed DOI
Brown AN, Kent KA, Bennett CJ, Bernard KA. Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates. Virology. 2007;368:422–430. doi: 10.1016/j.virol.2007.06.033. PubMed DOI PMC
Bréhin AC, Mouriès J, Frenkiel MP, Dadaglio G, Desprès P, Lafon M, Couderc T. Dynamics of immune cell recruitment during West Nile encephalitis and identification of a new CD19 + B220-BST-2+ leukocyte population. J Immunol. 2008;180:6760–6767. PubMed
Maximova OA, Faucette LJ, Ward JM, Murphy BR, Pletnev AG. Cellular inflammatory response to flaviviruses in the central nervous system of a primate host. J Histochem Cytochem. 2009;57:973–989. doi: 10.1369/jhc.2009.954180. PubMed DOI PMC
King NJC, Van Vreden C, Terry RL, Getts DR, Yeung AWS, Teague Getts M, Davison AM, Deffrasnes C, Munoz Erazo L. In: Flavivirus Encephalitis. 1. Růžek D, editor. Rijeka: Intech; 2011. The immunopathogenesis of neurotropic flavivirus infection; pp. 25–52.
Bardina SV, Lim JK. The role of chemokines in the pathogenesis of neurotropic flaviviruses. Immunol Res. 2012;54:121–132. doi: 10.1007/s12026-012-8333-3. PubMed DOI
Diamond MS, Shrestha B, Marri A, Mahan D, Engle M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol. 2003;77:2578–2586. doi: 10.1128/JVI.77.4.2578-2586.2003. PubMed DOI PMC
Biswas SM, Kar S, Singh R, Chakraborty D, Vipat V, Raut CG, Mishra AC, Gore MM, Ghosh D. Immunomodulatory cytokines determine the outcome of Japanese encephalitis virus infection in mice. J Med Virol. 2010;82:304–310. doi: 10.1002/jmv.21688. PubMed DOI
Wang K, Deubel V. Mice with different susceptibility to Japanese encephalitis virus infection show selective neutralizing antibody response and myeloid cell infectivity. PLoS One. 2011;6:e24744. doi: 10.1371/journal.pone.0024744. PubMed DOI PMC
Shirato K, Kimura T, Mizutani T, Kariwa H, Takashima I. Different chemokine expression in lethal and non-lethal murine West Nile virus infection. J Med Virol. 2004;74:507–513. doi: 10.1002/jmv.20205. PubMed DOI
Tigabu B, Juelich T, Holbrook MR. Comparative analysis of immune responses to Russian spring-summer encephalitis and Omsk hemorrhagic fever viruses in mouse models. Virology. 2010;408:57–63. doi: 10.1016/j.virol.2010.08.021. PubMed DOI PMC
Ng LF, Chow A, Sun YJ, Kwek DJ, Lim PL, Dimatatac F, Ng LC, Ooi EE, Choo KH, Her Z, Kourilsky P, Leo YS. IL-1beta, IL-6, and RANTES as biomarkers of Chikungunya severity. PLoS One. 2009;4:e4261. doi: 10.1371/journal.pone.0004261. PubMed DOI PMC
Getts DR, Terry RL, Getts MT, Müller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJ. Ly6c + "inflammatory monocytes" are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med. 2008;205:2319–2337. doi: 10.1084/jem.20080421. PubMed DOI PMC
Sui Y, Stehno-Bittel L, Li S, Loganathan R, Dhillon NK, Pinson D, Nath A, Kolson D, Narayan O, Buch S. CXCL10-induced cell death in neurons: role of calcium dysregulation. Eur J Neurosci. 2006;23:957–964. doi: 10.1111/j.1460-9568.2006.04631.x. PubMed DOI
Zajkowska J, Moniuszko-Malinowska A, Pancewicz SA, Muszyńska-Mazur A, Kondrusik M, Grygorczuk S, Swierzbińska-Pijanowska R, Dunaj J, Czupryna P. Evaluation of CXCL10, CXCL11, CXCL12 and CXCL13 chemokines in serum and cerebrospinal fluid in patients with tick borne encephalitis (TBE) Adv Med Sci. 2011;56:311–317. PubMed
Lepej SZ, Misić-Majerus L, Jeren T, Rode OD, Remenar A, Sporec V, Vince A. Chemokines CXCL10 and CXCL11 in the cerebrospinal fluid of patients with tick-borne encephalitis. Acta Neurol Scand. 2007;115:109–114. doi: 10.1111/j.1600-0404.2006.00726.x. PubMed DOI
Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol. 2005;79:11457–11466. doi: 10.1128/JVI.79.17.11457-11466.2005. PubMed DOI PMC
Sasseville VG, Smith MM, Mackay CR, Pauley DR, Mansfield KG, Ringler DJ, Lackner AA. Chemokine expression in simian immunodeficiency virus-induced AIDS encephalitis. Am J Pathol. 1996;149:1459–1467. PubMed PMC
Westmoreland SV, Rottman JB, Williams KC, Lackner AA, Sasseville VG. Chemokine receptor expression on resident and inflammatory cells in the brain of macaques with simian immunodeficiency virus encephalitis. Am J Pathol. 1998;152:659–665. PubMed PMC
Sui Y, Potula R, Dhillon N, Pinson D, Li S, Nath A, Anderson C, Turchan J, Kolson D, Narayan O, Buch S. Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis. Am J Pathol. 2004;164:1557–1566. doi: 10.1016/S0002-9440(10)63714-5. PubMed DOI PMC
Bender A, Jäger G, Scheuerer W, Feddersen B, Kaiser R, Pfister HW. Two severe cases of tick-borne encephalitis despite complete active vaccination–the significance of neutralizing antibodies. J Neurol. 2004;251:353–354. doi: 10.1007/s00415-004-0329-z. PubMed DOI
Genetic polymorphisms in innate immunity genes influence predisposition to tick-borne encephalitis
History of Arbovirus Research in the Czech Republic
Experimental and Natural Infections of Tick-Borne Encephalitis Virus in Dogs
Gene-specific sex effects on eosinophil infiltration in leishmaniasis