A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
Charles University research program Progress Q25
Charles University
PubMed
34945478
PubMed Central
PMC8701285
DOI
10.3390/foods10122927
PII: foods10122927
Knihovny.cz E-resources
- Keywords
- active particles, decontamination, electrical discharge, food contamination,
- Publication type
- Journal Article MeSH
- Review MeSH
Cereals, an important food for humans and animals, may carry microbial contamination undesirable to the consumer or to the next generation of plants. Currently, non-thermal plasma (NTP) is often considered a new and safe microbicidal agent without or with very low adverse side effects. NTP is a partially or fully ionized gas at room temperature, typically generated by various electric discharges and rich in reactive particles. This review summarizes the effects of NTP on various types of cereals and products. NTP has undisputed beneficial effects with high potential for future practical use in decontamination and disinfection.
See more in PubMed
King D.L., Zeug R., Pettit J. Cereal Grains. Elsevier; Amsterdam, The Netherlands: 2010. Appendix 1: Composition of grains and grain products; pp. 487–493.
Esfandi R., Walters M.E., Tsopmo A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon. 2019;5:e01538. doi: 10.1016/j.heliyon.2019.e01538. PubMed DOI PMC
Homan M.M. Beer and Its Drinkers: An Ancient Near Eastern Love Story. Near-East. Archaeol. 2004;67:84–95. doi: 10.2307/4132364. DOI
Ranieri P., Sponsel N., Kizer J., Rojas-Pierce M., Hernández R., Gatiboni L., Grunden A., Stapelmann K. Plasma agriculture: Review from the perspective of the plant and its ecosystem. Plasma Process. Polym. 2021;18:2000162. doi: 10.1002/ppap.202000162. DOI
Dudoiu R., Cristea S., Lupu C., Popa D., Oprea M. Micoflora associated with maize grains during storage period. AgroLife Sci. J. 2016;5:63–68.
Juarez-Morales L.A., Hernandez-Cocoletzi H., Chigo-Anota E., Aguila-Almanza E., Tenorio-Arvide M.G. Chitosan-Aflatoxins B1, M1 Interaction: A Computational Approach. Curr. Org. Chem. 2017;21:2877–2883. doi: 10.2174/1385272821666170511165159. DOI
Luo S., Du H., Kebede H., Liu Y., Xing F. Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control. 2021;127:108120. doi: 10.1016/j.foodcont.2021.108120. DOI
Milani J., Maleki G. Effects of processing on mycotoxin stability in cereals. J. Sci. Food Agric. 2014;94:2372–2375. doi: 10.1002/jsfa.6600. PubMed DOI
Sheijooni-Fumani N., Hassan J., Yousefi S.R. Determination of aflatoxin B1 in cereals by homogeneous liquid–liquid extraction coupled to high performance liquid chromatography-fluorescence detection. J. Sep. Sci. 2011;34:1333. doi: 10.1002/jssc.201000882. PubMed DOI
Moustafa M., Taha T., Elnouby M., El-Deeb N., Hamad G., Abusaied M.A., Alrumman S. Potential detoxification of aflatoxin B2 using Kluyveromyces lactis and Saccharomyces cerevisiae integrated nanofibers. Biocell. 2017;41:67. doi: 10.32604/biocell.2017.41.067. DOI
Misra N.N., Tiwari B.K., Raghavarao K.S.M.S., Cullen P.J. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Eng. Rev. 2011;3:159–170. doi: 10.1007/s12393-011-9041-9. DOI
Niemira B.A. Cold Plasma Decontamination of Foods. Annu. Rev. Food Sci. Technol. 2012;3:125–142. doi: 10.1146/annurev-food-022811-101132. PubMed DOI
Chizoba Ekezie F.-G., Sun D.-W., Cheng J.-H. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci. Technol. 2017;69:46–58. doi: 10.1016/j.tifs.2017.08.007. DOI
Chacha J.S., Zhang L., Ofoedu C.E., Suleiman R.A., Dotto J.M., Roobab U., Agunbiade A.O., Duguma H.T., Mkojera B.T., Hossaini S.M., et al. Revisiting Non-Thermal Food Processing and Preservation Methods—Action Mechanisms, Pros and Cons: A Technological Update (2016–2021) Foods. 2021;10:1430. doi: 10.3390/foods10061430. PubMed DOI PMC
Domonkos M., Tichá P., Trejbal J., Demo P. Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Appl. Sci. 2021;11:4809. doi: 10.3390/app11114809. DOI
Pankaj S.K., Wan Z., Keener K.M. Effects of Cold Plasma on Food Quality: A Review. Foods. 2018;7:4. doi: 10.3390/foods7010004. PubMed DOI PMC
Ehlbeck J., Schnabel U., Polak M., Winter J., Von Woedtke T., Brandenburg R., Von dem Hagen T., Weltmann K.-D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D Appl. Phys. 2011;44:013002. doi: 10.1088/0022-3727/44/1/013002. DOI
Khun J., Scholtz V., Hozák P., Fitl P., Julák J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI
Laroussi M. Plasma Medicine: A Brief Introduction. Plasma. 2018;1:5. doi: 10.3390/plasma1010005. DOI
Laroussi M. Low-Temperature Plasmas for Medicine? IEEE Trans. Plasma Sci. 2009;37:714–725. doi: 10.1109/TPS.2009.2017267. DOI
Laroussi M., Lu X., Keidar M. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J. Appl. Phys. 2017;122:020901. doi: 10.1063/1.4993710. DOI
Laroussi M., Akan T. Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review. Plasma Process. Polym. 2007;4:777–788. doi: 10.1002/ppap.200700066. DOI
Šimončicová J., Kryštofová S., Medvecká V., Ďurišová K., Kaliňáková B. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019;103:5117–5129. doi: 10.1007/s00253-019-09877-x. PubMed DOI
Yousfi M., Merbahi N., Sarrette J.P., Eichwald O., Ricard A., Gardou J.P., Ducasse O., Benhenni M. Non Thermal Plasma Sources of Production of Active Species for Biomedical Uses: Analyses, Optimization and Prospect. In: Fazel R., editor. Biomedical Engineering—Frontiers and Challenges. InTech; London, UK: 2011.
Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI
Liu D.X., Liu Z.C., Chen C., Yang A.J., Li D., Rong M.Z., Chen H.L., Kong M.G. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016;6:23737. doi: 10.1038/srep23737. PubMed DOI PMC
Bourke P., Ziuzina D., Boehm D., Cullen P.J., Keener K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018;36:615–626. doi: 10.1016/j.tibtech.2017.11.001. PubMed DOI
Julák J., Scholtz V. The potential for use of non-thermal plasma in microbiology and medicine. Epidemiol. Mikrobiol. Imunol. Cas. Spol. Epidemiol. Mikrobiol. Ceske Lek. Spol. JE Purkyne. 2020;69:29–37. PubMed
Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI
Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B At. Spectrosc. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI
Von Woedtke T., Schmidt A., Bekeschus S., Wende K., Weltmann K.-D. Plasma Medicine: A Field of Applied Redox Biology. In Vivo. 2019;33:1011–1026. doi: 10.21873/invivo.11570. PubMed DOI PMC
Zhu Y., Li C., Cui H., Lin L. Feasibility of cold plasma for the control of biofilms in food industry. Trends Food Sci. Technol. 2020;99:142–151. doi: 10.1016/j.tifs.2020.03.001. DOI
Holubová Ľ., Kyzek S., Ďurovcová I., Fabová J., Horváthová E., Ševčovičová A., Gálová E. Non-Thermal Plasma—A New Green Priming Agent for Plants? Int. J. Mol. Sci. 2020;21:9466. doi: 10.3390/ijms21249466. PubMed DOI PMC
Scholtz V., Šerá B., Khun J., Šerý M., Julák J. Effects of Nonthermal Plasma on Wheat Grains and Products. J. Food Qual. 2019;2019:7917825. doi: 10.1155/2019/7917825. DOI
Magallanes López A.M., Simsek S. Pathogens control on wheat and wheat flour: A review. Cereal Chem. 2021;98:17–30. doi: 10.1002/cche.10345. DOI
Siddique S.S., Hardy G.S.J., Bayliss K.L. Cold plasma: A potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol. 2018;67:1011–1021. doi: 10.1111/ppa.12825. DOI
Čolović R., Puvača N., Cheli F., Avantaggiato G., Greco D., Đuragić O., Kos J., Pinotti L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins. 2019;11:617. doi: 10.3390/toxins11110617. PubMed DOI PMC
Misra N.N., Yadav B., Roopesh M.S., Jo C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications: Cold plasma for effective fungal. Compr. Rev. Food Sci. Food Saf. 2019;18:106–120. doi: 10.1111/1541-4337.12398. PubMed DOI
Ten Bosch L., Pfohl K., Avramidis G., Wieneke S., Viöl W., Karlovsky P. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins. 2017;9:97. doi: 10.3390/toxins9030097. PubMed DOI PMC
Yousefi M., Mohammadi M.A., Khajavi M.Z., Ehsani A., Scholtz V. Application of Novel Non-Thermal Physical Technologies to Degrade Mycotoxins. J. Fungi. 2021;7:395. doi: 10.3390/jof7050395. PubMed DOI PMC
Kaur M., Hüberli D., Bayliss K.L. Cold plasma: Exploring a new option for management of postharvest fungal pathogens, mycotoxins and insect pests in Australian stored cereal grain. Crop. Pasture Sci. 2020;71:715. doi: 10.1071/CP20078. DOI
Al-Sharify Z.T., Al-Sharify T.A., al-Azawi A.M. Investigative Study on the Interaction and Applications of Plasma Activated Water (PAW); Proceedings of the IOP Conference Series: Materials Science and Engineering, The International Conference on Engineering and Advanced Technology (ICEAT 2020); Assiut, Egypt. 11–12 February 2020; p. 012042. DOI
Julák J., Hujacová A., Scholtz V., Khun J., Holada K. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys. Rep. 2018;44:125–136. doi: 10.1134/S1063780X18010075. DOI
Zhou R., Zhou R., Wang P., Xian Y., Mai-Prochnow A., Lu X., Cullen P.J., Ostrikov K.K., Bazaka K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020;53:303001. doi: 10.1088/1361-6463/ab81cf. DOI
Ma R., Wang G., Tian Y., Wang K., Zhang J., Fang J. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J. Hazard. Mater. 2015;300:643–651. doi: 10.1016/j.jhazmat.2015.07.061. PubMed DOI
Thomas-Popo E., Mendonça A., Misra N.N., Little A., Wan Z., Moutiq R., Coleman S., Keener K. Inactivation of Shiga-toxin-producing Escherichia coli, Salmonella enterica and natural microflora on tempered wheat grains by atmospheric cold plasma. Food Control. 2019;104:231–239. doi: 10.1016/j.foodcont.2019.04.025. DOI
Butscher D., Zimmermann D., Schuppler M., Von Rohr P.R. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control. 2016;60:636–645. doi: 10.1016/j.foodcont.2015.09.003. DOI
Butscher D., Schlup T., Roth C., Müller-Fischer N., Gantenbein-Demarchi C., Von Rohr P.R. Inactivation of microorganisms on granular materials: Reduction of Bacillus amyloliquefaciens endospores on wheat grains in a low pressure plasma circulating fluidized bed reactor. J. Food Eng. 2015;159:48–56. doi: 10.1016/j.jfoodeng.2015.03.009. DOI
Selcuk M., Oksuz L., Basaran P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour. Technol. 2008;99:5104–5109. doi: 10.1016/j.biortech.2007.09.076. PubMed DOI
Hoppanová L., Medvecká V., Dylíková J., Hudecová D., Kaliňáková B., Kryštofová S., Zahoranová A. Low-temperature plasma applications in chemical fungicide treatment reduction. Acta Chim. Slovaca. 2020;13:26–33. doi: 10.2478/acs-2020-0005. DOI
Filatova I., Lyushkevich V., Goncharik S., Zhukovsky A., Krupenko N., Kalatskaja J. The effect of low-pressure plasma treatment of seeds on the plant resistance to pathogens and crop yields. J. Phys. D Appl. Phys. 2020;53:244001. doi: 10.1088/1361-6463/ab7960. DOI
Iqbal T., Farooq M., Afsheen S., Abrar M., Yousaf M., Ijaz M. Cold plasma treatment and laser irradiation of Triticum spp. seeds for sterilization and germination. J. Laser Appl. 2019;31:042013. doi: 10.2351/1.5109764. DOI
Los A., Ziuzina D., Akkermans S., Boehm D., Cullen P.J., Van Impe J., Bourke P. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Res. Int. 2018;106:509–521. doi: 10.1016/j.foodres.2018.01.009. PubMed DOI
Los A., Ziuzina D., Boehm D., Bourke P. Effects of cold plasma on wheat grain microbiome and antimicrobial efficacy against challenge pathogens and their resistance. Int. J. Food Microbiol. 2020;335:108889. doi: 10.1016/j.ijfoodmicro.2020.108889. PubMed DOI
Kordas L., Pusz W., Czapka T., Kacprzyk R. The effect of low-temperature plasma on fungus colonization of winter wheat grain and seed quality. Pol. J. Environ. Stud. 2015;24:433–438.
Shahrzad Mohammadi S., Dorranian D., Tirgari S., Shojaee M. The effect of non-thermal plasma to control of stored product pests and changes in some characters of wheat materials. J. Biodivers. Environ. Sci. 2015;7:150–156.
Ratish Ramanan K., Sarumathi R., Mahendran R. Influence of cold plasma on mortality rate of different life stages of Tribolium castaneum on refined wheat flour. J. Stored Prod. Res. 2018;77:126–134. doi: 10.1016/j.jspr.2018.04.006. DOI
Carpen L., Chireceanu C., Teodorescu M., Chiriloaie A., Teodoru A., Dinescu G. The effect of argon/oxygen and argon/nitrogen atmospheric plasma jet on stored products pests. Rom. J. Phys. 2019;64:503–516.
Afsheen S., Fatima U., Iqbal T., Abrar M., Muhammad S., Saeed A., Isa M., Malik M.F., Shamas S. Influence of cold plasma treatment on insecticidal properties of wheat seeds against red flour beetles. Plasma Sci. Technol. 2019;21:085506. doi: 10.1088/2058-6272/ab19ee. DOI
Zahoranová A., Henselová M., Hudecová D. Effect of Cold Atmospheric Pressure Plasma on the Wheat Seedlings Vigor and on the Inactivation of Microorganisms on the Seeds Surface. Plasma Chem. Plasma Process. 2016;36:397–414. doi: 10.1007/s11090-015-9684-z. DOI
Ochi A., Konishi H., Ando S., Sato K., Yokoyama K., Tsushima S., Yoshida S., Morikawa T., Kaneko T., Takahashi H. Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating rice seeds with atmospheric plasma. Plant Pathol. 2017;66:67–76. doi: 10.1111/ppa.12555. DOI
Hayashi N., Yagyu Y., Yonesu A., Shiratani M. Sterilization characteristics of the surfaces of agricultural products using active oxygen species generated by atmospheric plasma and UV light. Jpn. J. Appl. Phys. 2014;53:05FR03. doi: 10.7567/JJAP.53.05FR03. DOI
Lee S.Y., Lee W.K., Lee J.W., Chung M.S., Oh S.W., Shin J.K., Min S.C. Microbial Decontamination of Rice Germ Using a Large-Scale Plasma Jet-Pulsed Light-Ultraviolet-C Integrated Treatment System. Food Bioprocess Technol. 2021;14:542–553. doi: 10.1007/s11947-021-02590-6. DOI
Kang M.H., Pengkit A., Choi K., Jeon S.S., Choi H.W., Shin D.B., Choi E.H., Uhm H.S., Park G. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma. PLoS ONE. 2015;10:e0139263. doi: 10.1371/journal.pone.0139263. PubMed DOI PMC
Park H., Puligundla P., Mok C. Cold plasma decontamination of brown rice grains: Impact on biochemical and sensory qualities of their corresponding seedlings and aqueous tea infusions. LWT. 2020;131:109508. doi: 10.1016/j.lwt.2020.109508. DOI
Khamsen N., Onwimol D., Teerakawanich N., Dechanupaprittha S., Kanokbannakorn W., Hongesombut K., Srisonphan S. Rice (Oryza sativa L.) Seed Sterilization and Germination Enhancement via Atmospheric Hybrid Nonthermal Discharge Plasma. ACS Appl. Mater. Interfaces. 2016;8:19268–19275. doi: 10.1021/acsami.6b04555. PubMed DOI
Szőke C., Nagy Z., Gierczik K., Székely A., Spitkól T., Zsuboril Z.T., Galiba G., Marton C.L., Kutasi K. Effect of the afterglows of low pressure Ar/N2-O2 surface-wave microwave discharges on barley and maize seeds. Plasma Process Polym. 2018;15:1700138. doi: 10.1002/ppap.201700138. DOI
Zahoranová A., Hoppanová L., Šimoncicová J., Tuceková Z., Medvecká V., Hudecová D. Effect of Cold Atmospheric Pressure Plasma on Maize Seeds: Enhancement of Seedlings Growth and Surface Microorganisms Inactivation. Plasma Chem. Plasma Process. 2018;38:969–988. doi: 10.1007/s11090-018-9913-3. DOI
Brasoveanu M., Nemţanu M., Surdu-Bob C., Karaca G., Erper I. Effect of glow discharge plasma on germination and fungal load of some cereal seeds. Rom. Rep. Phys. 2015;67:617–624.
Durek J., Schlüter O., Roscher A., Durek P., Fröhling A. Inhibition or Stimulation of Ochratoxin A Synthesis on Inoculated Barley Triggered by Diffuse Coplanar Surface Barrier Discharge Plasma. Front. Microbiol. 2018;9:2782. doi: 10.3389/fmicb.2018.02782. PubMed DOI PMC
Wannicke N., Wagner R., Stachowiak J., Nishime T.M., Ehlbeck J., Weltmann K.D., Brust H. Efficiency of plasma-processed air for biological decontamination of crop seeds on the premise of unimpaired seed germination. Plasma Process Polym. 2021;18:2000207. doi: 10.1002/ppap.202000207. DOI
Mannaa M., Kim K.D. Microbe-mediated control of mycotoxigenic grain fungi in stored rice with focus on aflatoxin biodegradation and biosynthesis inhibition. Mycobiology. 2016;44:67–78. doi: 10.5941/MYCO.2016.44.2.67. PubMed DOI PMC
Naughton L.M., An S.Q., Hwang I., Chou S.H., He Y.Q., Tang J.L., Ryan R.P., Dow J.M. Functional and genomic insights into the pathogenesis of Burkholderia species to rice. Environ. Microbiol. 2016;18:780–790. doi: 10.1111/1462-2920.13189. PubMed DOI
Dasan B.G., Boyaci I.H., Mutlu M. Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control. 2016;70:1–8. doi: 10.1016/j.foodcont.2016.05.015. DOI
Shaw A., Seri P., Borghi C.A., Shama G., Iza F. A reference protocol for comparing the biocidal properties of gas plasma generating devices. J. Phys. D Appl. Phys. 2015;48:484001. doi: 10.1088/0022-3727/48/48/484001. DOI
Khun J., Jirešová J., Kujalová L., Hozák P., Scholtz V. Comparing the biocidal properties of non-thermal plasma sources by reference protocol. Eur. Phys. J. D. 2017;71:263. doi: 10.1140/epjd/e2017-80115-9. DOI
Julák J., Scholtz V., Vaňková E. Medically important biofilms and non-thermal plasma. World J. Microbiol. Biotechnol. 2018;34:1–15. doi: 10.1007/s11274-018-2560-2. PubMed DOI
Gilmore B.F., Flynn P.B., O’Brien S., Hickok N., Freeman T., Bourke P. Cold plasmas for biofilm control: Opportunities and challenges. Trends Biotechnol. 2018;36:627–638. doi: 10.1016/j.tibtech.2018.03.007. PubMed DOI