Application of Novel Non-Thermal Physical Technologies to Degrade Mycotoxins
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34069444
PubMed Central
PMC8159112
DOI
10.3390/jof7050395
PII: jof7050395
Knihovny.cz E-zdroje
- Klíčová slova
- detoxification, electron beam, filamentous fungi, non-thermal plasma, pulsed light,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mycotoxins cause adverse effects on human health. Therefore, it is of the utmost importance to confront them, particularly in agriculture and food systems. Non-thermal plasma, electron beam radiation, and pulsed light are possible novel non-thermal technologies offering promising results in degrading mycotoxins with potential for practical applications. In this paper, the available publications are reviewed-some of them report efficiency of more than 90%, sometimes almost 100%. The mechanisms of action, advantages, efficacy, limitations, and undesirable effects are reviewed and discussed. The first foretastes of plasma and electron beam application in the industry are in the developing stages, while pulsed light has not been employed in large-scale application yet.
Zobrazit více v PubMed
Didwania N., Trivedi P. Mycotoxins: A review of toxicity, metabolism and biological approaches to counteract the production in food. MR Int. J. Eng. Technol. 2018;6:38–42.
Lanier C., Garon D., Heutte N., Kientz V., André V. Comparative Toxigenicity and Associated Mutagenicity of Aspergillus Fumigatus and Aspergillus Flavus Group Isolates Collected from the Agricultural Environment. Toxins. 2020;12:458. doi: 10.3390/toxins12070458. PubMed DOI PMC
Mamur S., Ünal F., Yılmaz S., Erikel E., Yüzbaşıoğlu D. Evaluation of the cytotoxic and genotoxic effects of mycotoxin fusaric acid. Drug Chem. Toxicol. 2018;43:149–157. doi: 10.1080/01480545.2018.1499772. PubMed DOI
Ülger T.G., Uçar A., Çakıroğlu F.P., Yilmaz S. Genotoxic effects of mycotoxins. Toxicon. 2020;185:104–113. doi: 10.1016/j.toxicon.2020.07.004. PubMed DOI
Szabo B., Toth B., Toldine E.T., Varga M., Kovacs N., Varga J., Kocsube S., Palagyi A., Bagi F., Budakov D., et al. A New Concept to Secure Food Safety Standards against Fusarium Species and Aspergillus Flavus and Their Toxins in Maize. Toxins. 2018;10:372. doi: 10.3390/toxins10090372. PubMed DOI PMC
Luo Y., Liu X., Li J. Updating techniques on controlling mycotoxin—A review. Food Control. 2018;89:123–132. doi: 10.1016/j.foodcont.2018.01.016. DOI
Krska R., Sulyok M., Berthiller F., Schuhmacher R. Mycotoxin testing: From Multi-toxin analysis to metabolomics. Mycotoxins. 2017;67:11–16. doi: 10.2520/myco.67-1-8. DOI
Cimbalo A., Alonso-Garrido M., Font G., Manyes L. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem. Toxicol. 2020;137:111161. doi: 10.1016/j.fct.2020.111161. PubMed DOI
Richard-Forget F., Atanasova V., Chéreau S. Using metabolomics to guide strategies to tackle the issue of the contamination of food and feed with mycotoxins: A review of the literature with specific focus on Fusarium mycotoxins. Food Control. 2021;121:107610. doi: 10.1016/j.foodcont.2020.107610. DOI
Kumar S., Sinha A., Kumar R., Singh V., Hooda K.S., Nath K. Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management. Springer International Publishing; Berlin, Germany: 2020. Storage Fungi and Mycotoxins; pp. 821–861.
