Ultrastructural mapping of salivary gland innervation in the tick Ixodes ricinus

. 2019 May 02 ; 9 (1) : 6860. [epub] 20190502

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31048723

Grantová podpora
R01 AI090062 NIAID NIH HHS - United States
R21 AI081136 NIAID NIH HHS - United States

Odkazy

PubMed 31048723
PubMed Central PMC6497691
DOI 10.1038/s41598-019-43284-6
PII: 10.1038/s41598-019-43284-6
Knihovny.cz E-zdroje

The salivary gland of hard ticks is a highly innervated tissue where multiple intertwined axonal projections enter each individual acini. In the present study, we investigated the ultrastructural architecture of axonal projections within granular salivary gland type II and III acini of Ixodes ricinus female. Using immunogold labeling, we specifically examined the associations of SIFamide neuropeptide, SIFamide receptor (SIFa_R), neuropeptide pigment dispersing factor (PDF), and the invertebrate-specific D1-like dopamine receptor (InvD1L), with acinar cells. In both acini types, SIFamide-positive axons were found to be in direct contact with either basal epithelial cells or a single adlumenal myoepithelial cell in close proximity to the either the acinar duct or its valve, respectively. Accordingly, SIFa_R staining correlated with SIFamide-positive axons in both basal epithelial and myoepithelial cells. Immunoreactivity for both InvD1L and PDF (type II acini exclusively) revealed positive axons radiating along the acinar lumen. These axons were primarily enclosed by the adlumenal myoepithelial cell plasma membrane and interstitial projections of ablumenal epithelial cells. Our study has revealed the detailed ultrastructure of I. ricinus salivary glands, and provides a solid baseline for a comprehensive understanding of the cell-axon interactions and their functions in this essential tick organ.

Zobrazit více v PubMed

Kaufman WR, Phillips JE. Ion and water balance in the Ixodid tick Dermacentor andersoni: III. Influence of monovalent ions and osmotic pressure on salivary secretion. Journal of Experimental Biology. 1973;58:549–564.

Šimo, L., Kazimírova, M., Richardson, J. & Bonnet, S. I. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol7 (2017). PubMed PMC

Bonnet, S., Kazimírová, M., Richardson, J. & Šimo, L. Chapter 5 - Tick saliva and its role in pathogen transmission. In Skin and Arthropod Vectors (ed. Boulanger, N.). Academic Press, 121–191 (2018).

Binnington KC. Sequential changes in salivary gland structure during attachment and feeding of the cattle tick, Boophilus microplus. Int. J. Parasitol. 1978;8:97–115. doi: 10.1016/0020-7519(78)90004-8. PubMed DOI

Fawcett, D. W., Binnington, K. & Voigt, W. P. The cell biology of the ixodid tick salivary gland. (Ellis Horwood, 1986).

Kim, D., Maldonado-Ruiz, P., Zurek, L. & Park, Y. Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis. PeerJ5 (2017). PubMed PMC

Gaede K, Knülle W. On the mechanism of water vapour sorption from unsaturated atmospheres by ticks. J. Exp. Biol. 1997;200:1491–1498. PubMed

Meredith J, Kaufman WR. A proposed site of fluid secretion in the salivary gland of the ixodid tick Dermacentor andersoni. Parasitology. 1973;67:205–217. doi: 10.1017/S0031182000046424. PubMed DOI

Fawcett DW, Doxsey S, Büscher G. Salivary gland of the tick vector (R. appendiculatus) of East Coast fever. II. Cellular basis for fluid secretion in the type III acinus. Tissue Cell. 1981;13:231–253. doi: 10.1016/0040-8166(81)90003-3. PubMed DOI

Sauer JR, Essenberg RC, Bowman AS. Salivary glands in ixodid ticks: control and mechanism of secretion. J. Insect Physiol. 2000;46:1069–1078. doi: 10.1016/S0022-1910(99)00210-3. PubMed DOI

Coons LB, Roshdy MA. Fine structure of the salivary glands of unfed male Dermacentor variabilis (Say) (Ixodoidea: Ixodidae) J. Parasitol. 1973;59:900–912. doi: 10.2307/3278433. PubMed DOI

Fawcett DW, Doxsey S, Büscher G. Salivary gland of the tick vector (R. appendiculatus) of East Coast fever. I. Ultrastructure of the type III acinus. Tissue Cell. 1981;13:209–230. doi: 10.1016/0040-8166(81)90002-1. PubMed DOI

Krolak JM, Ownby CL, Sauer JR. Alveolar structure of salivary glands of the lone star tick, Amblyomma americanum (L.): unfed females. J. Parasitol. 1982;68:61–82. doi: 10.2307/3281326. PubMed DOI

Kaufman WR. Actions of some transmitters and their antagonists on salivary secretion in a tick. Am. J. Physiol. 1978;235:R76–81. PubMed

Megaw MW. The innervation of the salivary gland of the tick, Boophilus microplus. Cell Tissue Res. 1977;184:551–558. doi: 10.1007/BF00220978. PubMed DOI

Šimo L, Slovák M, Park Y, Žitňan D. Identification of a complex peptidergic neuroendocrine network in the hard tick, Rhipicephalus appendiculatus. Cell Tissue Res. 2008;335:639–655. doi: 10.1007/s00441-008-0731-4. PubMed DOI PMC

