Robust CXCL10/IP-10 and CCL5/RANTES Production Induced by Tick-Borne Encephalitis Virus in Human Brain Pericytes Despite Weak Infection

. 2024 Jul 18 ; 25 (14) : . [epub] 20240718

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39063134

Grantová podpora
Programme EXCELES, ID Project No. LX22N-PO5103 National Institute of Virology and Bacteriology, funded by the European Union-Next Generation EU
20-30500S The Czech Science Foundation
23-08039S The Czech Science Foundation

Tick-borne encephalitis virus (TBEV) targets the central nervous system (CNS), leading to potentially severe neurological complications. The neurovascular unit plays a fundamental role in the CNS and in the neuroinvasion of TBEV. However, the role of human brain pericytes, a key component of the neurovascular unit, during TBEV infection has not yet been elucidated. In this study, TBEV infection of the primary human brain perivascular pericytes was investigated with highly virulent Hypr strain and mildly virulent Neudoerfl strain. We used Luminex assay to measure cytokines/chemokines and growth factors. Both viral strains showed comparable replication kinetics, peaking at 3 days post infection (dpi). Intracellular viral RNA copies peaked at 6 dpi for Hypr and 3 dpi for Neudoerfl cultures. According to immunofluorescence staining, only small proportion of pericytes were infected (3% for Hypr and 2% for Neudoerfl), and no cytopathic effect was observed in the infected cells. In cell culture supernatants, IL-6 production was detected at 3 dpi, together with slight increases in IL-15 and IL-4, but IP-10, RANTES and MCP-1 were the main chemokines released after TBEV infection. These chemokines play key roles in both immune defense and immunopathology during TBE. This study suggests that pericytes are an important source of these signaling molecules during TBEV infection in the brain.

Zobrazit více v PubMed

Bogovic P., Strle F. Tick-Borne Encephalitis: A Review of Epidemiology, Clinical Characteristics, and Management. World J. Clin. Cases. 2015;3:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC

Bogovič P., Stupica D., Rojko T., Lotrič-Furlan S., Avšič-Županc T., Kastrin A., Lusa L., Strle F. The Long-Term Outcome of Tick-Borne Encephalitis in Central Europe. Ticks Tick-Borne Dis. 2018;9:369–378. doi: 10.1016/j.ttbdis.2017.12.001. PubMed DOI

Persidsky Y., Ramirez S.H., Haorah J., Kanmogne G.D. Blood–Brain Barrier: Structural Components and Function Under Physiologic and Pathologic Conditions. J. Neuroimmune Pharmacol. 2006;1:223–236. doi: 10.1007/s11481-006-9025-3. PubMed DOI

McConnell H.L., Mishra A. Cells of the Blood–Brain Barrier: An Overview of the Neurovascular Unit in Health and Disease. In: Stone N., editor. The Blood-Brain Barrier. Volume 2492. Springer; New York, NY, USA: 2022. pp. 3–24. Methods in Molecular Biology. PubMed PMC

Hirschi K.K., D’Amore P.A. Pericytes in the Microvasculature. Cardiovasc. Res. 1996;32:687–698. doi: 10.1016/S0008-6363(96)00063-6. PubMed DOI

Armulik A., Genové G., Mäe M., Nisancioglu M.H., Wallgard E., Niaudet C., He L., Norlin J., Lindblom P., Strittmatter K., et al. Pericytes Regulate the Blood–Brain Barrier. Nature. 2010;468:557–561. doi: 10.1038/nature09522. PubMed DOI

Palus M., Vancova M., Sirmarova J., Elsterova J., Perner J., Ruzek D. Tick-Borne Encephalitis Virus Infects Human Brain Microvascular Endothelial Cells without Compromising Blood-Brain Barrier Integrity. Virology. 2017;507:110–122. doi: 10.1016/j.virol.2017.04.012. PubMed DOI

Palus M., Bílý T., Elsterová J., Langhansová H., Salát J., Vancová M., Růžek D. Infection and Injury of Human Astrocytes by Tick-Borne Encephalitis Virus. J. Gen. Virol. 2014;95:2411–2426. doi: 10.1099/vir.0.068411-0. PubMed DOI

Fares M., Cochet-Bernoin M., Gonzalez G., Montero-Menei C.N., Blanchet O., Benchoua A., Boissart C., Lecollinet S., Richardson J., Haddad N., et al. Pathological Modeling of TBEV Infection Reveals Differential Innate Immune Responses in Human Neurons and Astrocytes That Correlate with Their Susceptibility to Infection. J. Neuroinflamm. 2020;17:76. doi: 10.1186/s12974-020-01756-x. PubMed DOI PMC

Potokar M., Korva M., Jorgačevski J., Avšič-Županc T., Zorec R. Tick-Borne Encephalitis Virus Infects Rat Astrocytes but Does Not Affect Their Viability. PLoS ONE. 2014;9:e86219. doi: 10.1371/journal.pone.0086219. PubMed DOI PMC

Pranclova V., Nedvedova L., Kotounova E., Vaclav H., Dvorakova M., Davidkova M., Bily T., Vancova M., Ruzek D., Palus M. Unraveling the Role of Human Microglia in Tick-Borne Encephalitis Virus Infection: Insights into Neuroinflammation and Viral Pathogenesis. Microbes Infect. 2024:105383. doi: 10.1016/j.micinf.2024.105383. PubMed DOI

Bílý T., Palus M., Eyer L., Elsterová J., Vancová M., Růžek D. Electron Tomography Analysis of Tick-Borne Encephalitis Virus Infection in Human Neurons. Sci. Rep. 2015;5:10745. doi: 10.1038/srep10745. PubMed DOI PMC

Pokorna Formanova P., Palus M., Salat J., Hönig V., Stefanik M., Svoboda P., Ruzek D. Changes in Cytokine and Chemokine Profiles in Mouse Serum and Brain, and in Human Neural Cells, upon Tick-Borne Encephalitis Virus Infection. J. Neuroinflamm. 2019;16:205. doi: 10.1186/s12974-019-1596-z. PubMed DOI PMC

Butsabong T., Felippe M., Campagnolo P., Maringer K. The Emerging Role of Perivascular Cells (Pericytes) in Viral Pathogenesis. J. Gen. Virol. 2021;102:1634. doi: 10.1099/jgv.0.001634. PubMed DOI PMC

Chang C.-Y., Li J.-R., Ou Y.-C., Lin S.-Y., Wang Y.-Y., Chen W.-Y., Hu Y.-H., Lai C.-Y., Chang C.-J., Chen C.-J. Interplay of Inflammatory Gene Expression in Pericytes Following Japanese Encephalitis Virus Infection. Brain. Behav. Immun. 2017;66:230–243. doi: 10.1016/j.bbi.2017.07.003. PubMed DOI

Kim J., Alejandro B., Hetman M., Hattab E.M., Joiner J., Schroten H., Ishikawa H., Chung D.-H. Zika Virus Infects Pericytes in the Choroid Plexus and Enters the Central Nervous System through the Blood-Cerebrospinal Fluid Barrier. PLoS Pathog. 2020;16:e1008204. doi: 10.1371/journal.ppat.1008204. PubMed DOI PMC

Wallner G., Mandl C.W., Ecker M., Holzmann H., Stiasny K., Kunz C., Heinz F.X. Characterization and Complete Genome Sequences of High- and Low-Virulence Variants of Tick-Borne Encephalitis Virus. J. Gen. Virol. 1996;77:1035–1042. doi: 10.1099/0022-1317-77-5-1035. PubMed DOI

Hill J., Rom S., Ramirez S.H., Persidsky Y. Emerging Roles of Pericytes in the Regulation of the Neurovascular Unit in Health and Disease. J. Neuroimmune Pharmacol. 2014;9:591–605. doi: 10.1007/s11481-014-9557-x. PubMed DOI PMC

Bergers G., Song S. The Role of Pericytes in Blood-Vessel Formation and Maintenance. Neuro-Oncology. 2005;7:452–464. doi: 10.1215/S1152851705000232. PubMed DOI PMC

Lindqvist R., Rosendal E., Weber E., Asghar N., Schreier S., Lenman A., Johansson M., Dobler G., Bestehorn M., Kröger A., et al. The Envelope Protein of Tick-Borne Encephalitis Virus Influences Neuron Entry, Pathogenicity, and Vaccine Protection. J. Neuroinflamm. 2020;17:284. doi: 10.1186/s12974-020-01943-w. PubMed DOI PMC

Bocci M., Oudenaarden C., Sàenz-Sardà X., Simrén J., Edén A., Sjölund J., Möller C., Gisslén M., Zetterberg H., Englund E., et al. Infection of Brain Pericytes Underlying Neuropathology of COVID-19 Patients. Int. J. Mol. Sci. 2021;22:11622. doi: 10.3390/ijms222111622. PubMed DOI PMC

Alcendor D.J., Charest A.M., Zhu W.Q., Vigil H.E., Knobel S.M. Infection and Upregulation of Proinflammatory Cytokines in Human Brain Vascular Pericytes by Human Cytomegalovirus. J. Neuroinflamm. 2012;9:607. doi: 10.1186/1742-2094-9-95. PubMed DOI PMC

Nakagawa S., Castro V., Toborek M. Infection of Human Pericytes by HIV-1 Disrupts the Integrity of the Blood-Brain Barrier. J. Cell. Mol. Med. 2012;16:2950–2957. doi: 10.1111/j.1582-4934.2012.01622.x. PubMed DOI PMC

Cheung Y.P., Mastrullo V., Maselli D., Butsabong T., Madeddu P., Maringer K., Campagnolo P. A Critical Role for Perivascular Cells in Amplifying Vascular Leakage Induced by Dengue Virus Nonstructural Protein 1. mSphere. 2020;5:e00258-20. doi: 10.1128/mSphere.00258-20. PubMed DOI PMC

Conde J.N., Sanchez-Vicente S., Saladino N., Gorbunova E.E., Schutt W.R., Mladinich M.C., Himmler G.E., Benach J., Kim H.K., Mackow E.R. Powassan Viruses Spread Cell to Cell during Direct Isolation from Ixodes Ticks and Persistently Infect Human Brain Endothelial Cells and Pericytes. J. Virol. 2022;96:e01682-21. doi: 10.1128/JVI.01682-21. PubMed DOI PMC

Gaceb A., Paul G. Pericyte Secretome. In: Birbrair A., editor. Pericyte Biology—Novel Concepts. Volume 1109. Springer International Publishing; Cham, Germany: 2018. pp. 139–163. Advances in Experimental Medicine and Biology. PubMed

Dalrymple N.A., Mackow E.R. Roles for Endothelial Cells in Dengue Virus Infection. Adv. Virol. 2012;2012:840654. doi: 10.1155/2012/840654. PubMed DOI PMC

Mladinich M.C., Schwedes J., Mackow E.R. Zika Virus Persistently Infects and Is Basolaterally Released from Primary Human Brain Microvascular Endothelial Cells. mBio. 2017;8:e00952-17. doi: 10.1128/mBio.00952-17. PubMed DOI PMC

Lubick K.J., Robertson S.J., McNally K.L., Freedman B.A., Rasmussen A.L., Taylor R.T., Walts A.D., Tsuruda S., Sakai M., Ishizuka M., et al. Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression. Cell Host Microbe. 2015;18:61–74. doi: 10.1016/j.chom.2015.06.007. PubMed DOI PMC

Palus M., Vojtíšková J., Salát J., Kopecký J., Grubhoffer L., Lipoldová M., Demant P., Růžek D. Mice with Different Susceptibility to Tick-Borne Encephalitis Virus Infection Show Selective Neutralizing Antibody Response and Inflammatory Reaction in the Central Nervous System. J. Neuroinflamm. 2013;10:847. doi: 10.1186/1742-2094-10-77. PubMed DOI PMC

Lepej S.Ž., Mišić-Majerus L., Jeren T., Rode O.D., Remenar A., Šporec V., Vince A. Chemokines CXCL10 and CXCL11 in the Cerebrospinal Fluid of Patients with Tick-Borne Encephalitis. Acta Neurol. Scand. 2007;115:109–114. doi: 10.1111/j.1600-0404.2006.00726.x. PubMed DOI

Zajkowska J., Moniuszko-Malinowska A., Pancewicz S., Muszyńska-Mazur A., Kondrusik M., Grygorczuk S., Świerzbińska-Pijanowska R., Dunaj J., Czupryna P. Evaluation of CXCL10, CXCL11, CXCL12 and CXCL13 Chemokines in Serum and Cerebrospinal Fluid in Patients with Tick Borne Encephalitis (TBE) Adv. Med. Sci. 2011;56:311–317. doi: 10.2478/v10039-011-0033-z. PubMed DOI

Grygorczuk S., Zajkowska J., Swierzbińska R., Pancewicz S., Kondrusik M., Hermanowska-Szpakowicz T. Concentration of the beta-chemokine CCL5 (RANTES) in cerebrospinal fluid in patients with tick-borne encephalitis. Neurol. Neurochir. Pol. 2006;40:106–111. PubMed

Zhang X., Zheng Z., Liu X., Shu B., Mao P., Bai B., Hu Q., Luo M., Ma X., Cui Z., et al. Tick-Borne Encephalitis Virus Induces Chemokine RANTES Expression via Activation of IRF-3 Pathway. J. Neuroinflamm. 2016;13:209. doi: 10.1186/s12974-016-0665-9. PubMed DOI PMC

Zheng Z., Yang J., Jiang X., Liu Y., Zhang X., Li M., Zhang M., Fu M., Hu K., Wang H., et al. Tick-Borne Encephalitis Virus Nonstructural Protein NS5 Induces RANTES Expression Dependent on the RNA-Dependent RNA Polymerase Activity. J. Immunol. 2018;201:53–68. doi: 10.4049/jimmunol.1701507. PubMed DOI

Mladinich M.C., Conde J.N., Schutt W.R., Sohn S.-Y., Mackow E.R. Blockade of Autocrine CCL5 Responses Inhibits Zika Virus Persistence and Spread in Human Brain Microvascular Endothelial Cells. mBio. 2021;12:10–1128. doi: 10.1128/mBio.01962-21. PubMed DOI PMC

McKimmie C., Michlmayr D. Role of CXCL10 in Central Nervous System Inflammation. Int. J. Interferon Cytokine Mediat. Res. 2014;1:1–18. doi: 10.2147/IJICMR.S35953. DOI

Müller M., Carter S., Hofer M.J., Campbell I.L. Review: The Chemokine Receptor CXCR3 and Its Ligands CXCL9, CXCL10 and CXCL11 in Neuroimmunity—A Tale of Conflict and Conundrum: CXCR3 and Its Ligands in CNS Inflammation. Neuropathol. Appl. Neurobiol. 2010;36:368–387. doi: 10.1111/j.1365-2990.2010.01089.x. PubMed DOI

Grygorczuk S., Osada J., Toczyłowski K., Sulik A., Czupryna P., Moniuszko-Malinowska A., Kondrusik M., Świerzbińska R., Dunaj J., Pancewicz S., et al. The Lymphocyte Populations and Their Migration into the Central Nervous System in Tick-Borne Encephalitis. Ticks Tick-Borne Dis. 2020;11:101467. doi: 10.1016/j.ttbdis.2020.101467. PubMed DOI

Bogovič P., Lusa L., Korva M., Pavletič M., Resman Rus K., Lotrič-Furlan S., Avšič-Županc T., Strle K., Strle F. Inflammatory Immune Responses in the Pathogenesis of Tick-Borne Encephalitis. J. Clin. Med. 2019;8:731. doi: 10.3390/jcm8050731. PubMed DOI PMC

Atrasheuskaya A.V., Fredeking T.M., Ignatyev G.M. Changes in Immune Parameters and Their Correction in Human Cases of Tick-Borne Encephalitis. Clin. Exp. Immunol. 2003;131:148–154. doi: 10.1046/j.1365-2249.2003.02050.x. PubMed DOI PMC

Auroni T.T., Arora K., Natekar J.P., Pathak H., Elsharkawy A., Kumar M. The Critical Role of Interleukin-6 in Protection against Neurotropic Flavivirus Infection. Front. Cell. Infect. Microbiol. 2023;13:1275823. doi: 10.3389/fcimb.2023.1275823. PubMed DOI PMC

Gagnon J., Ramanathan S., Leblanc C., Cloutier A., McDonald P.P., Ilangumaran S. IL-6, in Synergy with IL-7 or IL-15, Stimulates TCR-Independent Proliferation and Functional Differentiation of CD8+ T Lymphocytes. J. Immunol. 2008;180:7958–7968. doi: 10.4049/jimmunol.180.12.7958. PubMed DOI

de Madrid A.T., Porterfield J.S. A Simple Micro-Culture Method for the Study of Group B Arboviruses. Bull. World Health Organ. 1969;40:113–121. PubMed PMC

Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enhanced RNAi does not provide efficient innate antiviral immunity in mice

. 2025 Jan 07 ; 53 (1) : .

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...