Berthiller F., Brera C., Iha M.H., Krska R., Lattanzio V., Macdonald S., Malone R., Maragos C., Solfrizzo M., Stranska-Zachariasova M., et al. Developments in mycotoxin analysis: An update for 2015–2016. World Mycotoxin J. 2017;10:5–29. doi: 10.3920/WMJ2016.2138. DOI
Alassane-Kpembi I., Schatzmayr G., Taranu I., Marin D., Puel O., Oswald I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017;57:3489–3507. doi: 10.1080/10408398.2016.1140632. PubMed DOI
Ratnaseelan A.M., Tsilioni I., Theoharides T.C. Effects of Mycotoxins on Neuropsychiatric Symptoms and Immune Processes. Clin. Ther. 2018;40:903–917. doi: 10.1016/j.clinthera.2018.05.004. PubMed DOI
Egbuta M.A., Mwanza M., Babalola O.O. Health Risks Associated with Exposure to Filamentous Fungi. Int. J. Environ. Res. Public Health. 2017;14:719. doi: 10.3390/ijerph14070719. PubMed DOI PMC
Zain M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011;15:129–144. doi: 10.1016/j.jscs.2010.06.006. DOI
BIOMIN Prevalnce of Mycotoxins Detected 2018. [(accessed on 5 October 2018)]; Available online: https://www.biomin.net/en/about/who-we-are/
Motloung L., De Saeger S., De Boevre M., Detavernier C., Audenaert K., Adebo O., Njobeh P. Study on mycotoxin contamination in South African food spices. World Mycotoxin J. 2018;11:401–409. doi: 10.3920/WMJ2017.2191. DOI
Gonçalves R., Schatzmayr D., Hofstetter U., Santos G. Occurrence of mycotoxins in aquaculture: Preliminary overview of Asian and European plant ingredients and finished feeds. World Mycotoxin J. 2017;10:183–194. doi: 10.3920/WMJ2016.2111. DOI
Schmidt M., Zannini E., Arendt E.K. Recent Advances in Physical Post-Harvest Treatments for Shelf-Life Extension of Cereal Crops. Foods. 2018;7:45. doi: 10.3390/foods7040045. PubMed DOI PMC
Xu L., Tao N., Yang W., Jing G. Cinnamaldehyde damaged the cell membrane of Alternaria alternata and induced the degradation of mycotoxins in vivo. Ind. Crop. Prod. 2018;112:427–433. doi: 10.1016/j.indcrop.2017.12.038. DOI
Wang Y., Zhao C., Zhang D., Zhao M., Zheng D., Peng M., Cheng W., Guo P., Cui Z. Simultaneous degradation of aflatoxin B 1 and zearalenone by a microbial consortium. Toxicon. 2018;146:69–76. doi: 10.1016/j.toxicon.2018.04.007. PubMed DOI
Ji C., Fan Y., Zhao L. Review on biological degradation of mycotoxins. Anim. Nutr. 2016;2:127–133. doi: 10.1016/j.aninu.2016.07.003. PubMed DOI PMC
Adebiyi J.A., Kayitesi E., Adebo O.A., Changwa R., Njobeh P.B. Food fermentation and mycotoxin detoxification: An African perspective. Food Control. 2019;106:106731. doi: 10.1016/j.foodcont.2019.106731. DOI
Conte G., Fontanelli M., Galli F., Cotrozzi L., Pagni L., Pellegrini E. Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update. Toxins. 2020;12:486. doi: 10.3390/toxins12080486. PubMed DOI PMC
Pushpam A.K., Greena J.A.M., Mariyatra M.B., Shajan X.S. Cold plasma technology in agriculture and food industry—A review. Sci. Acta Xaveriana. 2018;9:15–32.
Turner M. Chapter 2—Physics of Cold Plasma. In: Misra N.N., Schlüter O., Cullen P.J., editors. Cold Plasma in Food and Agriculture. Academic Press; San Diego, CA, USA: 2016. pp. 17–51.
Nageswaran G., Jothi L., Jagannathan S. Chapter 4—Plasma Assisted Polymer Modifications. In: Thomas S., Mozetič M., Cvelbar U., Spatenka P., Praveen K.M., editors. Non-Thermal Plasma Technology for Polymeric Materials. Elsevier; Amsterdam, The Netherlands: 2019. pp. 95–127.
Segura-Ponce L.A., Reyes J.E., Troncoso-Contreras G., Valenzuela-Tapia G. Effect of Low-pressure Cold Plasma (LPCP) on the Wettability and the Inactivation of Escherichia coli and Listeria innocua on Fresh-Cut Apple (Granny Smith) Skin. Food Bioprocess. Technol. 2018;11:1075–1086. doi: 10.1007/s11947-018-2079-4. DOI
Julák J., Soušková H., Scholtz V., Kvasničková E., Savická D., Kříha V. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiol. 2017;63:63–68. doi: 10.1007/s12223-017-0535-6. PubMed DOI
Bekeschus S., Schmidt A., Kramer A., Metelmann H.-R., Adler F., Von Woedtke T., Niessner F., Weltmann K.-D., Wende K. High throughput image cytometry micronucleus assay to investigate the presence or absence of mutagenic effects of cold physical plasma. Environ. Mol. Mutagen. 2018;59:268–277. doi: 10.1002/em.22172. PubMed DOI
Laroussi M. Plasma Medicine: A Brief Introduction. Plasma. 2018;1:47–60. doi: 10.3390/plasma1010005. DOI
Šimončicová J., Kryštofová S., Medvecká V., Ďurišová K., Kaliňáková B. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019;103:5117–5129. doi: 10.1007/s00253-019-09877-x. PubMed DOI
Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI
Coutinho N.M., Silveira M.R., Rocha R.S., Moraes J., Ferreira M.V.S., Pimentel T.C., Freitas M.Q., Silva M.C., Raices R.S., Ranadheera C.S., et al. Cold plasma processing of milk and dairy products. Trends Food Sci. Technol. 2018;74:56–68. doi: 10.1016/j.tifs.2018.02.008. DOI
Lu P., Cullen P.J., Ostrikov K. Chapter 4—Atmospheric Pressure Nonthermal Plasma Sources. In: Misra N.N., Schlüter O., Cullen P.J., editors. Cold Plasma in Food and Agriculture. Academic Press; San Diego, CA, USA: 2016. pp. 83–116.
Ekezie F.-G.C., Sun D.-W., Cheng J.-H. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci. Technol. 2017;69:46–58. doi: 10.1016/j.tifs.2017.08.007. DOI
Bhatt H.K., Prasad R.V., Joshi D.C., Sagarika N. Non-Thermal plasma system for decontamination of fruits, vegetables and spices: A review. Int. J. Commun. Syst. IJCS. 2018;6:619–627.
Ehlbeck J., Schnabel U., Polak M., Winter J., Von Woedtke T., Brandenburg R., von dem Hagen T., Weltmann K.-D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D Appl. Phys. 2011;44:013002. doi: 10.1088/0022-3727/44/1/013002. DOI
Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012;45 doi: 10.1088/0022-3727/45/26/263001. DOI
Ono R. Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma. J. Phys. D Appl. Phys. 2016;49:083001. doi: 10.1088/0022-3727/49/8/083001. DOI
Bourke P., Ziuzina D., Boehm D., Cullen P.J., Keener K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018;36:615–626. doi: 10.1016/j.tibtech.2017.11.001. PubMed DOI
Misra N., Yadav B., Roopesh M., Jo C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr. Rev. Food Sci. Food Saf. 2018;18:106–120. doi: 10.1111/1541-4337.12398. PubMed DOI
Dasan B.G., Onal-Ulusoy B., Pawlat J., Diatczyk J., Sen Y., Mutlu M. A New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma. Food Bioprocess. Technol. 2017;10:650–661. doi: 10.1007/s11947-016-1847-2. DOI
Scholtz V., Šerá B., Khun J., Šerý M., Julák J. Effects of Nonthermal Plasma on Wheat Grains and Products. J. Food Qual. 2019;2019:1–10. doi: 10.1155/2019/7917825. DOI
Bourke P., Ziuzina D., Han L., Cullen P., Gilmore B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017;123:308–324. doi: 10.1111/jam.13429. PubMed DOI
Honarvar Z., Farhoodi M., Khani M.R., Mohammadi A., Shokri B., Ferdowsi R., Shojaee-Aliabadi S. Application of cold plasma to develop carboxymethyl cellulose-coated polypropylene films containing essential oil. Carbohydr. Polym. 2017;176:1–10. doi: 10.1016/j.carbpol.2017.08.054. PubMed DOI
Jiang J., Jiangang L., Yuanhua D. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato. Plasma Sci. Technol. 2018;20:044007. doi: 10.1088/2058-6272/aaa0bf. DOI
Casas-Junco P.P., Solís-Pacheco J.R., Ragazzo-Sánchez J.A., Aguilar-Uscanga B.R., Bautista-Rosales P.U., Calderón-Santoyo M. Cold Plasma Treatment as an Alternative for Ochratoxin a Detoxification and Inhibition of Mycotoxigenic Fungi in Roasted Coffee. Toxins. 2019;11:337. doi: 10.3390/toxins11060337. PubMed DOI PMC
Puligundla P., Lee T., Mok C. Effect of corona discharge plasma jet treatment on the degradation of aflatoxin B1 on glass slides and in spiked food commodities. LWT. 2020;124:108333. doi: 10.1016/j.lwt.2019.108333. DOI
Sen Y., Onal-Ulusoy B., Mutlu M. Detoxification of hazelnuts by different cold plasmas and gamma irradiation treatments. Innov. Food Sci. Emerg. Technol. 2019;54:252–259. doi: 10.1016/j.ifset.2019.05.002. DOI
Wielogorska E., Ahmed Y., Meneely J., Graham W.G., Elliott C.T., Gilmore B.F. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chem. 2019;301:125281. doi: 10.1016/j.foodchem.2019.125281. PubMed DOI
Keklik N.M., Elik A., Salgin U., Demirci A., Koçer G. Inactivation of Staphylococcus aureus and Escherichia coli O157: H7 on fresh kashar cheese with pulsed ultraviolet light. Food Sci. Technol. Int. 2019;25:680–691. doi: 10.1177/1082013219860925. PubMed DOI
Moreau M., Lescure G., Agoulon A., Svinareff P., Orange N., Feuilloley M. Application of the pulsed light technology to mycotoxin degradation and inactivation. J. Appl. Toxicol. 2011;33:357–363. doi: 10.1002/jat.1749. PubMed DOI
Abuagela M.O., Iqdiam B.M., Baker G.L., MacIntosh A.J. Temperature-Controlled Pulsed Light Treatment: Impact on Aflatoxin Level and Quality Parameters of Peanut Oil. Food Bioprocess. Technol. 2018;11:1350–1358. doi: 10.1007/s11947-018-2105-6. DOI
Wekhof A. Disinfection with flash lamps. PDA J. Pharm. Sci. Technol. 2000;54:264–276. PubMed
Ten Bosch L., Pfohl K., Avramidis G., Wieneke S., Viöl W., Karlovsky P. Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins. 2017;9:97. doi: 10.3390/toxins9030097. PubMed DOI PMC
Ouf S.A., Mohamed A.-A.H., El-Sayed W.S. Fungal Decontamination of Fleshy Fruit Water Washes by Double Atmospheric Pressure Cold Plasma. Clean Soil Air Water. 2015;44:134–142. doi: 10.1002/clen.201400575. DOI
Siciliano I., Spadaro D., Prelle A., Vallauri D., Cavallero M.C., Garibaldi A., Gullino M.L. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins. 2016;8:125. doi: 10.3390/toxins8050125. PubMed DOI PMC
Liu R., Chang M., Jin Q., Huang J., Liu Y., Wang X. Degradation of aflatoxin B1 in aqueous medium through UV irradiation. Eur. Food Res. Technol. 2011;233:1007–1012. doi: 10.1007/s00217-011-1591-9. DOI
Shi H., Cooper B., Stroshine R.L., Ileleji K.E., Keener K.M. Structures of Degradation Products and Degradation Pathways of Aflatoxin B1 by High-Voltage Atmospheric Cold Plasma (HVACP) Treatment. J. Agric. Food Chem. 2017;65:6222–6230. doi: 10.1021/acs.jafc.7b01604. PubMed DOI
Feizollahi E., Iqdiam B., Vasanthan T., Thilakarathna M.S., Roopesh M.S. Effects of Atmospheric-Pressure Cold Plasma Treatment on Deoxynivalenol Degradation, Quality Parameters, and Germination of Barley Grains. Appl. Sci. 2020;10:3530. doi: 10.3390/app10103530. DOI
Shi H., Ileleji K., Stroshine R.L., Keener K., Jensen J.L. Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess. Technol. 2017;10:1042–1052. doi: 10.1007/s11947-017-1873-8. DOI
Wei C., Zhang F., Hu Y., Feng C., Wu H. Ozonation in water treatment: The generation, basic properties of ozone and its practical application. Rev. Chem. Eng. 2017;33:49–89. doi: 10.1515/revce-2016-0008. DOI
Tsehaye M.T., Velizarov S., Van der Bruggen B. Stability of polyethersulfone membranes to oxidative agents: A review. Polym. Degrad. Stab. 2018;157:15–33. doi: 10.1016/j.polymdegradstab.2018.09.004. DOI
Devi Y., Thirumdas R., Sarangapani C., Deshmukh R., Annapure U. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control. 2017;77:187–191. doi: 10.1016/j.foodcont.2017.02.019. DOI
Ouf S.A., Basher A.H., Mohamed A.A.H. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J. Sci. Food Agric. 2015;95:3204–3210. doi: 10.1002/jsfa.7060. PubMed DOI
Jablonowski H., Sousa J.S., Weltmann K.-D., Wende K., Reuter S. Quantification of the ozone and singlet delta oxygen produced in gas and liquid phases by a non-thermal atmospheric plasma with relevance for medical treatment. Sci. Rep. 2018;8:1–12. doi: 10.1038/s41598-018-30483-w. PubMed DOI PMC
Jalili M. A review on aflatoxins reduction in food. Iran J. Health Saf. Environ. 2016;3:445–459.
Pekárek S. Non-thermal plasma ozone generation. Acta Polytech. 2003;43 doi: 10.14311/498. DOI
Trojanowicz M., Bojanowska-Czajka A., Capodaglio A.G. Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review. Environ. Sci. Pollut. Res. 2017;24:20187–20208. doi: 10.1007/s11356-017-9836-1. PubMed DOI
Hossain K., Maruthi Y.A., Das N.L., Rawat K.P., Sarma K.S.S. Irradiation of wastewater with electron beam is a key to sustainable smart/green cities: A review. Appl. Water Sci. 2018;8:6. doi: 10.1007/s13201-018-0645-6. DOI
Plank H., Winkler R., Schwalb C.H., Hütner J., Fowlkes J.D., Rack P.D., Utke I., Huth M. Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review. Micromachines. 2020;11:48. doi: 10.3390/mi11010048. PubMed DOI PMC
Iuliano A., Nowacka M., Rybak K., Rzepna M. The effects of electron beam radiation on material properties and degradation of commercial PBAT/PLA blend. J. Appl. Polym. Sci. 2020;137 doi: 10.1002/app.48462. DOI
Kotzem D., Arold T., Niendorf T., Walther F. Influence of specimen position on the build platform on the mechanical properties of as-built direct aged electron beam melted Inconel 718 alloy. Mater. Sci. Eng. A. 2020;772:138785. doi: 10.1016/j.msea.2019.138785. DOI
Rummeli M.H. In Situ Electron Beam Driven Nano-Devices—A Route to New Materials Development for Energy Applications and Beyond. ECS Meet. Abstr. 2017;MA2017-02(30):1271. doi: 10.1149/ma2017-02/30/1271. DOI
Zhong Y., Rännar L.-E., Liu L., Koptyug A., Wikman S., Olsen J., Cui D., Shen Z. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J. Nucl. Mater. 2017;486:234–245. doi: 10.1016/j.jnucmat.2016.12.042. DOI
Hrabe N., Gnäupel-Herold T., Quinn T. Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress. Int. J. Fatigue. 2017;94:202–210. doi: 10.1016/j.ijfatigue.2016.04.022. DOI
Kretschmer S., Komsa H.-P., Bøggild P., Krasheninnikov A.V. Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS2 under an Electron Beam: Insights from First-Principles Calculations. J. Phys. Chem. Lett. 2017;8:3061–3067. doi: 10.1021/acs.jpclett.7b01177. PubMed DOI
Gotzmann G., Beckmann J., Wetzel C., Scholz B., Herrmann U., Neunzehn J. Electron-beam modification of DLC coatings for biomedical applications. Surf. Coat. Technol. 2017;311:248–256. doi: 10.1016/j.surfcoat.2016.12.080. DOI
Pillai S.D., Shayanfar S. Electron Beam Technology and Other Irradiation Technology Applications in the Food Industry. Top. Curr. Chem. 2016;375:6. doi: 10.1007/s41061-016-0093-4. PubMed DOI
Calado T., Fernández-Cruz M.L., Verde S.C., Venâncio A., Abrunhosa L. Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food Chem. 2018;240:463–471. doi: 10.1016/j.foodchem.2017.07.136. PubMed DOI
Kalagatur N.K., Kamasani J.R., Mudili V. Assessment of detoxification efficacy of irradiation on zearalenone mycotoxin in various fruit juices by response surface methodology and elucidation of its in-vitro toxicity. Front. Microbiol. 2018;9:2937. doi: 10.3389/fmicb.2018.02937. PubMed DOI PMC
Patras A., Julakanti S., Yannam S., Bansode R.R., Burns M., Vergne M.J. Effect of UV irradiation on aflatoxin reduction: A cytotoxicity evaluation study using human hepatoma cell line. Mycotoxin Res. 2017;33:343–350. doi: 10.1007/s12550-017-0291-0. PubMed DOI
Pereira E., Antonio A., Barreira J.C., Santos-Buelga C., Barros L., Ferreira I.C. How gamma and electron-beam irradiations modulate phenolic profile expression in Melissa officinalis L. and Melittis melissophyllum L. Food Chem. 2018;240:253–258. doi: 10.1016/j.foodchem.2017.07.113. PubMed DOI
Fan X., Sokorai K., Weidauer A., Gotzmann G., Rögner F.-H., Koch E. Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds. Radiat. Phys. Chem. 2017;130:306–315. doi: 10.1016/j.radphyschem.2016.09.015. DOI
Luo X., Qi L., Liu Y., Wang R., Yang D., Li K., Wang L., Li Y., Zhang Y., Chen Z. Effects of Electron Beam Irradiation on Zearalenone and Ochratoxin A in Naturally Contaminated Corn and Corn Quality Parameters. Toxins. 2017;9:84. doi: 10.3390/toxins9030084. PubMed DOI PMC
Hertwig C., Meneses N., Mathys A. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends Food Sci. Technol. 2018;77:131–142. doi: 10.1016/j.tifs.2018.05.011. DOI
Hasanpour S., Rahimi S., Makki O.F., Shahhosseini G., Khosravi A. In Vivo Assessment of Gamma Rays, Electron-beam Irradiation plus a Commercial Toxin Binder (Milbond-TX) As an Anti-Aflatoxin B1 in a Chicken Model. Iran. J. Toxicol. 2018;12:15–20. doi: 10.29252/arakmu.12.2.15. DOI
Peng C., Ding Y., An F., Wang L., Li S., Nie Y., Zhou L., Li Y., Wang C., Li S. Degradation of ochratoxin A in aqueous solutions by electron beam irradiation. J. Radioanal. Nucl. Chem. 2015;306:39–46. doi: 10.1007/s10967-015-4086-5. DOI
Wang R., Liu R., Chang M., Jin Q., Huang J., Liu Y., Wang X. Ultra-performance Liquid Chromatography Quadrupole Time-of-Flight MS for Identification of Electron Beam from Accelerator Degradation Products of Aflatoxin B1. Appl. Biochem. Biotechnol. 2014;175:1548–1556. doi: 10.1007/s12010-014-1377-1. PubMed DOI
Liu R., Wang R., Lu J., Chang M., Jin Q., Du Z., Wang S., Li Q., Wang X. Degradation of AFB1 in aqueous medium by electron beam irradiation: Kinetics, pathway and toxicology. Food Control. 2016;66:151–157. doi: 10.1016/j.foodcont.2016.02.002. DOI
Assunção E., Reis T.A., Baquião A.C., Corrêa B. Effects of Gamma and Electron Beam Radiation on Brazil Nuts Artificially Inoculated with Aspergillus flavus. J. Food Prot. 2015;78:1397–1401. doi: 10.4315/0362-028X.JFP-14-595. PubMed DOI
Yang K., Li K., Pan L., Luo X., Xing J., Wang J., Wang L., Wang R., Zhai Y., Chen Z. Effect of Ozone and Electron Beam Irradiation on Degradation of Zearalenone and Ochratoxin, A. Toxins. 2020;12:138. doi: 10.3390/toxins12020138. PubMed DOI PMC
Zhao X.-M., Huang E.-L., Zhu Y.-S., Li J., Song B., Zhu X., Hao X.-Q. Oxidative sulfonamidomethylation of imidazopyridines utilizing methanol as the main C1 source. Org. Biomol. Chem. 2019;17:4869–4878. doi: 10.1039/C9OB00596J. PubMed DOI
Liu R., Lu M., Wang R., Wang S., Chang M., Jin Q., Wang X. Degradation of aflatoxin B1 in peanut meal by electron beam irradiation. Int. J. Food Prop. 2018;21:892–901. doi: 10.1080/10942912.2018.1466321. DOI
Unni L.E., Chauhan O.P. Use of Pulsed Light in Food Processing. Apple Academic Press; Cambridge, MA, USA: 2019. pp. 173–188.
Li D., Lin S.-B., Cheng B. Intense Pulsed Light Treatment for Meibomian Gland Dysfunction in Skin Types III/IV. Photobiomodulat. Photomed. Laser Surg. 2019;37:70–76. doi: 10.1089/photob.2018.4509. PubMed DOI
Garvey M., Rowan N. Pulsed UV as a potential surface sanitizer in food production processes to ensure consumer safety. Curr. Opin. Food Sci. 2019;26:65–70. doi: 10.1016/j.cofs.2019.03.003. DOI
Mahendran R., Ramanan K.R., Barba F.J., Lorenzo J.M., López-Fernández O., Munekata P.E., Roohinejad S., Sant’Ana A.S., Tiwari B.K. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci. Technol. 2019;88:67–79. doi: 10.1016/j.tifs.2019.03.010. DOI
Bank H.L., John J., Schmehl M.K., Dratch R.J. Bactericidal effectiveness of modulated UV light. Appl. Environ. Microbiol. 1990;56:3888–3889. doi: 10.1128/AEM.56.12.3888-3889.1990. PubMed DOI PMC
Oms-Oliu G., Martín-Belloso O., Soliva-Fortuny R. Pulsed Light Treatments for Food Preservation. A Review. Food Bioprocess. Technol. 2010;3:13–23. doi: 10.1007/s11947-008-0147-x. DOI
Rowan N.J. Pulsed light as an emerging technology to cause disruption for food and adjacent industries–Quo vadis? Trends Food Sci. Technol. 2019;88:316–332. doi: 10.1016/j.tifs.2019.03.027. DOI
Mukhopadhyay S., Sokorai K., Ukuku D.O., Fan X., Olanya M., Juneja V. Effects of pulsed light and sanitizer wash combination on inactivation of Escherichia coli O157:H7, microbial loads and apparent quality of spinach leaves. Food Microbiol. 2019;82:127–134. doi: 10.1016/j.fm.2019.01.022. PubMed DOI
Feuilloley M.G., Bourdet G., Orange N. Effect of white pulsed light on Pseudomonas aeruginosa culturability and its endotoxin when present in ampoules for injectables. Eur. J. Parenter. Pharm. Sci. 2006;11:9–14.
Wang B., Mahoney N.E., Pan Z., Khir R., Wu B., Ma H., Zhao L. Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B1 and B2 in rough rice and rice bran. Food Control. 2016;59:461–467. doi: 10.1016/j.foodcont.2015.06.030. DOI
Mandal R., Mohammadi X., Wiktor A., Singh A., Singh A.P. Applications of Pulsed Light Decontamination Technology in Food Processing: An Overview. Appl. Sci. 2020;10:3606. doi: 10.3390/app10103606. DOI
Funes G.J., Gómez P.L., Resnik S.L., Alzamora S.M. Application of pulsed light to patulin reduction in McIlvaine buffer and apple products. Food Control. 2013;30:405–410. doi: 10.1016/j.foodcont.2012.09.001. DOI
Wang B., Mahoney N.E., Khir R., Wu B., Zhou C., Pan Z., Ma H. Degradation kinetics of aflatoxin B1 and B2 in solid medium by using pulsed light irradiation. J. Sci. Food Agric. 2018;98:5220–5224. doi: 10.1002/jsfa.9058. PubMed DOI
Jing L., Chen B., Zhang B., Zheng J., Liu B. Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration. Mar. Pollut. Bull. 2014;81:149–156. doi: 10.1016/j.marpolbul.2014.02.003. PubMed DOI
Abuagela M.O., Iqdiam B.M., Mostafa H., Gu L., Smith M.E., Sarnoski P.J. Assessing pulsed light treatment on the reduction of aflatoxins in peanuts with and without skin. Int. J. Food Sci. Technol. 2018;53:2567–2575. doi: 10.1111/ijfs.13851. DOI