• This record comes from PubMed

Comparison of the Effect of Plasma-Activated Water and Artificially Prepared Plasma-Activated Water on Wheat Grain Properties

. 2022 May 30 ; 11 (11) : . [epub] 20220530

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
COOPERATIO Institutional grant from the 1st Faculty of Medicine Charles University

Recently, much attention has been paid to the use of low-temperature plasmas and plasma-activated water (PAW) in various areas of biological research. In addition to its use in medicine, especially for low-temperature disinfection and sterilization, a number of works using plasma in various fields of agriculture have already appeared. While direct plasma action involves the effects of many highly reactive species with short lifetimes, the use of PAW involves the action of only long-lived particles. A number of articles have shown that the main stable components of PAW are H2O2, O3, HNO2, and HNO3. If so, then it would be faster and much more practical to artificially prepare PAW by directly mixing these chemicals in a given ratio. In this article, we review the literature describing the composition and properties of PAW prepared by various methods. We also draw attention to an otherwise rather neglected fact, that there are no significant differences between the action of PAW and artificially prepared PAW. The effect of PAW on the properties of wheat grains (Triticum aestivum L.) was determined. PAW exposure increased germination, shoot length, and fresh and dry shoot weight. The root length and R/S length, i.e., the ratio between the underground (R) and aboveground (S) length of the wheat seedlings, slightly decreased, while the other parameters changed only irregularly or not at all. Grains artificially inoculated with Escherichia coli were significantly decontaminated after only one hour of exposure to PAW, while Saccharomyces cerevisiae decontamination required soaking for 24 h. The differences between the PAW prepared by plasma treatment and the PAW prepared by artificially mixing the active ingredients, i.e., nitric acid and hydrogen peroxide, proved to be inconsistent and statistically insignificant. Therefore, it may be sufficient for further research to focus only on the effects of artificial PAW.

See more in PubMed

Chacha J.S., Zhang L., Ofoedu C.E., Suleiman R.A., Dotto J.M., Roobab U., Agunbiade A.O., Duguma H.T., Mkojera B.T., Hossaini S.M., et al. Revisiting Non-Thermal Food Processing and Preservation Methods—Action Mechanisms, Pros and Cons: A Technological Update (2016–2021) Foods. 2021;10:1430. doi: 10.3390/foods10061430. PubMed DOI PMC

Ikmal Misnal M.F., Redzuan N., Firdaus Zainal M.N., Raja Ibrahim R.K., Ahmad N., Agun L. Emerging cold plasma treatment on rice grains: A mini review. Chemosphere. 2021;274:129972. doi: 10.1016/j.chemosphere.2021.129972. PubMed DOI

Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI

Varilla C., Marcone M., Annor G.A. Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods. 2020;9:1435. doi: 10.3390/foods9101435. PubMed DOI PMC

Chandravarnan P., Agyei D., Ali A. Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends Food Sci. Technol. 2022;124:278–295. doi: 10.1016/j.tifs.2022.04.020. DOI

Adhikari B., Pangomm K., Veerana M., Mitra S., Park G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 2020;11:77. doi: 10.3389/fpls.2020.00077. PubMed DOI PMC

Liao X., Ding T., Xiang Q., Feng J. Response of foodborne pathogens to cold plasma. In: Ding T., Liao X., Feng J., editors. Stress Responses of Foodborne Pathogens. Springer International Publishing; Cham, Switzerland: 2022. pp. 281–313.

Liu K., Yang Z., Liu S. Study of the characteristics of DC multineedle-to-water plasma-activated water and Its germination inhibition efficiency: The effect of discharge mode and gas flow. IEEE Trans. Plasma Sci. 2020;48:969–979. doi: 10.1109/TPS.2020.2980040. DOI

Dobrin D., Magureanu M., Mandache N.B., Ionita M.-D. The effect of non-thermal plasma treatment on wheat germination and early growth. Innov. Food Sci. Emerg. Technol. 2015;29:255–260. doi: 10.1016/j.ifset.2015.02.006. DOI

Chaple S., Sarangapani C., Jones J., Carey E., Causeret L., Genson A., Duffy B., Bourke P. Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innov. Food Sci. Emerg. Technol. 2020;66:102529. doi: 10.1016/j.ifset.2020.102529. DOI

Iqbal T., Farooq M., Afsheen S., Abrar M., Yousaf M., Ijaz M. Cold plasma treatment and laser irradiation of Triticum spp. seeds for sterilization and germination. J. Laser Appl. 2019;31:042013. doi: 10.2351/1.5109764. DOI

Jirešová J., Šerá B., Scholtz V., Khun J., Šerý M. The dormancy overcoming and affection of early growth of alfalfa (Medicago sativa L.) seeds by non-thermal plasma and plasma activated water. Rom. Rep. Phys. 2021;73:4.

Julák J. MDPI Encyclopedia (Molecular Diversity Preservation International Encyclopedia) MDPI; Basel, Switzerland: 2021. Non-thermal plasma for decontamination of cereals: An overview.

Selvamuthukumaran M. Non-Thermal Processing Technologies for the Grain Industry. CRC Press; Boca Raton, FL, USA: 2021.

Scholtz V., Jirešová J., Šerá B., Julák J. A review of microbial decontamination of cereals by non-thermal plasma. Foods. 2021;10:2927. doi: 10.3390/foods10122927. PubMed DOI PMC

Scholtz V., Šerá B., Khun J., Šerý M., Julák J. Effects of nonthermal plasma on wheat grains and products. J. Food Qual. 2019;2019:7917825. doi: 10.1155/2019/7917825. DOI

Sutar S.A., Thirumdas R., Chaudhari B.B., Deshmukh R.R., Annapure U.S. Effect of cold plasma on insect infestation and keeping quality of stored wheat flour. J. Stored Prod. Res. 2021;92:101774. doi: 10.1016/j.jspr.2021.101774. DOI

Šerá B., Scholtz V., Jirešová J., Khun J., Julák J., Šerý M. Effects of non-thermal plasma treatment on seed germination and early growth of leguminous plants—A review. Plants. 2021;10:1616. doi: 10.3390/plants10081616. PubMed DOI PMC

Mildaziene V., Ivankov A., Sera B., Baniulis D. Biochemical and physiological plant processes affected by seed treatment with non-thermal plasma. Plants. 2022;11:856. doi: 10.3390/plants11070856. PubMed DOI PMC

Pańka D., Jeske M., Łukanowski A., Baturo-Cieśniewska A., Prus P., Maitah M., Maitah K., Malec K., Rymarz D., Muhire J.d.D., et al. Can cold plasma be used for boosting plant growth and plant protection in sustainable plant production? Agronomy. 2022;12:841. doi: 10.3390/agronomy12040841. DOI

Ranieri P., Sponsel N., Kizer J., Rojas-Pierce M., Hernández R., Gatiboni L., Grunden A., Stapelmann K. Plasma agriculture: Review from the perspective of the plant and its ecosystem. Plasma Process. Polym. 2021;18:2000162. doi: 10.1002/ppap.202000162. DOI

Ussenov Y.A., Akildinova A., Kuanbaevich B.A., Serikovna K.A., Gabdullin M., Dosbolayev M., Daniyarov T., Ramazanov T. The effect of non-thermal atmospheric pressure plasma treatment of wheat seeds on germination parameters and α-amylase enzyme activity. IEEE Trans. Plasma Sci. 2022;50:330–340. doi: 10.1109/TPS.2022.3145831. DOI

Shainsky N., Dobrynin D., Ercan U., Joshi S., Ji H., Brooks A., Cho Y., Fridman A., Friedman G. Non-equilibrium plasma treatment of liquids, formation of plasma acid; Proceedings of the ISPC-20 20th International Symposium on Plasma Chemistry; Philadelphia, PA, USA. 24–29 July 2011; pp. 24–29.

Julák J., Scholtz V., Kotúčová S., Janoušková O. The persistent microbicidal effect in water exposed to the corona discharge. Phys. Med. 2012;28:230–239. doi: 10.1016/j.ejmp.2011.08.001. PubMed DOI

Julák J., Hujacová A., Scholtz V., Khun J., Holada K. Contribution to the chemistry of plasma-activated water. Plasma Phys. Rep. 2018;44:125–136. doi: 10.1134/S1063780X18010075. DOI

Royintarat T., Choi E.H., Boonyawan D., Seesuriyachan P., Wattanutchariya W. Chemical-free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin. Sci. Rep. 2020;10:1559. doi: 10.1038/s41598-020-58199-w. PubMed DOI PMC

Soni A., Choi J., Brightwell G. Plasma-activated water (PAW) as a disinfection technology for bacterial inactivation with a focus on fruit and vegetables. Foods. 2021;10:166. doi: 10.3390/foods10010166. PubMed DOI PMC

Al-Sharify Z.T., Al-Sharify T.A., Waleed B., Al-Azawi A.M. Investigative study on the interaction and applications of plasma activated water (PAW); Proceedings of the IOP Conference Series: Materials Science and Engineering; Ulaanbaatar, Mongolia. 10–13 September 2020; Bistrol, UK: IOP Publishing; 2020. p. 012042.

Hoeben W.F.L.M., van Ooij P.P., Schram D.C., Huiskamp T., Pemen A.J.M., Lukeš P. On the Possibilities of Straightforward Characterization of Plasma Activated Water. Plasma Chem. Plasma Processing. 2019;39:597–626. doi: 10.1007/s11090-019-09976-7. DOI

Hozák P., Scholtz V., Khun J., Mertová D., Vaňková E., Julák J. Further Contribution to the Chemistry of Plasma-Activated Water: Influence on Bacteria in Planktonic and Biofilm Forms. Plasma Phys. Rep. 2018;44:799–804. doi: 10.1134/S1063780X18090040. DOI

Ten Bosch L., Köhler R., Ortmann R., Wieneke S., Viöl W. Insecticidal effects of plasma treated water. Int. J. Environ. Res. Public Health. 2017;14:1460. doi: 10.3390/ijerph14121460. PubMed DOI PMC

Thirumdas R., Kothakota A., Annapure U., Siliveru K., Blundell R., Gatt R., Valdramidis V.P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018;77:21–31. doi: 10.1016/j.tifs.2018.05.007. DOI

Sharma H.P., Patel A.H., Pal M. Effect of plasma activated water (PAW) on fruits and vegetables. Am. J. Food Nutr. 2021;9:60–68. doi: 10.12691/ajfn-9-2-1. DOI

Zhao Y.-M., Patange A., Sun D.-W., Tiwari B. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr. Rev. Food Sci. Food Saf. 2020;19:3951–3979. doi: 10.1111/1541-4337.12644. PubMed DOI

Zhou R., Zhou R., Wang P., Xian Y., Mai-Prochnow A., Lu X., Cullen P.J., Ostrikov K., Bazaka K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020;53:303001. doi: 10.1088/1361-6463/ab81cf. DOI

Ercan U.K., Wang H., Ji H., Fridman G., Brooks A.D., Joshi S.G. Nonequilibrium Plasma-Activated Antimicrobial Solutions are Broad-Spectrum and Retain their Efficacies for Extended Period of Time. Plasma Process. Polym. 2013;10:544–555. doi: 10.1002/ppap.201200104. DOI

Schnabel U., Niquet R., Schmidt C., Stachowiak J., Schlüter O., Andrasch M., Ehlbeck J. Antimicrobial efficiency of non-thermal atmospheric pressure plasma processed water (PPW) against agricultural relevant bacteria suspensions. Int. J. Environ. Agric. Res. 2016;2:212–224.

Gao Y., Francis K., Zhang X. Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Res. Int. 2022;157:111246. doi: 10.1016/j.foodres.2022.111246. PubMed DOI

Nastasa V., Pasca A.-S., Malancus R.-N., Bostanaru A.-C., Ailincai L.-I., Ursu E.-L., Vasiliu A.-L., Minea B., Hnatiuc E., Mares M. Toxicity assessment of long-term exposure to non-thermal plasma activated water in mice. Int. J. Mol. Sci. 2021;22:11534. doi: 10.3390/ijms222111534. PubMed DOI PMC

Attri P., Kim Y.H., Park D.H., Park J.H., Hong Y.J., Uhm H.S., Kim K.-N., Fridman A., Choi E.H. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci. Rep. 2015;5:1–8. doi: 10.1038/srep09332. PubMed DOI PMC

Ikawa S., Tani A., Nakashima Y., Kitano K. Physicochemical properties of bactericidal plasma-treated water. J. Phys. D: Appl. Phys. 2016;49:425401. doi: 10.1088/0022-3727/49/42/425401. DOI

Mai-Prochnow A., Zhou R., Zhang T., Ostrikov K., Mugunthan S., Rice S.A., Cullen P.J. Interactions of plasma-activated water with biofilms: Inactivation, dispersal effects and mechanisms of action. npj Biofilms Microbiomes. 2021;7:11. doi: 10.1038/s41522-020-00180-6. PubMed DOI PMC

Volkov A.G., Bookal A., Hairston J.S., Roberts J., Taengwa G., Patel D. Mechanisms of multielectron reactions at the plasma/water interface: Interfacial catalysis, RONS, nitrogen fixation, and plasma activated water. Electrochim. Acta. 2021;385:138441. doi: 10.1016/j.electacta.2021.138441. DOI

Chen T.-P., Liang J., Su T.-L. Plasma-activated water: Antibacterial activity and artifacts? Environ. Sci. Pollut. Res. 2018;25:26699–26706. doi: 10.1007/s11356-017-9169-0. PubMed DOI

Medvecká V., Omasta S., Klas M., Mošovská S., Kyzek S., Zahoranová A. Plasma activated water prepared by different plasma sources: Physicochemical properties and decontamination effect on lentils sprouts. Plasma Sci. Technol. 2021;24:015503. doi: 10.1088/2058-6272/ac3410. DOI

Laroussi M., Bekeschus S., Keidar M., Bogaerts A., Fridman A., Lu X.P., Ostrikov K.K., Hori M., Stapelmann K., Miller V. Low temperature plasma for biology, hygiene, and medicine: Perspective and roadmap. IEEE Trans. Radiat. Plasma Med. Sci. 2021;6:127–157. doi: 10.1109/TRPMS.2021.3135118. DOI

Kelar Tučeková Z., Vacek L., Krumpolec R., Kelar J., Zemánek M., Černák M., Růžička F. Multi-hollow surface dielectric barrier discharge for bacterial biofilm decontamination. Molecules. 2021;26:910. doi: 10.3390/molecules26040910. PubMed DOI PMC

Pavlovich M.J., Chang H.-W., Sakiyama Y., Clark D.S., Graves D.B. Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J. Phys. D Appl. Phys. 2013;46:145202. doi: 10.1088/0022-3727/46/14/145202. DOI

Tarabová B., Lukeš P., Janda M., Hensel K., Šikurová L., Machala Z. Specificity of detection methods of nitrites and ozone in aqueous solutions activated by air plasma. Plasma Process. Polym. 2018;15:1800030. doi: 10.1002/ppap.201800030. DOI

Machala Z., Tarabová B., Sersenová D., Janda M., Hensel K. Chemical and antibacterial effects of plasma activated water: Correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J. Phys. D Appl. Phys. 2018;52:034002. doi: 10.1088/1361-6463/aae807. DOI

Čech J., Sťahel P., Ráheľ J., Prokeš L., Rudolf P., Maršálková E., Maršálek B. Mass Production of Plasma Activated Water: Case Studies of Its Biocidal Effect on Algae and Cyanobacteria. Water. 2020;12:3167. doi: 10.3390/w12113167. DOI

Park J.Y., Lee Y.N. Solubility and decomposition kinetics of nitrous acid in aqueous solution. J. Phys. Chem. 1988;92:6294–6302. doi: 10.1021/j100333a025. DOI

Tachibana K., Nakamura T. Comparative study of discharge schemes for production rates and ratios of reactive oxygen and nitrogen species in plasma activated water. J. Phys. D Appl. Phys. 2019;52:385202. doi: 10.1088/1361-6463/ab2529. DOI

Raud S., Raud J., Jõgi I., Piller C.-T., Plank T., Talviste R., Teesalu T., Vasar E. The production of plasma activated water in controlled ambient gases and its impact on cancer cell viability. Plasma Chem. Plasma Process. 2021;41:1381–1395. doi: 10.1007/s11090-021-10183-6. DOI

Bradu C., Kutasi K., Magureanu M., Puač N., Živković S. Reactive nitrogen species in plasma-activated water: Generation, chemistry and application in agriculture. J. Phys. D Appl. Phys. 2020;53:223001. doi: 10.1088/1361-6463/ab795a. DOI

Pryor W.A., Squadrito G.L. The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide. Am. J. Physiol. Lung Cell. Mol. Physiol. 1995;268:L699–L722. doi: 10.1152/ajplung.1995.268.5.L699. PubMed DOI

Naïtali M., Kamgang-Youbi G., Herry J.-M., Bellon-Fontaine M.-N., Brisset J.-L. Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl. Environ. Microbiol. 2010;76:7662–7664. doi: 10.1128/AEM.01615-10. PubMed DOI PMC

Hu X., Zhang Y., Wu R.A., Liao X., Liu D., Cullen P.J., Zhou R.-W., Ding T. Diagnostic analysis of reactive species in plasma-activated water (PAW): Current advances and outlooks. J. Phys. D Appl. Phys. 2021;55:023002. doi: 10.1088/1361-6463/ac286a. DOI

Kawasaki T., Koga K., Shiratani M. Experimental identification of the reactive oxygen species transported into a liquid by plasma irradiation. Jpn. J. Appl. Phys. 2020;59:110502. doi: 10.35848/1347-4065/abc3a1. DOI

Kutasi K., Krstulović N., Jurov A., Salamon K., Popović D., Milošević S. Controlling: The composition of plasma-activated water by Cu ions. Plasma Sources Sci. Technol. 2021;30:045015. doi: 10.1088/1361-6595/abf078. DOI

Kutasi K., Popović D., Krstulović N., Milošević S. Tuning the composition of plasma-activated water by a surface-wave microwave discharge and a kHz plasma jet. Plasma Sources Sci. Technol. 2019;28:095010. doi: 10.1088/1361-6595/ab3c2f. DOI

Fan L., Liu X., Ma Y., Xiang Q. Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts. J. Taibah Univ. Sci. 2020;14:823–830. doi: 10.1080/16583655.2020.1778326. DOI

Rathore V., Tiwari B.S., Nema S.K. Treatment of pea seeds with plasma activated water to enhance germination, plant growth, and plant composition. Plasma Chem. Plasma Process. 2022;42:109–129. doi: 10.1007/s11090-021-10211-5. DOI

Terebun P., Kwiatkowski M., Hensel K., Kopacki M., Pawłat J. Influence of plasma activated water generated in a gliding arc discharge reactor on germination of beetroot and carrot seeds. Appl. Sci. 2021;11:6164. doi: 10.3390/app11136164. DOI

Kučerová K., Henselová M., Slováková Ľ., Hensel K. Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity. Plasma Process. Polym. 2019;16:1800131. doi: 10.1002/ppap.201800131. DOI

Maniruzzaman M., Sinclair A.J., Cahill D.M., Wang X., Dai X.J. Nitrate and hydrogen peroxide generated in water by electrical discharges stimulate wheat seedling growth. Plasma Chem. Plasma Process. 2017;37:1393–1404. doi: 10.1007/s11090-017-9827-5. DOI

Guo Q., Wang Y., Zhang H., Qu G., Wang T., Sun Q., Liang D. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-017-16944-8. PubMed DOI PMC

Jiang J., He X., Li L., Li J., Shao H., Xu Q., Ye R., Dong Y. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci. Technol. 2014;16:54. doi: 10.1088/1009-0630/16/1/12. DOI

Los A., Ziuzina D., Boehm D., Cullen P.J., Bourke P. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Process. Polym. 2019;16:1800148. doi: 10.1002/ppap.201800148. DOI

Lotfy K., Al-Harbi N.A., El-Raheem A. Cold atmospheric pressure nitrogen plasma jet for enhancement germination of wheat seeds. Plasma Chem. Plasma Process. 2019;39:897–912. doi: 10.1007/s11090-019-09969-6. DOI

Meng Y., Qu G., Wang T., Sun Q., Liang D., Hu S. Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem. Plasma Process. 2017;37:1105–1119. doi: 10.1007/s11090-017-9799-5. DOI

Zahoranová A., Henselová M., Hudecová D., Kaliňáková B., Kováčik D., Medvecká V., Černák M. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem. Plasma Process. 2016;36:397–414. doi: 10.1007/s11090-015-9684-z. DOI

Gierczik K., Vukušić T., Kovács L., Székely A., Szalai G., Milošević S., Kocsy G., Kutasi K., Galiba G. Plasma-activated water to improve the stress tolerance of barley. Plasma Process. Polym. 2020;17:1900123. doi: 10.1002/ppap.201900123. DOI

Hunt R., Nicholls A. Stress and the coarse control of growth and root-shoot partitioning in herbaceous plants. Oikos. 1986;47:149–158. doi: 10.2307/3566039. DOI

Schlichting C.D. The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Syst. 1986;17:667–693. doi: 10.1146/annurev.es.17.110186.003315. DOI

Ghorbanpour M., Shahid M.A. Plant Stress Mitigations. Types, Technoloques and Functions. Academic Press; Cambridge, MA, USA: 2022.

Khun J., Scholtz V., Hozák P., Fitl P., Julák J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI

Šerá B., Kraus K., Hnilička F., Medvecká V., Zahoranová A., Šerý M. Effect of atmospheric non-thermal plasma treatment by DCSBD apparatus on sugar beet seeds. Rom. Rep. Phys. 2021;73:1.

Newest 20 citations...

See more in
Medvik | PubMed

Genetic and Environmental Factors Affecting Seed Germination

. 2023 Dec 08 ; 12 (24) : . [epub] 20231208

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...