Robust CXCL10/IP-10 and CCL5/RANTES Production Induced by Tick-Borne Encephalitis Virus in Human Brain Pericytes Despite Weak Infection
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Programme EXCELES, ID Project No. LX22N-PO5103
National Institute of Virology and Bacteriology, funded by the European Union-Next Generation EU
20-30500S
The Czech Science Foundation
23-08039S
The Czech Science Foundation
PubMed
39063134
PubMed Central
PMC11276942
DOI
10.3390/ijms25147892
PII: ijms25147892
Knihovny.cz E-zdroje
- Klíčová slova
- CCL5, CXCL10, chemokine, flavivirus, human pericytes, infection, inflammation, tick-borne encephalitis virus,
- MeSH
- chemokin CCL5 * metabolismus MeSH
- chemokin CXCL10 * metabolismus MeSH
- cytokiny metabolismus MeSH
- klíšťová encefalitida * virologie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mozek * virologie metabolismus patologie MeSH
- pericyty * virologie metabolismus MeSH
- replikace viru MeSH
- viry klíšťové encefalitidy * fyziologie patogenita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CCL5 protein, human MeSH Prohlížeč
- chemokin CCL5 * MeSH
- chemokin CXCL10 * MeSH
- CXCL10 protein, human MeSH Prohlížeč
- cytokiny MeSH
Tick-borne encephalitis virus (TBEV) targets the central nervous system (CNS), leading to potentially severe neurological complications. The neurovascular unit plays a fundamental role in the CNS and in the neuroinvasion of TBEV. However, the role of human brain pericytes, a key component of the neurovascular unit, during TBEV infection has not yet been elucidated. In this study, TBEV infection of the primary human brain perivascular pericytes was investigated with highly virulent Hypr strain and mildly virulent Neudoerfl strain. We used Luminex assay to measure cytokines/chemokines and growth factors. Both viral strains showed comparable replication kinetics, peaking at 3 days post infection (dpi). Intracellular viral RNA copies peaked at 6 dpi for Hypr and 3 dpi for Neudoerfl cultures. According to immunofluorescence staining, only small proportion of pericytes were infected (3% for Hypr and 2% for Neudoerfl), and no cytopathic effect was observed in the infected cells. In cell culture supernatants, IL-6 production was detected at 3 dpi, together with slight increases in IL-15 and IL-4, but IP-10, RANTES and MCP-1 were the main chemokines released after TBEV infection. These chemokines play key roles in both immune defense and immunopathology during TBE. This study suggests that pericytes are an important source of these signaling molecules during TBEV infection in the brain.
Faculty of Science University of South Bohemia CZ 37005 Ceske Budejovice Czech Republic
Laboratory of Emerging Viral Infections Veterinary Research Institute CZ 62100 Brno Czech Republic
Zobrazit více v PubMed
Bogovic P., Strle F. Tick-Borne Encephalitis: A Review of Epidemiology, Clinical Characteristics, and Management. World J. Clin. Cases. 2015;3:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC
Bogovič P., Stupica D., Rojko T., Lotrič-Furlan S., Avšič-Županc T., Kastrin A., Lusa L., Strle F. The Long-Term Outcome of Tick-Borne Encephalitis in Central Europe. Ticks Tick-Borne Dis. 2018;9:369–378. doi: 10.1016/j.ttbdis.2017.12.001. PubMed DOI
Persidsky Y., Ramirez S.H., Haorah J., Kanmogne G.D. Blood–Brain Barrier: Structural Components and Function Under Physiologic and Pathologic Conditions. J. Neuroimmune Pharmacol. 2006;1:223–236. doi: 10.1007/s11481-006-9025-3. PubMed DOI
