Cholinergic axons regulate type I acini in salivary glands of Ixodes ricinus and Ixodes scapularis ticks

. 2020 Sep 29 ; 10 (1) : 16054. [epub] 20200929

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32994503
Odkazy

PubMed 32994503
PubMed Central PMC7524744
DOI 10.1038/s41598-020-73077-1
PII: 10.1038/s41598-020-73077-1
Knihovny.cz E-zdroje

Regulatory factors controlling tick salivary glands (SGs) are direct upstream neural signaling pathways arising from the tick's central nervous system. Here we investigated the cholinergic signaling pathway in the SG of two hard tick species. We reconstructed the organization of the cholinergic gene locus, and then used in situ hybridization to localize mRNA encoding choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in specific neural cells in the Ixodes synganglion. Immunohistochemical staining revealed that cholinergic axonal projections exclusively reached type I acini in the SG of both Ixodes species. In type I acini, the rich network of cholinergic axons terminate within the basolateral infoldings of the lamellate cells. We also characterized two types (A and B) of muscarinic acetylcholine receptors (mAChRs), which were expressed in Ixodes SG. We pharmacologically assessed mAChR-A to monitor intracellular calcium mobilization upon receptor activation. In vivo injection of vesamicol-a VAChT blocker-at the cholinergic synapse, suppressed forced water uptake by desiccated ticks, while injection of atropine, an mAChR-A antagonist, did not show any effect on water volume uptake. This study has uncovered a novel neurotransmitter signaling pathway in Ixodes SG, and suggests its role in water uptake by type I acini in desiccated ticks.

Zobrazit více v PubMed

Hamer SA, Tsao JI, Walker ED, Hickling GJ. Invasion of the lyme disease vector Ixodes scapularis: Implications for Borrelia burgdorferi endemicity. EcoHealth. 2010;7:47–63. doi: 10.1007/s10393-010-0287-0. PubMed DOI

Rizzoli A, et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: New hazards and relevance for public health. Front. Public Health. 2014 doi: 10.3389/fpubh.2014.00251. PubMed DOI PMC

Kocan KM, de la Fuente J, Coburn LA. Insights into the development of Ixodes scapularis: A resource for research on a medically important tick species. Parasit. Vectors. 2015 doi: 10.1186/s13071-015-1185-7. PubMed DOI PMC

Bonnet SI. Chapter 4—Arthropod saliva and its role in pathogen transmission: Insect saliva. In: Boulanger N, editor. Skin and Arthropod Vectors. Cambridge: Academic Press; 2018. pp. 83–119.

Šimo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front. Cell. Infect. Microbiol. 2017 doi: 10.3389/fcimb.2017.00281. PubMed DOI PMC

Sauer JR, McSwain JL, Bowman AS, Essenberg RC. Tick salivary gland physiology. Annu. Rev. Entomol. 1995;40:245–267. doi: 10.1146/annurev.en.40.010195.001333. PubMed DOI

Kim D, Šimo L, Vancová M, Urban J, Park Y. Neural and endocrine regulation of osmoregulatory organs in tick: Recent discoveries and implications. Gen. Comp. Endocrinol. 2019;278:42–49. doi: 10.1016/j.ygcen.2018.08.004. PubMed DOI

Bowman AS, Sauer JR. Tick salivary glands: Function, physiology and future. Parasitology. 2004;129(Suppl):S67–81. doi: 10.1017/S0031182004006468. PubMed DOI

Binnington KC. Sequential changes in salivary gland structure during attachment and feeding of the cattle tick, Boophilus microplus. Int. J. Parasitol. 1978;8:97–115. doi: 10.1016/0020-7519(78)90004-8. PubMed DOI

Coons LB, Roshdy MA. Fine structure of the salivary glands of unfed male Dermacentor variabilis (Say) (Ixodoidea: Ixodidae) J. Parasitol. 1973;59:900–912. doi: 10.2307/3278433. PubMed DOI

Kim D, Šimo L, Park Y. Orchestration of salivary secretion mediated by two different dopamine receptors in the blacklegged tick Ixodes scapularis. J. Exp. Biol. 2014;217:3656–3663. doi: 10.1242/jeb.109462. PubMed DOI PMC

Kaufman W. The influence of various factors on fluid secretion by in vitro salivary glands of ixodid ticks. J. Exp. Biol. 1976;64:727–742. PubMed

Kaufman WR. The influence of adrenergic agonists and their antagonists on isolated salivary glands of ixodid ticks. Eur. J. Pharmacol. 1977;45:61–68. doi: 10.1016/0014-2999(77)90058-9. PubMed DOI

Kaufman WR, Harris RA. Neural pathways mediating salivary fluid secretion in the ixodid tick Amblyomma hebraeum. Can. J. Zool. 1983;61:1976–1980. doi: 10.1139/z83-260. DOI

Lindsay PJ, Kaufman WR. Potentiation of salivary fluid secretion in ixodid ticks: A new receptor system for gamma-aminobutyric acid. Can. J. Physiol. Pharmacol. 1986;64:1119–1126. doi: 10.1139/y86-191. PubMed DOI

Koči J, Šimo L, Park Y. Autocrine/paracrine dopamine in the salivary glands of the blacklegged tick Ixodes scapularis. J. Insect Physiol. 2014;62:39–45. doi: 10.1016/j.jinsphys.2014.01.007. PubMed DOI PMC

Šimo L, Daniel SE, Park Y, Žitňan D. The nervous and sensory systems: Structure, function, proteomics and genomics. In: Sonenshine DE, Roe RM, editors. Biology of Ticks. Oxford: Oxford University Press; 2014. pp. 309–367.

Šimo L, Koči J, Žitňan D, Park Y. Evidence for D1 dopamine receptor activation by a paracrine signal of dopamine in tick salivary glands. PLoS ONE. 2011;6:e16158. doi: 10.1371/journal.pone.0016158. PubMed DOI PMC

Šimo L, Žitňan D, Park Y. Two novel neuropeptides in innervation of the salivary glands of the black-legged tick, Ixodes scapularis: Myoinhibitory peptide and SIFamide. J. Comp. Neurol. 2009;517:551–563. doi: 10.1002/cne.22182. PubMed DOI PMC

Šimo L, Žitňan D, Park Y. Neural control of salivary glands in ixodid ticks. J. Insect Physiol. 2012;58:459–466. doi: 10.1016/j.jinsphys.2011.11.006. PubMed DOI PMC

Kim D, Šimo L, Park Y. Molecular characterization of neuropeptide elevenin and two elevenin receptors, IsElevR1 and IsElevR2, from the blacklegged tick, Ixodes scapularis. Insect Biochem. Mol. Biol. 2018;101:66–75. doi: 10.1016/j.ibmb.2018.07.005. PubMed DOI

Šimo L, Koči J, Kim D, Park Y. Invertebrate specific D1-like dopamine receptor in control of salivary glands in the black-legged tick Ixodes scapularis. J. Comp. Neurol. 2014;522:2038–2052. doi: 10.1002/cne.23515. PubMed DOI PMC

Šimo L, Slovák M, Park Y, Žitňan D. Identification of a complex peptidergic neuroendocrine network in the hard tick, Rhipicephalus appendiculatus. Cell Tissue Res. 2008;335:639–655. doi: 10.1007/s00441-008-0731-4. PubMed DOI PMC

Vancová M, et al. Ultrastructural mapping of salivary gland innervation in the tick Ixodes ricinus. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-43284-6. PubMed DOI PMC

Kim D, Maldonado-Ruiz P, Zurek L, Park Y. Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis. PeerJ. 2017;5:e3984. doi: 10.7717/peerj.3984. PubMed DOI PMC

Needham GR, Rosell R, Greenwald L, Coons LB. Ultrastructure of type-I salivary-gland acini in four species of ticks and the influence of hydration states on the type-I acini of Amblyomma americanum. Exp. Appl. Acarol. 1990;10:83–104. doi: 10.1007/BF01194085. DOI

Needham, G. R. & Teel, P. D. Water balance by ticks between bloodmeals. in Morphology, physiology, and behavioral biology of ticks/editors, John R. Sauer and J. Alexander Hair (1986).

