Comparison of the Effect of Plasma-Activated Water and Artificially Prepared Plasma-Activated Water on Wheat Grain Properties
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
COOPERATIO Institutional grant from the 1st Faculty of Medicine
Charles University
PubMed
35684244
PubMed Central
PMC9183031
DOI
10.3390/plants11111471
PII: plants11111471
Knihovny.cz E-resources
- Keywords
- nonthermal plasma, plasma-activated water, seed treatment,
- Publication type
- Journal Article MeSH
Recently, much attention has been paid to the use of low-temperature plasmas and plasma-activated water (PAW) in various areas of biological research. In addition to its use in medicine, especially for low-temperature disinfection and sterilization, a number of works using plasma in various fields of agriculture have already appeared. While direct plasma action involves the effects of many highly reactive species with short lifetimes, the use of PAW involves the action of only long-lived particles. A number of articles have shown that the main stable components of PAW are H2O2, O3, HNO2, and HNO3. If so, then it would be faster and much more practical to artificially prepare PAW by directly mixing these chemicals in a given ratio. In this article, we review the literature describing the composition and properties of PAW prepared by various methods. We also draw attention to an otherwise rather neglected fact, that there are no significant differences between the action of PAW and artificially prepared PAW. The effect of PAW on the properties of wheat grains (Triticum aestivum L.) was determined. PAW exposure increased germination, shoot length, and fresh and dry shoot weight. The root length and R/S length, i.e., the ratio between the underground (R) and aboveground (S) length of the wheat seedlings, slightly decreased, while the other parameters changed only irregularly or not at all. Grains artificially inoculated with Escherichia coli were significantly decontaminated after only one hour of exposure to PAW, while Saccharomyces cerevisiae decontamination required soaking for 24 h. The differences between the PAW prepared by plasma treatment and the PAW prepared by artificially mixing the active ingredients, i.e., nitric acid and hydrogen peroxide, proved to be inconsistent and statistically insignificant. Therefore, it may be sufficient for further research to focus only on the effects of artificial PAW.
See more in PubMed
Chacha J.S., Zhang L., Ofoedu C.E., Suleiman R.A., Dotto J.M., Roobab U., Agunbiade A.O., Duguma H.T., Mkojera B.T., Hossaini S.M., et al. Revisiting Non-Thermal Food Processing and Preservation Methods—Action Mechanisms, Pros and Cons: A Technological Update (2016–2021) Foods. 2021;10:1430. doi: 10.3390/foods10061430. PubMed DOI PMC
Ikmal Misnal M.F., Redzuan N., Firdaus Zainal M.N., Raja Ibrahim R.K., Ahmad N., Agun L. Emerging cold plasma treatment on rice grains: A mini review. Chemosphere. 2021;274:129972. doi: 10.1016/j.chemosphere.2021.129972. PubMed DOI
Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI
Varilla C., Marcone M., Annor G.A. Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods. 2020;9:1435. doi: 10.3390/foods9101435. PubMed DOI PMC
Chandravarnan P., Agyei D., Ali A. Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends Food Sci. Technol. 2022;124:278–295. doi: 10.1016/j.tifs.2022.04.020. DOI
Adhikari B., Pangomm K., Veerana M., Mitra S., Park G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 2020;11:77. doi: 10.3389/fpls.2020.00077. PubMed DOI PMC
Liao X., Ding T., Xiang Q., Feng J. Response of foodborne pathogens to cold plasma. In: Ding T., Liao X., Feng J., editors. Stress Responses of Foodborne Pathogens. Springer International Publishing; Cham, Switzerland: 2022. pp. 281–313.
Liu K., Yang Z., Liu S. Study of the characteristics of DC multineedle-to-water plasma-activated water and Its germination inhibition efficiency: The effect of discharge mode and gas flow. IEEE Trans. Plasma Sci. 2020;48:969–979. doi: 10.1109/TPS.2020.2980040. DOI
Dobrin D., Magureanu M., Mandache N.B., Ionita M.-D. The effect of non-thermal plasma treatment on wheat germination and early growth. Innov. Food Sci. Emerg. Technol. 2015;29:255–260. doi: 10.1016/j.ifset.2015.02.006. DOI
Chaple S., Sarangapani C., Jones J., Carey E., Causeret L., Genson A., Duffy B., Bourke P. Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innov. Food Sci. Emerg. Technol. 2020;66:102529. doi: 10.1016/j.ifset.2020.102529. DOI
Iqbal T., Farooq M., Afsheen S., Abrar M., Yousaf M., Ijaz M. Cold plasma treatment and laser irradiation of Triticum spp. seeds for sterilization and germination. J. Laser Appl. 2019;31:042013. doi: 10.2351/1.5109764. DOI
Jirešová J., Šerá B., Scholtz V., Khun J., Šerý M. The dormancy overcoming and affection of early growth of alfalfa (Medicago sativa L.) seeds by non-thermal plasma and plasma activated water. Rom. Rep. Phys. 2021;73:4.
Julák J. MDPI Encyclopedia (Molecular Diversity Preservation International Encyclopedia) MDPI; Basel, Switzerland: 2021. Non-thermal plasma for decontamination of cereals: An overview.
Selvamuthukumaran M. Non-Thermal Processing Technologies for the Grain Industry. CRC Press; Boca Raton, FL, USA: 2021.
Scholtz V., Jirešová J., Šerá B., Julák J. A review of microbial decontamination of cereals by non-thermal plasma. Foods. 2021;10:2927. doi: 10.3390/foods10122927. PubMed DOI PMC
Scholtz V., Šerá B., Khun J., Šerý M., Julák J. Effects of nonthermal plasma on wheat grains and products. J. Food Qual. 2019;2019:7917825. doi: 10.1155/2019/7917825. DOI
Sutar S.A., Thirumdas R., Chaudhari B.B., Deshmukh R.R., Annapure U.S. Effect of cold plasma on insect infestation and keeping quality of stored wheat flour. J. Stored Prod. Res. 2021;92:101774. doi: 10.1016/j.jspr.2021.101774. DOI
Šerá B., Scholtz V., Jirešová J., Khun J., Julák J., Šerý M. Effects of non-thermal plasma treatment on seed germination and early growth of leguminous plants—A review. Plants. 2021;10:1616. doi: 10.3390/plants10081616. PubMed DOI PMC
Mildaziene V., Ivankov A., Sera B., Baniulis D. Biochemical and physiological plant processes affected by seed treatment with non-thermal plasma. Plants. 2022;11:856. doi: 10.3390/plants11070856. PubMed DOI PMC
Pańka D., Jeske M., Łukanowski A., Baturo-Cieśniewska A., Prus P., Maitah M., Maitah K., Malec K., Rymarz D., Muhire J.d.D., et al. Can cold plasma be used for boosting plant growth and plant protection in sustainable plant production? Agronomy. 2022;12:841. doi: 10.3390/agronomy12040841. DOI
Ranieri P., Sponsel N., Kizer J., Rojas-Pierce M., Hernández R., Gatiboni L., Grunden A., Stapelmann K. Plasma agriculture: Review from the perspective of the plant and its ecosystem. Plasma Process. Polym. 2021;18:2000162. doi: 10.1002/ppap.202000162. DOI
Ussenov Y.A., Akildinova A., Kuanbaevich B.A., Serikovna K.A., Gabdullin M., Dosbolayev M., Daniyarov T., Ramazanov T. The effect of non-thermal atmospheric pressure plasma treatment of wheat seeds on germination parameters and α-amylase enzyme activity. IEEE Trans. Plasma Sci. 2022;50:330–340. doi: 10.1109/TPS.2022.3145831. DOI
Shainsky N., Dobrynin D., Ercan U., Joshi S., Ji H., Brooks A., Cho Y., Fridman A., Friedman G. Non-equilibrium plasma treatment of liquids, formation of plasma acid; Proceedings of the ISPC-20 20th International Symposium on Plasma Chemistry; Philadelphia, PA, USA. 24–29 July 2011; pp. 24–29.
Julák J., Scholtz V., Kotúčová S., Janoušková O. The persistent microbicidal effect in water exposed to the corona discharge. Phys. Med. 2012;28:230–239. doi: 10.1016/j.ejmp.2011.08.001. PubMed DOI
Julák J., Hujacová A., Scholtz V., Khun J., Holada K. Contribution to the chemistry of plasma-activated water. Plasma Phys. Rep. 2018;44:125–136. doi: 10.1134/S1063780X18010075. DOI
Royintarat T., Choi E.H., Boonyawan D., Seesuriyachan P., Wattanutchariya W. Chemical-free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin. Sci. Rep. 2020;10:1559. doi: 10.1038/s41598-020-58199-w. PubMed DOI PMC
Soni A., Choi J., Brightwell G. Plasma-activated water (PAW) as a disinfection technology for bacterial inactivation with a focus on fruit and vegetables. Foods. 2021;10:166. doi: 10.3390/foods10010166. PubMed DOI PMC
Al-Sharify Z.T., Al-Sharify T.A., Waleed B., Al-Azawi A.M. Investigative study on the interaction and applications of plasma activated water (PAW); Proceedings of the IOP Conference Series: Materials Science and Engineering; Ulaanbaatar, Mongolia. 10–13 September 2020; Bistrol, UK: IOP Publishing; 2020. p. 012042.
Hoeben W.F.L.M., van Ooij P.P., Schram D.C., Huiskamp T., Pemen A.J.M., Lukeš P. On the Possibilities of Straightforward Characterization of Plasma Activated Water. Plasma Chem. Plasma Processing. 2019;39:597–626. doi: 10.1007/s11090-019-09976-7. DOI
Hozák P., Scholtz V., Khun J., Mertová D., Vaňková E., Julák J. Further Contribution to the Chemistry of Plasma-Activated Water: Influence on Bacteria in Planktonic and Biofilm Forms. Plasma Phys. Rep. 2018;44:799–804. doi: 10.1134/S1063780X18090040. DOI
Ten Bosch L., Köhler R., Ortmann R., Wieneke S., Viöl W. Insecticidal effects of plasma treated water. Int. J. Environ. Res. Public Health. 2017;14:1460. doi: 10.3390/ijerph14121460. PubMed DOI PMC
Thirumdas R., Kothakota A., Annapure U., Siliveru K., Blundell R., Gatt R., Valdramidis V.P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018;77:21–31. doi: 10.1016/j.tifs.2018.05.007. DOI
Sharma H.P., Patel A.H., Pal M. Effect of plasma activated water (PAW) on fruits and vegetables. Am. J. Food Nutr. 2021;9:60–68. doi: 10.12691/ajfn-9-2-1. DOI
Zhao Y.-M., Patange A., Sun D.-W., Tiwari B. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr. Rev. Food Sci. Food Saf. 2020;19:3951–3979. doi: 10.1111/1541-4337.12644. PubMed DOI
Zhou R., Zhou R., Wang P., Xian Y., Mai-Prochnow A., Lu X., Cullen P.J., Ostrikov K., Bazaka K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020;53:303001. doi: 10.1088/1361-6463/ab81cf. DOI
Ercan U.K., Wang H., Ji H., Fridman G., Brooks A.D., Joshi S.G. Nonequilibrium Plasma-Activated Antimicrobial Solutions are Broad-Spectrum and Retain their Efficacies for Extended Period of Time. Plasma Process. Polym. 2013;10:544–555. doi: 10.1002/ppap.201200104. DOI
Schnabel U., Niquet R., Schmidt C., Stachowiak J., Schlüter O., Andrasch M., Ehlbeck J. Antimicrobial efficiency of non-thermal atmospheric pressure plasma processed water (PPW) against agricultural relevant bacteria suspensions. Int. J. Environ. Agric. Res. 2016;2:212–224.
Gao Y., Francis K., Zhang X. Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Res. Int. 2022;157:111246. doi: 10.1016/j.foodres.2022.111246. PubMed DOI
Nastasa V., Pasca A.-S., Malancus R.-N., Bostanaru A.-C., Ailincai L.-I., Ursu E.-L., Vasiliu A.-L., Minea B., Hnatiuc E., Mares M. Toxicity assessment of long-term exposure to non-thermal plasma activated water in mice. Int. J. Mol. Sci. 2021;22:11534. doi: 10.3390/ijms222111534. PubMed DOI PMC
Attri P., Kim Y.H., Park D.H., Park J.H., Hong Y.J., Uhm H.S., Kim K.-N., Fridman A., Choi E.H. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci. Rep. 2015;5:1–8. doi: 10.1038/srep09332. PubMed DOI PMC
Ikawa S., Tani A., Nakashima Y., Kitano K. Physicochemical properties of bactericidal plasma-treated water. J. Phys. D: Appl. Phys. 2016;49:425401. doi: 10.1088/0022-3727/49/42/425401. DOI
Mai-Prochnow A., Zhou R., Zhang T., Ostrikov K., Mugunthan S., Rice S.A., Cullen P.J. Interactions of plasma-activated water with biofilms: Inactivation, dispersal effects and mechanisms of action. npj Biofilms Microbiomes. 2021;7:11. doi: 10.1038/s41522-020-00180-6. PubMed DOI PMC
Volkov A.G., Bookal A., Hairston J.S., Roberts J., Taengwa G., Patel D. Mechanisms of multielectron reactions at the plasma/water interface: Interfacial catalysis, RONS, nitrogen fixation, and plasma activated water. Electrochim. Acta. 2021;385:138441. doi: 10.1016/j.electacta.2021.138441. DOI
Chen T.-P., Liang J., Su T.-L. Plasma-activated water: Antibacterial activity and artifacts? Environ. Sci. Pollut. Res. 2018;25:26699–26706. doi: 10.1007/s11356-017-9169-0. PubMed DOI
Medvecká V., Omasta S., Klas M., Mošovská S., Kyzek S., Zahoranová A. Plasma activated water prepared by different plasma sources: Physicochemical properties and decontamination effect on lentils sprouts. Plasma Sci. Technol. 2021;24:015503. doi: 10.1088/2058-6272/ac3410. DOI
Laroussi M., Bekeschus S., Keidar M., Bogaerts A., Fridman A., Lu X.P., Ostrikov K.K., Hori M., Stapelmann K., Miller V. Low temperature plasma for biology, hygiene, and medicine: Perspective and roadmap. IEEE Trans. Radiat. Plasma Med. Sci. 2021;6:127–157. doi: 10.1109/TRPMS.2021.3135118. DOI
Kelar Tučeková Z., Vacek L., Krumpolec R., Kelar J., Zemánek M., Černák M., Růžička F. Multi-hollow surface dielectric barrier discharge for bacterial biofilm decontamination. Molecules. 2021;26:910. doi: 10.3390/molecules26040910. PubMed DOI PMC
Pavlovich M.J., Chang H.-W., Sakiyama Y., Clark D.S., Graves D.B. Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J. Phys. D Appl. Phys. 2013;46:145202. doi: 10.1088/0022-3727/46/14/145202. DOI
Tarabová B., Lukeš P., Janda M., Hensel K., Šikurová L., Machala Z. Specificity of detection methods of nitrites and ozone in aqueous solutions activated by air plasma. Plasma Process. Polym. 2018;15:1800030. doi: 10.1002/ppap.201800030. DOI
Machala Z., Tarabová B., Sersenová D., Janda M., Hensel K. Chemical and antibacterial effects of plasma activated water: Correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J. Phys. D Appl. Phys. 2018;52:034002. doi: 10.1088/1361-6463/aae807. DOI
Čech J., Sťahel P., Ráheľ J., Prokeš L., Rudolf P., Maršálková E., Maršálek B. Mass Production of Plasma Activated Water: Case Studies of Its Biocidal Effect on Algae and Cyanobacteria. Water. 2020;12:3167. doi: 10.3390/w12113167. DOI
Park J.Y., Lee Y.N. Solubility and decomposition kinetics of nitrous acid in aqueous solution. J. Phys. Chem. 1988;92:6294–6302. doi: 10.1021/j100333a025. DOI
Tachibana K., Nakamura T. Comparative study of discharge schemes for production rates and ratios of reactive oxygen and nitrogen species in plasma activated water. J. Phys. D Appl. Phys. 2019;52:385202. doi: 10.1088/1361-6463/ab2529. DOI
Raud S., Raud J., Jõgi I., Piller C.-T., Plank T., Talviste R., Teesalu T., Vasar E. The production of plasma activated water in controlled ambient gases and its impact on cancer cell viability. Plasma Chem. Plasma Process. 2021;41:1381–1395. doi: 10.1007/s11090-021-10183-6. DOI
Bradu C., Kutasi K., Magureanu M., Puač N., Živković S. Reactive nitrogen species in plasma-activated water: Generation, chemistry and application in agriculture. J. Phys. D Appl. Phys. 2020;53:223001. doi: 10.1088/1361-6463/ab795a. DOI
Pryor W.A., Squadrito G.L. The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide. Am. J. Physiol. Lung Cell. Mol. Physiol. 1995;268:L699–L722. doi: 10.1152/ajplung.1995.268.5.L699. PubMed DOI
Naïtali M., Kamgang-Youbi G., Herry J.-M., Bellon-Fontaine M.-N., Brisset J.-L. Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl. Environ. Microbiol. 2010;76:7662–7664. doi: 10.1128/AEM.01615-10. PubMed DOI PMC
Hu X., Zhang Y., Wu R.A., Liao X., Liu D., Cullen P.J., Zhou R.-W., Ding T. Diagnostic analysis of reactive species in plasma-activated water (PAW): Current advances and outlooks. J. Phys. D Appl. Phys. 2021;55:023002. doi: 10.1088/1361-6463/ac286a. DOI
Kawasaki T., Koga K., Shiratani M. Experimental identification of the reactive oxygen species transported into a liquid by plasma irradiation. Jpn. J. Appl. Phys. 2020;59:110502. doi: 10.35848/1347-4065/abc3a1. DOI
Kutasi K., Krstulović N., Jurov A., Salamon K., Popović D., Milošević S. Controlling: The composition of plasma-activated water by Cu ions. Plasma Sources Sci. Technol. 2021;30:045015. doi: 10.1088/1361-6595/abf078. DOI
Kutasi K., Popović D., Krstulović N., Milošević S. Tuning the composition of plasma-activated water by a surface-wave microwave discharge and a kHz plasma jet. Plasma Sources Sci. Technol. 2019;28:095010. doi: 10.1088/1361-6595/ab3c2f. DOI
Fan L., Liu X., Ma Y., Xiang Q. Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts. J. Taibah Univ. Sci. 2020;14:823–830. doi: 10.1080/16583655.2020.1778326. DOI
Rathore V., Tiwari B.S., Nema S.K. Treatment of pea seeds with plasma activated water to enhance germination, plant growth, and plant composition. Plasma Chem. Plasma Process. 2022;42:109–129. doi: 10.1007/s11090-021-10211-5. DOI
Terebun P., Kwiatkowski M., Hensel K., Kopacki M., Pawłat J. Influence of plasma activated water generated in a gliding arc discharge reactor on germination of beetroot and carrot seeds. Appl. Sci. 2021;11:6164. doi: 10.3390/app11136164. DOI
Kučerová K., Henselová M., Slováková Ľ., Hensel K. Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity. Plasma Process. Polym. 2019;16:1800131. doi: 10.1002/ppap.201800131. DOI
Maniruzzaman M., Sinclair A.J., Cahill D.M., Wang X., Dai X.J. Nitrate and hydrogen peroxide generated in water by electrical discharges stimulate wheat seedling growth. Plasma Chem. Plasma Process. 2017;37:1393–1404. doi: 10.1007/s11090-017-9827-5. DOI
Guo Q., Wang Y., Zhang H., Qu G., Wang T., Sun Q., Liang D. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-017-16944-8. PubMed DOI PMC
Jiang J., He X., Li L., Li J., Shao H., Xu Q., Ye R., Dong Y. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci. Technol. 2014;16:54. doi: 10.1088/1009-0630/16/1/12. DOI
Los A., Ziuzina D., Boehm D., Cullen P.J., Bourke P. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Process. Polym. 2019;16:1800148. doi: 10.1002/ppap.201800148. DOI
Lotfy K., Al-Harbi N.A., El-Raheem A. Cold atmospheric pressure nitrogen plasma jet for enhancement germination of wheat seeds. Plasma Chem. Plasma Process. 2019;39:897–912. doi: 10.1007/s11090-019-09969-6. DOI
Meng Y., Qu G., Wang T., Sun Q., Liang D., Hu S. Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem. Plasma Process. 2017;37:1105–1119. doi: 10.1007/s11090-017-9799-5. DOI
Zahoranová A., Henselová M., Hudecová D., Kaliňáková B., Kováčik D., Medvecká V., Černák M. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem. Plasma Process. 2016;36:397–414. doi: 10.1007/s11090-015-9684-z. DOI
Gierczik K., Vukušić T., Kovács L., Székely A., Szalai G., Milošević S., Kocsy G., Kutasi K., Galiba G. Plasma-activated water to improve the stress tolerance of barley. Plasma Process. Polym. 2020;17:1900123. doi: 10.1002/ppap.201900123. DOI
Hunt R., Nicholls A. Stress and the coarse control of growth and root-shoot partitioning in herbaceous plants. Oikos. 1986;47:149–158. doi: 10.2307/3566039. DOI
Schlichting C.D. The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Syst. 1986;17:667–693. doi: 10.1146/annurev.es.17.110186.003315. DOI
Ghorbanpour M., Shahid M.A. Plant Stress Mitigations. Types, Technoloques and Functions. Academic Press; Cambridge, MA, USA: 2022.
Khun J., Scholtz V., Hozák P., Fitl P., Julák J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI
Šerá B., Kraus K., Hnilička F., Medvecká V., Zahoranová A., Šerý M. Effect of atmospheric non-thermal plasma treatment by DCSBD apparatus on sugar beet seeds. Rom. Rep. Phys. 2021;73:1.
Genetic and Environmental Factors Affecting Seed Germination