McConnell H.L., Mishra A. Cells of the Blood–Brain Barrier: An Overview of the Neurovascular Unit in Health and Disease. In: Stone N., editor. The Blood-Brain Barrier. Volume 2492. Springer; New York, NY, USA: 2022. pp. 3–24. Methods in Molecular Biology. PubMed PMC
Hirschi K.K., D’Amore P.A. Pericytes in the Microvasculature. Cardiovasc. Res. 1996;32:687–698. doi: 10.1016/S0008-6363(96)00063-6. PubMed DOI
Armulik A., Genové G., Mäe M., Nisancioglu M.H., Wallgard E., Niaudet C., He L., Norlin J., Lindblom P., Strittmatter K., et al. Pericytes Regulate the Blood–Brain Barrier. Nature. 2010;468:557–561. doi: 10.1038/nature09522. PubMed DOI
Palus M., Vancova M., Sirmarova J., Elsterova J., Perner J., Ruzek D. Tick-Borne Encephalitis Virus Infects Human Brain Microvascular Endothelial Cells without Compromising Blood-Brain Barrier Integrity. Virology. 2017;507:110–122. doi: 10.1016/j.virol.2017.04.012. PubMed DOI
Palus M., Bílý T., Elsterová J., Langhansová H., Salát J., Vancová M., Růžek D. Infection and Injury of Human Astrocytes by Tick-Borne Encephalitis Virus. J. Gen. Virol. 2014;95:2411–2426. doi: 10.1099/vir.0.068411-0. PubMed DOI
Fares M., Cochet-Bernoin M., Gonzalez G., Montero-Menei C.N., Blanchet O., Benchoua A., Boissart C., Lecollinet S., Richardson J., Haddad N., et al. Pathological Modeling of TBEV Infection Reveals Differential Innate Immune Responses in Human Neurons and Astrocytes That Correlate with Their Susceptibility to Infection. J. Neuroinflamm. 2020;17:76. doi: 10.1186/s12974-020-01756-x. PubMed DOI PMC
Potokar M., Korva M., Jorgačevski J., Avšič-Županc T., Zorec R. Tick-Borne Encephalitis Virus Infects Rat Astrocytes but Does Not Affect Their Viability. PLoS ONE. 2014;9:e86219. doi: 10.1371/journal.pone.0086219. PubMed DOI PMC
Pranclova V., Nedvedova L., Kotounova E., Vaclav H., Dvorakova M., Davidkova M., Bily T., Vancova M., Ruzek D., Palus M. Unraveling the Role of Human Microglia in Tick-Borne Encephalitis Virus Infection: Insights into Neuroinflammation and Viral Pathogenesis. Microbes Infect. 2024:105383. doi: 10.1016/j.micinf.2024.105383. PubMed DOI
Bílý T., Palus M., Eyer L., Elsterová J., Vancová M., Růžek D. Electron Tomography Analysis of Tick-Borne Encephalitis Virus Infection in Human Neurons. Sci. Rep. 2015;5:10745. doi: 10.1038/srep10745. PubMed DOI PMC
Pokorna Formanova P., Palus M., Salat J., Hönig V., Stefanik M., Svoboda P., Ruzek D. Changes in Cytokine and Chemokine Profiles in Mouse Serum and Brain, and in Human Neural Cells, upon Tick-Borne Encephalitis Virus Infection. J. Neuroinflamm. 2019;16:205. doi: 10.1186/s12974-019-1596-z. PubMed DOI PMC
Butsabong T., Felippe M., Campagnolo P., Maringer K. The Emerging Role of Perivascular Cells (Pericytes) in Viral Pathogenesis. J. Gen. Virol. 2021;102:1634. doi: 10.1099/jgv.0.001634. PubMed DOI PMC
Chang C.-Y., Li J.-R., Ou Y.-C., Lin S.-Y., Wang Y.-Y., Chen W.-Y., Hu Y.-H., Lai C.-Y., Chang C.-J., Chen C.-J. Interplay of Inflammatory Gene Expression in Pericytes Following Japanese Encephalitis Virus Infection. Brain. Behav. Immun. 2017;66:230–243. doi: 10.1016/j.bbi.2017.07.003. PubMed DOI
Kim J., Alejandro B., Hetman M., Hattab E.M., Joiner J., Schroten H., Ishikawa H., Chung D.-H. Zika Virus Infects Pericytes in the Choroid Plexus and Enters the Central Nervous System through the Blood-Cerebrospinal Fluid Barrier. PLoS Pathog. 2020;16:e1008204. doi: 10.1371/journal.ppat.1008204. PubMed DOI PMC
Wallner G., Mandl C.W., Ecker M., Holzmann H., Stiasny K., Kunz C., Heinz F.X. Characterization and Complete Genome Sequences of High- and Low-Virulence Variants of Tick-Borne Encephalitis Virus. J. Gen. Virol. 1996;77:1035–1042. doi: 10.1099/0022-1317-77-5-1035. PubMed DOI
Hill J., Rom S., Ramirez S.H., Persidsky Y. Emerging Roles of Pericytes in the Regulation of the Neurovascular Unit in Health and Disease. J. Neuroimmune Pharmacol. 2014;9:591–605. doi: 10.1007/s11481-014-9557-x. PubMed DOI PMC
Bergers G., Song S. The Role of Pericytes in Blood-Vessel Formation and Maintenance. Neuro-Oncology. 2005;7:452–464. doi: 10.1215/S1152851705000232. PubMed DOI PMC
Lindqvist R., Rosendal E., Weber E., Asghar N., Schreier S., Lenman A., Johansson M., Dobler G., Bestehorn M., Kröger A., et al. The Envelope Protein of Tick-Borne Encephalitis Virus Influences Neuron Entry, Pathogenicity, and Vaccine Protection. J. Neuroinflamm. 2020;17:284. doi: 10.1186/s12974-020-01943-w. PubMed DOI PMC
Bocci M., Oudenaarden C., Sàenz-Sardà X., Simrén J., Edén A., Sjölund J., Möller C., Gisslén M., Zetterberg H., Englund E., et al. Infection of Brain Pericytes Underlying Neuropathology of COVID-19 Patients. Int. J. Mol. Sci. 2021;22:11622. doi: 10.3390/ijms222111622. PubMed DOI PMC
Alcendor D.J., Charest A.M., Zhu W.Q., Vigil H.E., Knobel S.M. Infection and Upregulation of Proinflammatory Cytokines in Human Brain Vascular Pericytes by Human Cytomegalovirus. J. Neuroinflamm. 2012;9:607. doi: 10.1186/1742-2094-9-95. PubMed DOI PMC
Nakagawa S., Castro V., Toborek M. Infection of Human Pericytes by HIV-1 Disrupts the Integrity of the Blood-Brain Barrier. J. Cell. Mol. Med. 2012;16:2950–2957. doi: 10.1111/j.1582-4934.2012.01622.x. PubMed DOI PMC
Cheung Y.P., Mastrullo V., Maselli D., Butsabong T., Madeddu P., Maringer K., Campagnolo P. A Critical Role for Perivascular Cells in Amplifying Vascular Leakage Induced by Dengue Virus Nonstructural Protein 1. mSphere. 2020;5:e00258-20. doi: 10.1128/mSphere.00258-20. PubMed DOI PMC
Conde J.N., Sanchez-Vicente S., Saladino N., Gorbunova E.E., Schutt W.R., Mladinich M.C., Himmler G.E., Benach J., Kim H.K., Mackow E.R. Powassan Viruses Spread Cell to Cell during Direct Isolation from Ixodes Ticks and Persistently Infect Human Brain Endothelial Cells and Pericytes. J. Virol. 2022;96:e01682-21. doi: 10.1128/JVI.01682-21. PubMed DOI PMC
Gaceb A., Paul G. Pericyte Secretome. In: Birbrair A., editor. Pericyte Biology—Novel Concepts. Volume 1109. Springer International Publishing; Cham, Germany: 2018. pp. 139–163. Advances in Experimental Medicine and Biology. PubMed
Dalrymple N.A., Mackow E.R. Roles for Endothelial Cells in Dengue Virus Infection. Adv. Virol. 2012;2012:840654. doi: 10.1155/2012/840654. PubMed DOI PMC
Mladinich M.C., Schwedes J., Mackow E.R. Zika Virus Persistently Infects and Is Basolaterally Released from Primary Human Brain Microvascular Endothelial Cells. mBio. 2017;8:e00952-17. doi: 10.1128/mBio.00952-17. PubMed DOI PMC
Lubick K.J., Robertson S.J., McNally K.L., Freedman B.A., Rasmussen A.L., Taylor R.T., Walts A.D., Tsuruda S., Sakai M., Ishizuka M., et al. Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression. Cell Host Microbe. 2015;18:61–74. doi: 10.1016/j.chom.2015.06.007. PubMed DOI PMC
Palus M., Vojtíšková J., Salát J., Kopecký J., Grubhoffer L., Lipoldová M., Demant P., Růžek D. Mice with Different Susceptibility to Tick-Borne Encephalitis Virus Infection Show Selective Neutralizing Antibody Response and Inflammatory Reaction in the Central Nervous System. J. Neuroinflamm. 2013;10:847. doi: 10.1186/1742-2094-10-77. PubMed DOI PMC
Lepej S.Ž., Mišić-Majerus L., Jeren T., Rode O.D., Remenar A., Šporec V., Vince A. Chemokines CXCL10 and CXCL11 in the Cerebrospinal Fluid of Patients with Tick-Borne Encephalitis. Acta Neurol. Scand. 2007;115:109–114. doi: 10.1111/j.1600-0404.2006.00726.x. PubMed DOI
Zajkowska J., Moniuszko-Malinowska A., Pancewicz S., Muszyńska-Mazur A., Kondrusik M., Grygorczuk S., Świerzbińska-Pijanowska R., Dunaj J., Czupryna P. Evaluation of CXCL10, CXCL11, CXCL12 and CXCL13 Chemokines in Serum and Cerebrospinal Fluid in Patients with Tick Borne Encephalitis (TBE) Adv. Med. Sci. 2011;56:311–317. doi: 10.2478/v10039-011-0033-z. PubMed DOI
Grygorczuk S., Zajkowska J., Swierzbińska R., Pancewicz S., Kondrusik M., Hermanowska-Szpakowicz T. Concentration of the beta-chemokine CCL5 (RANTES) in cerebrospinal fluid in patients with tick-borne encephalitis. Neurol. Neurochir. Pol. 2006;40:106–111. PubMed
Zhang X., Zheng Z., Liu X., Shu B., Mao P., Bai B., Hu Q., Luo M., Ma X., Cui Z., et al. Tick-Borne Encephalitis Virus Induces Chemokine RANTES Expression via Activation of IRF-3 Pathway. J. Neuroinflamm. 2016;13:209. doi: 10.1186/s12974-016-0665-9. PubMed DOI PMC
Zheng Z., Yang J., Jiang X., Liu Y., Zhang X., Li M., Zhang M., Fu M., Hu K., Wang H., et al. Tick-Borne Encephalitis Virus Nonstructural Protein NS5 Induces RANTES Expression Dependent on the RNA-Dependent RNA Polymerase Activity. J. Immunol. 2018;201:53–68. doi: 10.4049/jimmunol.1701507. PubMed DOI
Mladinich M.C., Conde J.N., Schutt W.R., Sohn S.-Y., Mackow E.R. Blockade of Autocrine CCL5 Responses Inhibits Zika Virus Persistence and Spread in Human Brain Microvascular Endothelial Cells. mBio. 2021;12:10–1128. doi: 10.1128/mBio.01962-21. PubMed DOI PMC
McKimmie C., Michlmayr D. Role of CXCL10 in Central Nervous System Inflammation. Int. J. Interferon Cytokine Mediat. Res. 2014;1:1–18. doi: 10.2147/IJICMR.S35953. DOI
Müller M., Carter S., Hofer M.J., Campbell I.L. Review: The Chemokine Receptor CXCR3 and Its Ligands CXCL9, CXCL10 and CXCL11 in Neuroimmunity—A Tale of Conflict and Conundrum: CXCR3 and Its Ligands in CNS Inflammation. Neuropathol. Appl. Neurobiol. 2010;36:368–387. doi: 10.1111/j.1365-2990.2010.01089.x. PubMed DOI
Grygorczuk S., Osada J., Toczyłowski K., Sulik A., Czupryna P., Moniuszko-Malinowska A., Kondrusik M., Świerzbińska R., Dunaj J., Pancewicz S., et al. The Lymphocyte Populations and Their Migration into the Central Nervous System in Tick-Borne Encephalitis. Ticks Tick-Borne Dis. 2020;11:101467. doi: 10.1016/j.ttbdis.2020.101467. PubMed DOI
Bogovič P., Lusa L., Korva M., Pavletič M., Resman Rus K., Lotrič-Furlan S., Avšič-Županc T., Strle K., Strle F. Inflammatory Immune Responses in the Pathogenesis of Tick-Borne Encephalitis. J. Clin. Med. 2019;8:731. doi: 10.3390/jcm8050731. PubMed DOI PMC
Atrasheuskaya A.V., Fredeking T.M., Ignatyev G.M. Changes in Immune Parameters and Their Correction in Human Cases of Tick-Borne Encephalitis. Clin. Exp. Immunol. 2003;131:148–154. doi: 10.1046/j.1365-2249.2003.02050.x. PubMed DOI PMC
Auroni T.T., Arora K., Natekar J.P., Pathak H., Elsharkawy A., Kumar M. The Critical Role of Interleukin-6 in Protection against Neurotropic Flavivirus Infection. Front. Cell. Infect. Microbiol. 2023;13:1275823. doi: 10.3389/fcimb.2023.1275823. PubMed DOI PMC
Gagnon J., Ramanathan S., Leblanc C., Cloutier A., McDonald P.P., Ilangumaran S. IL-6, in Synergy with IL-7 or IL-15, Stimulates TCR-Independent Proliferation and Functional Differentiation of CD8+ T Lymphocytes. J. Immunol. 2008;180:7958–7968. doi: 10.4049/jimmunol.180.12.7958. PubMed DOI
de Madrid A.T., Porterfield J.S. A Simple Micro-Culture Method for the Study of Group B Arboviruses. Bull. World Health Organ. 1969;40:113–121. PubMed PMC
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Enhanced RNAi does not provide efficient innate antiviral immunity in mice