McMullen HL, Sauer JR, Burton RL. Possible role in uptake of water vapour by ixodid tick salivary glands. J. Insect Physiol. 1976;22:1281–1285. doi: 10.1016/0022-1910(76)90107-4. PubMed DOI

Knulle W, Rudolph D. Humidity Relationships and Water Balance of Ticks. Oxford: Pergamon Press; 1982.

Gaede K, Knülle W. On the mechanism of water vapour sorption from unsaturated atmospheres by ticks. J. Exp. Biol. 1997;200:1491–1498. PubMed

Yoder JA, Benoit JB, Rellinger EJ, Tank JL. Developmental profiles in tick water balance with a focus on the new Rocky Mountain spotted fever vector, Rhipicephalus sanguineus. Med. Vet. Entomol. 2006;20:365–372. doi: 10.1111/j.1365-2915.2006.00642.x. PubMed DOI

Kim D, Urban J, Boyle DL, Park Y. Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis. Sci. Rep. 2016;6:21047. doi: 10.1038/srep21047. PubMed DOI PMC

Kaufman WR. Actions of some transmitters and their antagonists on salivary secretion in a tick. Am. J. Physiol. 1978;235:R76–81. PubMed

Patton TG, et al. Saliva, salivary gland, and hemolymph collection from Ixodes scapularis ticks. J. Vis. Exp. 2012 doi: 10.3791/3894. PubMed DOI PMC

Turberg A, Schröder I, Wegener S, Londershausen M. Presence of muscarinic acetylcholine receptors in the cattle tick Boophilus microplus and in epithelial tissue culture cells of Chironomus tentans. Pestic. Sci. 1996;48:389–398. doi: 10.1002/(SICI)1096-9063(199612)48:4<389::AID-PS502>3.0.CO;2-Q. DOI

Nachmansohn D, Machado AL. The formation of acetylcholine. A new enzyme: ‘Choline acetylase’. J. Neurophysiol. 1943;6:397–403. doi: 10.1152/jn.1943.6.5.397. DOI

Erickson JD, et al. Functional identification of a vesicular acetylcholine transporter and its expression from a ‘cholinergic’ gene locus. J. Biol. Chem. 1994;269:21929–21932. PubMed

Almazán C, et al. A versatile model of hard tick infestation on laboratory rabbits. J. Vis. Exp. 2018 doi: 10.3791/57994. PubMed DOI PMC

Gulia-Nuss M, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 2016;7:1–13. doi: 10.1038/ncomms10507. PubMed DOI PMC

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC

Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 2015;43:401–407. doi: 10.1093/nar/gkv485. PubMed DOI PMC

Šimo L, Koči J, Park Y. Receptors for the neuropeptides, myoinhibitory peptide and SIFamide, in control of the salivary glands of the blacklegged tick Ixodes scapularis. Insect Biochem. Mol. Biol. 2013;43:376–387. doi: 10.1016/j.ibmb.2013.01.002. PubMed DOI PMC

Bílý T, et al. Electron tomography analysis of tick-borne encephalitis virus infection in human neurons. Sci. Rep. 2015;5:1–15. doi: 10.1038/srep10745. PubMed DOI PMC

Vernon WI, Printen JA. Assay for intracellular calcium using a codon-optimized aequorin. Biotechniques. 2002;33(730):732–734. PubMed

Offermanns S, Simon MI. G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J. Biol. Chem. 1995;270:15175–15180. doi: 10.1074/jbc.270.25.15175. PubMed DOI

Koči J, Šimo L, Park Y. Validation of internal reference genes for real-time quantitative polymerase chain reaction studies in the tick, Ixodes scapularis (Acari: Ixodidae) J. Med. Entomol. 2013;50:79–84. doi: 10.1603/ME12034. PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Pitman RM. Transmitter substances in insects: A review. Compar. Gen. Pharmacol. 1971;2:347–371. doi: 10.1016/0010-4035(71)90060-7. PubMed DOI

Florey E. Acetylcholine as sensory transmitter in crustacea. J. Comp. Physiol. 1973;83:1–16. doi: 10.1007/BF00694568. DOI

Lees K, et al. Functional characterisation of a nicotinic acetylcholine receptor α subunit from the brown dog tick, Rhipicephalus sanguineus. Int. J. Parasitol. 2014;44:75–81. doi: 10.1016/j.ijpara.2013.11.002. PubMed DOI PMC

Lees K, Bowman AS. Tick neurobiology: Recent advances and the post-genomic era. Invert. Neurosci. 2007;7:183–198. doi: 10.1007/s10158-007-0060-4. PubMed DOI

Baxter GD, Barker SC. Acetylcholinesterase cDNA of the cattle tick, Boophilus microplus: Characterisation and role in organophosphate resistance. Insect Biochem. Mol. Biol. 1998;28:581–589. doi: 10.1016/S0965-1748(98)00034-4. PubMed DOI

Temeyer KB. Molecular biology of tick acetylcholinesterases. Front. Biosci. (Landmark Ed.) 2018;23:1320–1337. doi: 10.2741/4646. PubMed DOI

Temeyer KB, et al. Acetylcholinesterase of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene identification, expression, and biochemical properties of recombinant proteins. Pestic. Biochem. Physiol. 2013;106:118–123. doi: 10.1016/j.pestbp.2013.01.005. PubMed DOI PMC

Smallman BN, Riddles PW. Choline acetyltransferase in organophosphorus-resistant and -susceptible strains of the cattle tick, Boophilus microplus. Pestic. Biochem. Physiol. 1977;7:355–359. doi: 10.1016/0048-3575(77)90039-6. DOI

Candiani S, Lacalli TC, Parodi M, Oliveri D, Pestarino M. The cholinergic gene locus in amphioxus: Molecular characterization and developmental expression patterns. Dev. Dyn. 2008;237:1399–1411. doi: 10.1002/dvdy.21541. PubMed DOI

McManus CJ, Duff MO, Eipper-Mains J, Graveley BR. Global analysis of trans-splicing in Drosophila. PNAS. 2010;107:12975–12979. doi: 10.1073/pnas.1007586107. PubMed DOI PMC

Roy SW. On the origins and evolution of trans-splicing of bursicon in mosquitos. BioRxiv. 2016 doi: 10.1101/050625. DOI

Robertson HM, Navik JA, Walden KKO, Honegger H-W. The Bursicon gene in mosquitoes: An unusual example of mRNA trans-splicing. Genetics. 2007;176:1351–1353. doi: 10.1534/genetics.107.070938. PubMed DOI PMC

Tatchell RJ. A modified method for obtaining tick oral secretion. J. Parasitol. 1967;53:1106–1107. doi: 10.2307/3276849. PubMed DOI

Howell CJ. Collection of salivary gland secretion from the argasid Ornithodoros savignyi adouin (1827) by the use of a pharmocological stimulant. J. S. Afr. Vet. Assoc. 1966;37:236–239.

Oliveira CJ, et al. Proteome of Rhipicephalus sanguineus tick saliva induced by the Secretagogues pilocarpine and dopamine. Ticks Tick Borne Dis. 2013;4:469–477. doi: 10.1016/j.ttbdis.2013.05.001. PubMed DOI PMC

Ribeiro JMC, Zeidner NS, Ledin K, Dolan MC, Mather TN. How much pilocarpine contaminates pilocarpine-induced tick saliva? Med. Vet. Entomol. 2004;18:20–24. doi: 10.1111/j.0269-283X.2003.0469.x. PubMed DOI

Vancová M, et al. Three-dimensional reconstruction of the feeding apparatus of the tick Ixodes ricinus (Acari: Ixodidae): A new insight into the mechanism of blood-feeding. Sci. Rep. 2020;10:1–7. doi: 10.1038/s41598-019-56811-2. PubMed DOI PMC

Ren GR, Folke J, Hauser F, Li S, Grimmelikhuijzen CJP. The A- and B-type muscarinic acetylcholine receptors from Drosophila melanogaster couple to different second messenger pathways. Biochem. Biophys. Res. Commun. 2015;462:358–364. doi: 10.1016/j.bbrc.2015.04.141. PubMed DOI

Thomas RL, Langmead CJ, Wood MD, Challiss RAJ. Contrasting effects of allosteric and orthosteric agonists on M1 muscarinic acetylcholine receptor internalization and down-regulation. J. Pharmacol. Exp. Ther. 2009;331:1086–1095. doi: 10.1124/jpet.109.160242. PubMed DOI PMC

Thomas RL, Mistry R, Langmead CJ, Wood MD, Challiss RAJ. G protein coupling and signaling pathway activation by m1 muscarinic acetylcholine receptor orthosteric and allosteric agonists. J. Pharmacol. Exp. Ther. 2008;327:365–374. doi: 10.1124/jpet.108.141788. PubMed DOI

Bard J, Kunkel MT, Peralta EG. Single channel studies of inward rectifier potassium channel regulation by muscarinic acetylcholine receptors. J. Gen. Physiol. 2000;116:645–652. doi: 10.1085/jgp.116.5.645. PubMed DOI PMC

Rudolph D, Knülle W. Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature. 1974;249:84–85. doi: 10.1038/249084a0. PubMed DOI

Rudolph D, Knulle W. Uptake of water vapour from the air: Process, site and mechanism in ticks. In: Schmidt-Nielsen K, Bolis L, Maddrell SHP, editors. Comparative Physiology: Water Ions and Fluid Mechanics. Cambridge: Cambridge University Press; 1978. pp. 97–113.

Sigal MD, Machin J, Needham GR. Hyperosmotic oral fluid secretion during active water vapour absorption and during desiccation-induced storage-excretion by the unfed female tick Amblyomma americanum. J. Exp. Biol. 1991;157:585–591. PubMed

Hille C, Walz B. Characterisation of neurotransmitter-induced electrolyte transport in cockroach salivary glands by intracellular Ca2+, Na+ and pH measurements in duct cells. J. Exp. Biol. 2008;211:568–576. doi: 10.1242/jeb.010207. PubMed DOI

Salin-Pascual RJ, Jimenez-Anguiano A. Vesamicol, an acetylcholine uptake blocker in presynaptic vesicles, suppresses rapid eye movement (REM) sleep in the rat. Psychopharmacology. 1995;121:485–487. doi: 10.1007/BF02246498. PubMed DOI

Pivovarov AS, Calahorro F, Walker RJ. Na+/K+-pump and neurotransmitter membrane receptors. Invert. Neurosci. 2018;19:1. doi: 10.1007/s10158-018-0221-7. PubMed DOI PMC

Breer H, Knipper M. Characterization of acetylcholine release from insect synaptosomes. Insect Biochem. 1984;14:337–344. doi: 10.1016/0020-1790(84)90069-6. PubMed DOI

Barker DM, Ownby CL, Krolak JM, Claypool PL, Sauer JR. The Effects of attachment, feeding, and mating on the morphology of the type I alveolus of salivary glands of the lone star tick, Amblyomma americanum (L.) J. Parasitol. 1984;70:99–113. doi: 10.2307/3281931. DOI

Sauer JR, Essenberg RC, Bowman AC. Salivary glands in ixodid ticks: Control and mechanism of secretion. J. Insect Physiol. 2000;46:1069–1078. doi: 10.1016/S0022-1910(99)00210-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace