Electron Tomography Analysis of Tick-Borne Encephalitis Virus Infection in Human Neurons

. 2015 Jun 15 ; 5 () : 10745. [epub] 20150615

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26073783

Tick-borne encephalitis virus (TBEV) causes serious, potentially fatal neurological infections that affect humans in endemic regions of Europe and Asia. Neurons are the primary target for TBEV infection in the central nervous system. However, knowledge about this viral infection and virus-induced neuronal injury is fragmental. Here, we directly examined the pathology that occurs after TBEV infection in human primary neurons. We exploited the advantages of advanced high-pressure freezing and freeze-substitution techniques to achieve optimal preservation of infected cell architecture. Electron tomographic (ET) reconstructions elucidated high-resolution 3D images of the proliferating endoplasmic reticulum, and individual tubule-like structures of different diameters in the endoplasmic reticulum cisternae of single cells. ET revealed direct connections between the tubule-like structures and viral particles in the endoplasmic reticulum. Furthermore, ET showed connections between cellular microtubules and vacuoles that harbored the TBEV virions in neuronal extensions. This study was the first to characterize the 3D topographical organization of membranous whorls and autophagic vacuoles in TBEV-infected human neurons. The functional importance of autophagy during TBEV replication was studied in human neuroblastoma cells; stimulation of autophagy resulted in significantly increased dose-dependent TBEV production, whereas the inhibition of autophagy showed a profound, dose-dependent decrease of the yield of infectious virus.

Zobrazit více v PubMed

Mansfield K. L. et al. Tick-borne encephalitis virus - a review of an emerging zoonosis. J. Gen. Virol. 90, 1781–94 (2009). PubMed

Růžek D., Dobler G., & Donoso Mantke O. Tick-borne encephalitis: pathogenesis and clinical implications. Travel Med. Infect. Dis. 8, 223–32 (2010). PubMed

Růžek D., Salát J., Singh S. K., & Kopecký J. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One 6, e20472 (2011). PubMed PMC

Gelpi E. et al. Visualization of Central European tick-borne encephalitis infection in fatal human cases. J. Neuropathol. Exp. Neurol. 64, 506–12 (2005). PubMed

Gelpi E. et al. Inflammatory response in human tick-borne encephalitis: analysis of postmortem brain tissue. J. Neurovirol. 12, 322–7 (2006). PubMed

Palus M., Žampachová E., Elsterová J., & Růžek D. Serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in patients with tick-borne encephalitis. J. Infect. 68, 165–9 (2014). PubMed

Růžek D. et al. CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology 384, 1–6 (2009). PubMed

Hayasaka D. et al. Mortality following peripheral infection with tick-borne encephalitis virus results from a combination of central nervous system pathology, systemic inflammatory and stress responses. Virology 390, 139–50 (2009). PubMed

Diniz J. A. et al. West Nile virus infection of primary mouse neuronal and neuroglial cells: the role of astrocytes in chronic infection. Am. J. Trop. Med. Hyg. 75, 691–6 (2006). PubMed

Shrestha B., Gottlieb D., & Diamond M. S. Infection and injury of neurons by West Nile encephalitis virus. J. Virol. 77, 13203–13 (2003). PubMed PMC

Couderc T., Guivel-Benhassine F., Calaora V., Gosselin A. S., & Blondel B. An ex vivo murine model to study poliovirus-induced apoptosis in nerve cells. J. Gen. Virol. 83, 1925–30 (2002). PubMed

Kennedy P. G., Gairns J., & MacLean A. R. Replication of the herpes simplex virus type 1 RL1 mutant 1716 in primary neuronal cell cultures–possible relevance to use as a viral vector. J. Neurol. Sci. 179, 108.-14 (2000). PubMed

Nazmi A., Dutta K., & Basu A. RIG-I mediates innate immune response in mouse neurons following Japanese encephalitis virus infection. PLoS One 6, e21761 (2011). PubMed PMC

Růžek D. et al. Morphological changes in human neural cells following tick-borne encephalitis virus infection. J. Gen. Virol. 90, 1649–58 (2009). PubMed

Hirano M. et al. Tick-borne flaviviruses alter membrane structure and replicate in dendrites of primary mouse neuronal cultures. J. Gen. Virol. 95, 849–61 (2014). PubMed

Junjhon J. et al. Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J. Virol. 88, 4687–97 (2014). PubMed PMC

Wigerius M., Melik W., Elväng A., & Johansson M. Rac1 and Scribble are targets for the arrest of neurite outgrowth by TBE virus NS5. Mol. Cell. Neurosci. 44, 260–71 (2010). PubMed

Samuel M. A., Wang H., Siddharthan V., Morrey J. D., & Diamond M. S. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc. Natl. Acad. Sci. USA 104, 17140–5 (2007). PubMed PMC

Palus M. et al. Infection and injury of human astrocytes by tick-borne encephalitis virus. J. Gen. Virol. 95, 2411–26 (2014). PubMed

Offerdahl D. K., Dorward D. W., Hansen B. T., & Bloom M. E. A three-dimensional comparison of tick-borne flavivirus infection in mammalian and tick cell lines. PLoS One 7, e47912 (2012). PubMed PMC

Welsch S. et al. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5, 365–75 (2009). PubMed PMC

Gillespie L. K., Hoenen A., Morgan G., & Mackenzie J. M. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J. Virol. 84, 10438–47 (2010). PubMed PMC

Lorenz I. C. et al. Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. J. Virol. 77, 4370–82 (2003). PubMed PMC

Miorin L., Albornoz A., Baba M. M., D’Agaro P., & Marcello A. Formation of membrane-defined compartments by tick-borne encephalitis virus contributes to the early delay in interferon signaling. Virus Res. 163, 660–6 (2012). PubMed

Miorin L. et al. Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA. J. Virol. 87, 6469–81 (2013). PubMed PMC

Overby A. K., Popov V. L., Niedrig M., & Weber F. Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. J. Virol. 84, 8470–83 (2010). PubMed PMC

Eskelinen E. L. To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 4, 257–60 (2008). PubMed

Heaton N. S., & Randall G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–32 (2010). PubMed PMC

Hayashi-Nishino M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell. Biol. 11, 1433–7 (2009). PubMed

Ylä-Anttila P., Vihinen H., Jokitalo E., & Eskelinen E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180–5 (2009). PubMed

Huang S. C., Chang C. L., Wang P. S., Tsai Y., & Liu H. S. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J. Med. Virol. 81, 1241–52 (2009). PubMed PMC

Orvedahl A., & Levine B. Autophagy and viral neurovirulence. Cell. Microbiol. 10, 1747–56 (2008). PubMed PMC

Moy R. H. et al. Antiviral autophagy restricts Rift Valley fever virus infection and is conserved from flies to mammals. Immunity 40, 51–65 (2014). PubMed PMC

Orvedahl A. et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115–27 (2010). PubMed PMC

Yordy B., & Iwasaki A. Cell type-dependent requirement of autophagy in HSV-1 antiviral defense. Autophagy 9, 236–8 (2013). PubMed PMC

Beatman E. et al. West Nile virus growth is independent of autophagy activation. Virology 433, 262–72 (2012). PubMed PMC

Lee Y. R. et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology 374, 240–8 (2008). PubMed PMC

Mateo R. et al. Inhibition of cellular autophagy deranges dengue virion maturation. J. Virol. 87, 1312–21 (2013). PubMed PMC

Yoon S. Y. et al. Autophagy in coxsackievirus-infected neurons. Autophagy 5, 388–9 (2009). PubMed

Li J. K., Liang J. J., Liao C. L., & Lin Y. L. Autophagy is involved in the early step of Japanese encephalitis virus infection. Microbes Infect. 14, 159–68 (2012). PubMed

Heaton N. S., & Randall G. Dengue virus and autophagy. Viruses 3, 1332–41 (2011). PubMed PMC

Rey F. A., Heinz F. X., Mandl C., Kunz C., & Harrison S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291–8 (1995). PubMed

Kozuch O., & Mayer V. Pig kidney epithelial (PS) cells: a perfect tool for the study of flaviviruses and some other arboviruses. Acta Virol. 19, 498 (1975). PubMed

De Madrid A. T., & Porterfield J. S. A simple micro-culture method for the study of group B arboviruses. Bull. World Health Organ. 40, 113–21 (1969). PubMed PMC

Mastronarde D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). PubMed

Kremer J. R., Mastronarde D. N., & McIntosh J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–6 (1996). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Autoantibodies neutralizing type I IFNs underlie severe tick-borne encephalitis in ∼10% of patients

. 2024 Oct 07 ; 221 (10) : . [epub] 20240924

Robust CXCL10/IP-10 and CCL5/RANTES Production Induced by Tick-Borne Encephalitis Virus in Human Brain Pericytes Despite Weak Infection

. 2024 Jul 18 ; 25 (14) : . [epub] 20240718

Fitness of mCherry Reporter Tick-Borne Encephalitis Virus in Tick Experimental Models

. 2022 Nov 29 ; 14 (12) : . [epub] 20221129

Integrative RNA profiling of TBEV-infected neurons and astrocytes reveals potential pathogenic effectors

. 2022 ; 20 () : 2759-2777. [epub] 20220530

History of Arbovirus Research in the Czech Republic

. 2021 Nov 22 ; 13 (11) : . [epub] 20211122

Spirochetes isolated from arthropods constitute a novel genus Entomospira genus novum within the order Spirochaetales

. 2020 Oct 13 ; 10 (1) : 17053. [epub] 20201013

Cholinergic axons regulate type I acini in salivary glands of Ixodes ricinus and Ixodes scapularis ticks

. 2020 Sep 29 ; 10 (1) : 16054. [epub] 20200929

Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection

. 2019 Nov 07 ; 16 (1) : 205. [epub] 20191107

Characterisation of Zika virus infection in primary human astrocytes

. 2018 Feb 20 ; 19 (1) : 5. [epub] 20180220

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...