Šimo L, Žitňan D, Park Y. Neural control of salivary glands in ixodid ticks. J. Insect Physiol. 2012;58:459–466. doi: 10.1016/j.jinsphys.2011.11.006. PubMed DOI PMC

Kim D, Šimo L, Park Y. Molecular characterization of neuropeptide elevenin and two elevenin receptors, IsElevR1 and IsElevR2, from the blacklegged tick, Ixodes scapularis. Insect Biochem. Mol. Biol. 2018;101:66–75. doi: 10.1016/j.ibmb.2018.07.005. PubMed DOI

Šimo L, Koči J, Kim D, Park Y. Invertebrate specific D1-like dopamine receptor in control of salivary glands in the black-legged tick Ixodes scapularis. J. Comp. Neurol. 2014;522:2038–2052. doi: 10.1002/cne.23515. PubMed DOI PMC

Šimo L, Koči J, Park Y. Receptors for the neuropeptides, myoinhibitory peptide and SIFamide, in control of the salivary glands of the blacklegged tick Ixodes scapularis. Insect Biochem. Mol. Biol. 2013;43:376–387. doi: 10.1016/j.ibmb.2013.01.002. PubMed DOI PMC

Šimo L, Žitňan D, Park Y. Two novel neuropeptides in innervation of the salivary glands of the black-legged tick, Ixodes scapularis: myoinhibitory peptide and SIFamide. J. Comp. Neurol. 2009;517:551–563. doi: 10.1002/cne.22182. PubMed DOI PMC

Roller L, et al. Orcokinin-like immunoreactivity in central neurons innervating the salivary glands and hindgut of ixodid ticks. Cell Tissue Res. 2015;360:209–222. doi: 10.1007/s00441-015-2121-z. PubMed DOI

Kim D, Šimo L, Park Y. Orchestration of salivary secretion mediated by two different dopamine receptors in the blacklegged tick Ixodes scapularis. J. Exp. Biol. 2014;217:3656–3663. doi: 10.1242/jeb.109462. PubMed DOI PMC

Coons LB, Lessman CA, Ward MW, Berg RH, Lamoreaux WJ. Evidence of a myoepithelial cell in tick salivary glands. Int. J. Parasitol. 1994;24:551–562. doi: 10.1016/0020-7519(94)90147-3. PubMed DOI

Kim, D., Šimo, L., Vancová, M., Urban, J. & Park, Y. Neural and endocrine regulation of osmoregulatory organs in tick: Recent discoveries and implications. Gen. Comp. Endocrinol., 10.1016/j.ygcen.2018.08.004 (2018). PubMed

Hatae T, Okuyama K, Fujita M. Visualization of the cytoskeletal elements in tissue culture cells by bloc-staining with hafnium chloride after rapid freezing and freeze-substitution fixation. J Electron Microsc (Tokyo) 1984;33:186–190. PubMed

Kakimoto T, Shibaoka H. A new method for preservation of actin filaments in higher plant cells. Plant Cell Physiol. 1987;28:1581–1585.

Liou W, Geuze HJ, Slot JW. Improving structural integrity of cryosections for immunogold labeling. Histochem. Cell Biol. 1996;106:41–58. doi: 10.1007/BF02473201. PubMed DOI

Rizzoli, A. et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: New hazards and relevance for public health. Front Public Health2 (2014). PubMed PMC

Fawcett, D. W., Binnington, K. & Voigt, W. P. The cell biology of the ixodid tick salivary gland. Morpology Physiology and Behavioral biology Of Ticks 22–45 (1986).

Fawcett, D. W., Doxsey, S. J. & Buscher, G. Salivary gland of the tick vector (R. appendiculatus) of East Coast Fever. II. Cellular basis for fluid secretion in the type III acinus. Tissue & Cell13, 231–253 (1981). PubMed

Banerjee S, Sousa AD, Bhat MA. Organization and function of septate junctions: an evolutionary perspective. Cell Biochem. Biophys. 2006;46:65–77. doi: 10.1385/CBB:46:1:65. PubMed DOI

Lane, N. J. & Skaer, H. C. B. Intercellular junctions in insect tissues. In Advances in Insect Physiology15, 35–213 (1980).

Bennington KC, Lane NJ. Perineural and glial cells in the tick Boophilus microplus (Acarina: Ixodidae): freeze-fracture and tracer studies. Journal of Neurocytology. 1980;9:343–362. doi: 10.1007/BF01181541. PubMed DOI

Terhzaz S, Rosay P, Goodwin SF, Veenstra JA. The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem. Biophys. Res. Commun. 2007;352:305–310. doi: 10.1016/j.bbrc.2006.11.030. PubMed DOI

Dircksen H, et al. The ultrastructure of nerve endings containing pigment-dispersing hormone (PDH) in crustacean sinus glands: Identification by an antiserum against a synthetic PDH. Cell Tissue Res. 1987;250:377–387. doi: 10.1007/BF00219082. DOI

Helfrich‐Förster C, Homberg U. Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity. Journal of Comparative Neurology. 1993;337:177–190. doi: 10.1002/cne.903370202. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace