Electron Tomography Analysis of Tick-Borne Encephalitis Virus Infection in Human Neurons
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26073783
PubMed Central
PMC4466586
DOI
10.1038/srep10745
PII: srep10745
Knihovny.cz E-zdroje
- MeSH
- autofagie účinky léků genetika MeSH
- benzylaminy farmakologie MeSH
- chinazoliny farmakologie MeSH
- endoplazmatické retikulum účinky léků ultrastruktura virologie MeSH
- lidé MeSH
- mikrotubuly účinky léků ultrastruktura virologie MeSH
- nádorové buněčné linie MeSH
- neurony účinky léků ultrastruktura virologie MeSH
- nokodazol farmakologie MeSH
- primární buněčná kultura MeSH
- replikace viru účinky léků MeSH
- sirolimus farmakologie MeSH
- tomografie elektronová MeSH
- virion účinky léků růst a vývoj ultrastruktura MeSH
- viry klíšťové encefalitidy účinky léků růst a vývoj ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzylaminy MeSH
- chinazoliny MeSH
- nokodazol MeSH
- sirolimus MeSH
- spautin-1 MeSH Prohlížeč
Tick-borne encephalitis virus (TBEV) causes serious, potentially fatal neurological infections that affect humans in endemic regions of Europe and Asia. Neurons are the primary target for TBEV infection in the central nervous system. However, knowledge about this viral infection and virus-induced neuronal injury is fragmental. Here, we directly examined the pathology that occurs after TBEV infection in human primary neurons. We exploited the advantages of advanced high-pressure freezing and freeze-substitution techniques to achieve optimal preservation of infected cell architecture. Electron tomographic (ET) reconstructions elucidated high-resolution 3D images of the proliferating endoplasmic reticulum, and individual tubule-like structures of different diameters in the endoplasmic reticulum cisternae of single cells. ET revealed direct connections between the tubule-like structures and viral particles in the endoplasmic reticulum. Furthermore, ET showed connections between cellular microtubules and vacuoles that harbored the TBEV virions in neuronal extensions. This study was the first to characterize the 3D topographical organization of membranous whorls and autophagic vacuoles in TBEV-infected human neurons. The functional importance of autophagy during TBEV replication was studied in human neuroblastoma cells; stimulation of autophagy resulted in significantly increased dose-dependent TBEV production, whereas the inhibition of autophagy showed a profound, dose-dependent decrease of the yield of infectious virus.
Zobrazit více v PubMed
Mansfield K. L. et al. Tick-borne encephalitis virus - a review of an emerging zoonosis. J. Gen. Virol. 90, 1781–94 (2009). PubMed
Růžek D., Dobler G., & Donoso Mantke O. Tick-borne encephalitis: pathogenesis and clinical implications. Travel Med. Infect. Dis. 8, 223–32 (2010). PubMed
Růžek D., Salát J., Singh S. K., & Kopecký J. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One 6, e20472 (2011). PubMed PMC
Gelpi E. et al. Visualization of Central European tick-borne encephalitis infection in fatal human cases. J. Neuropathol. Exp. Neurol. 64, 506–12 (2005). PubMed
Gelpi E. et al. Inflammatory response in human tick-borne encephalitis: analysis of postmortem brain tissue. J. Neurovirol. 12, 322–7 (2006). PubMed
Palus M., Žampachová E., Elsterová J., & Růžek D. Serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in patients with tick-borne encephalitis. J. Infect. 68, 165–9 (2014). PubMed
Růžek D. et al. CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology 384, 1–6 (2009). PubMed
Hayasaka D. et al. Mortality following peripheral infection with tick-borne encephalitis virus results from a combination of central nervous system pathology, systemic inflammatory and stress responses. Virology 390, 139–50 (2009). PubMed
Diniz J. A. et al. West Nile virus infection of primary mouse neuronal and neuroglial cells: the role of astrocytes in chronic infection. Am. J. Trop. Med. Hyg. 75, 691–6 (2006). PubMed
Shrestha B., Gottlieb D., & Diamond M. S. Infection and injury of neurons by West Nile encephalitis virus. J. Virol. 77, 13203–13 (2003). PubMed PMC
Couderc T., Guivel-Benhassine F., Calaora V., Gosselin A. S., & Blondel B. An ex vivo murine model to study poliovirus-induced apoptosis in nerve cells. J. Gen. Virol. 83, 1925–30 (2002). PubMed
Kennedy P. G., Gairns J., & MacLean A. R. Replication of the herpes simplex virus type 1 RL1 mutant 1716 in primary neuronal cell cultures–possible relevance to use as a viral vector. J. Neurol. Sci. 179, 108.-14 (2000). PubMed
Nazmi A., Dutta K., & Basu A. RIG-I mediates innate immune response in mouse neurons following Japanese encephalitis virus infection. PLoS One 6, e21761 (2011). PubMed PMC
Růžek D. et al. Morphological changes in human neural cells following tick-borne encephalitis virus infection. J. Gen. Virol. 90, 1649–58 (2009). PubMed
Hirano M. et al. Tick-borne flaviviruses alter membrane structure and replicate in dendrites of primary mouse neuronal cultures. J. Gen. Virol. 95, 849–61 (2014). PubMed
Junjhon J. et al. Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J. Virol. 88, 4687–97 (2014). PubMed PMC
Wigerius M., Melik W., Elväng A., & Johansson M. Rac1 and Scribble are targets for the arrest of neurite outgrowth by TBE virus NS5. Mol. Cell. Neurosci. 44, 260–71 (2010). PubMed
Samuel M. A., Wang H., Siddharthan V., Morrey J. D., & Diamond M. S. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc. Natl. Acad. Sci. USA 104, 17140–5 (2007). PubMed PMC
Palus M. et al. Infection and injury of human astrocytes by tick-borne encephalitis virus. J. Gen. Virol. 95, 2411–26 (2014). PubMed
Offerdahl D. K., Dorward D. W., Hansen B. T., & Bloom M. E. A three-dimensional comparison of tick-borne flavivirus infection in mammalian and tick cell lines. PLoS One 7, e47912 (2012). PubMed PMC
Welsch S. et al. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5, 365–75 (2009). PubMed PMC
Gillespie L. K., Hoenen A., Morgan G., & Mackenzie J. M. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J. Virol. 84, 10438–47 (2010). PubMed PMC
Lorenz I. C. et al. Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. J. Virol. 77, 4370–82 (2003). PubMed PMC
Miorin L., Albornoz A., Baba M. M., D’Agaro P., & Marcello A. Formation of membrane-defined compartments by tick-borne encephalitis virus contributes to the early delay in interferon signaling. Virus Res. 163, 660–6 (2012). PubMed
Miorin L. et al. Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA. J. Virol. 87, 6469–81 (2013). PubMed PMC
Overby A. K., Popov V. L., Niedrig M., & Weber F. Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. J. Virol. 84, 8470–83 (2010). PubMed PMC
Eskelinen E. L. To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 4, 257–60 (2008). PubMed
Heaton N. S., & Randall G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–32 (2010). PubMed PMC
Hayashi-Nishino M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell. Biol. 11, 1433–7 (2009). PubMed
Ylä-Anttila P., Vihinen H., Jokitalo E., & Eskelinen E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180–5 (2009). PubMed
Huang S. C., Chang C. L., Wang P. S., Tsai Y., & Liu H. S. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J. Med. Virol. 81, 1241–52 (2009). PubMed PMC
Orvedahl A., & Levine B. Autophagy and viral neurovirulence. Cell. Microbiol. 10, 1747–56 (2008). PubMed PMC
Moy R. H. et al. Antiviral autophagy restricts Rift Valley fever virus infection and is conserved from flies to mammals. Immunity 40, 51–65 (2014). PubMed PMC
Orvedahl A. et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115–27 (2010). PubMed PMC
Yordy B., & Iwasaki A. Cell type-dependent requirement of autophagy in HSV-1 antiviral defense. Autophagy 9, 236–8 (2013). PubMed PMC
Beatman E. et al. West Nile virus growth is independent of autophagy activation. Virology 433, 262–72 (2012). PubMed PMC
Lee Y. R. et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology 374, 240–8 (2008). PubMed PMC
Mateo R. et al. Inhibition of cellular autophagy deranges dengue virion maturation. J. Virol. 87, 1312–21 (2013). PubMed PMC
Yoon S. Y. et al. Autophagy in coxsackievirus-infected neurons. Autophagy 5, 388–9 (2009). PubMed
Li J. K., Liang J. J., Liao C. L., & Lin Y. L. Autophagy is involved in the early step of Japanese encephalitis virus infection. Microbes Infect. 14, 159–68 (2012). PubMed
Heaton N. S., & Randall G. Dengue virus and autophagy. Viruses 3, 1332–41 (2011). PubMed PMC
Rey F. A., Heinz F. X., Mandl C., Kunz C., & Harrison S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291–8 (1995). PubMed
Kozuch O., & Mayer V. Pig kidney epithelial (PS) cells: a perfect tool for the study of flaviviruses and some other arboviruses. Acta Virol. 19, 498 (1975). PubMed
De Madrid A. T., & Porterfield J. S. A simple micro-culture method for the study of group B arboviruses. Bull. World Health Organ. 40, 113–21 (1969). PubMed PMC
Mastronarde D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). PubMed
Kremer J. R., Mastronarde D. N., & McIntosh J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–6 (1996). PubMed
Autoantibodies neutralizing type I IFNs underlie severe tick-borne encephalitis in ∼10% of patients
Fitness of mCherry Reporter Tick-Borne Encephalitis Virus in Tick Experimental Models
History of Arbovirus Research in the Czech Republic
Characterisation of Zika virus infection in primary human astrocytes