Application of Novel Non-Thermal Physical Technologies to Degrade Mycotoxins

. 2021 May 19 ; 7 (5) : . [epub] 20210519

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34069444

Mycotoxins cause adverse effects on human health. Therefore, it is of the utmost importance to confront them, particularly in agriculture and food systems. Non-thermal plasma, electron beam radiation, and pulsed light are possible novel non-thermal technologies offering promising results in degrading mycotoxins with potential for practical applications. In this paper, the available publications are reviewed-some of them report efficiency of more than 90%, sometimes almost 100%. The mechanisms of action, advantages, efficacy, limitations, and undesirable effects are reviewed and discussed. The first foretastes of plasma and electron beam application in the industry are in the developing stages, while pulsed light has not been employed in large-scale application yet.

Zobrazit více v PubMed

Didwania N., Trivedi P. Mycotoxins: A review of toxicity, metabolism and biological approaches to counteract the production in food. MR Int. J. Eng. Technol. 2018;6:38–42.

Lanier C., Garon D., Heutte N., Kientz V., André V. Comparative Toxigenicity and Associated Mutagenicity of Aspergillus Fumigatus and Aspergillus Flavus Group Isolates Collected from the Agricultural Environment. Toxins. 2020;12:458. doi: 10.3390/toxins12070458. PubMed DOI PMC

Mamur S., Ünal F., Yılmaz S., Erikel E., Yüzbaşıoğlu D. Evaluation of the cytotoxic and genotoxic effects of mycotoxin fusaric acid. Drug Chem. Toxicol. 2018;43:149–157. doi: 10.1080/01480545.2018.1499772. PubMed DOI

Ülger T.G., Uçar A., Çakıroğlu F.P., Yilmaz S. Genotoxic effects of mycotoxins. Toxicon. 2020;185:104–113. doi: 10.1016/j.toxicon.2020.07.004. PubMed DOI

Szabo B., Toth B., Toldine E.T., Varga M., Kovacs N., Varga J., Kocsube S., Palagyi A., Bagi F., Budakov D., et al. A New Concept to Secure Food Safety Standards against Fusarium Species and Aspergillus Flavus and Their Toxins in Maize. Toxins. 2018;10:372. doi: 10.3390/toxins10090372. PubMed DOI PMC

Luo Y., Liu X., Li J. Updating techniques on controlling mycotoxin—A review. Food Control. 2018;89:123–132. doi: 10.1016/j.foodcont.2018.01.016. DOI

Krska R., Sulyok M., Berthiller F., Schuhmacher R. Mycotoxin testing: From Multi-toxin analysis to metabolomics. Mycotoxins. 2017;67:11–16. doi: 10.2520/myco.67-1-8. DOI

Cimbalo A., Alonso-Garrido M., Font G., Manyes L. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem. Toxicol. 2020;137:111161. doi: 10.1016/j.fct.2020.111161. PubMed DOI

Richard-Forget F., Atanasova V., Chéreau S. Using metabolomics to guide strategies to tackle the issue of the contamination of food and feed with mycotoxins: A review of the literature with specific focus on Fusarium mycotoxins. Food Control. 2021;121:107610. doi: 10.1016/j.foodcont.2020.107610. DOI

Kumar S., Sinha A., Kumar R., Singh V., Hooda K.S., Nath K. Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management. Springer International Publishing; Berlin, Germany: 2020. Storage Fungi and Mycotoxins; pp. 821–861.

Berthiller F., Brera C., Iha M.H., Krska R., Lattanzio V., Macdonald S., Malone R., Maragos C., Solfrizzo M., Stranska-Zachariasova M., et al. Developments in mycotoxin analysis: An update for 2015–2016. World Mycotoxin J. 2017;10:5–29. doi: 10.3920/WMJ2016.2138. DOI

Alassane-Kpembi I., Schatzmayr G., Taranu I., Marin D., Puel O., Oswald I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017;57:3489–3507. doi: 10.1080/10408398.2016.1140632. PubMed DOI

Ratnaseelan A.M., Tsilioni I., Theoharides T.C. Effects of Mycotoxins on Neuropsychiatric Symptoms and Immune Processes. Clin. Ther. 2018;40:903–917. doi: 10.1016/j.clinthera.2018.05.004. PubMed DOI

Egbuta M.A., Mwanza M., Babalola O.O. Health Risks Associated with Exposure to Filamentous Fungi. Int. J. Environ. Res. Public Health. 2017;14:719. doi: 10.3390/ijerph14070719. PubMed DOI PMC

Zain M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011;15:129–144. doi: 10.1016/j.jscs.2010.06.006. DOI

BIOMIN Prevalnce of Mycotoxins Detected 2018. [(accessed on 5 October 2018)]; Available online: https://www.biomin.net/en/about/who-we-are/

Motloung L., De Saeger S., De Boevre M., Detavernier C., Audenaert K., Adebo O., Njobeh P. Study on mycotoxin contamination in South African food spices. World Mycotoxin J. 2018;11:401–409. doi: 10.3920/WMJ2017.2191. DOI

Gonçalves R., Schatzmayr D., Hofstetter U., Santos G. Occurrence of mycotoxins in aquaculture: Preliminary overview of Asian and European plant ingredients and finished feeds. World Mycotoxin J. 2017;10:183–194. doi: 10.3920/WMJ2016.2111. DOI

Schmidt M., Zannini E., Arendt E.K. Recent Advances in Physical Post-Harvest Treatments for Shelf-Life Extension of Cereal Crops. Foods. 2018;7:45. doi: 10.3390/foods7040045. PubMed DOI PMC

Xu L., Tao N., Yang W., Jing G. Cinnamaldehyde damaged the cell membrane of Alternaria alternata and induced the degradation of mycotoxins in vivo. Ind. Crop. Prod. 2018;112:427–433. doi: 10.1016/j.indcrop.2017.12.038. DOI

Wang Y., Zhao C., Zhang D., Zhao M., Zheng D., Peng M., Cheng W., Guo P., Cui Z. Simultaneous degradation of aflatoxin B 1 and zearalenone by a microbial consortium. Toxicon. 2018;146:69–76. doi: 10.1016/j.toxicon.2018.04.007. PubMed DOI

Ji C., Fan Y., Zhao L. Review on biological degradation of mycotoxins. Anim. Nutr. 2016;2:127–133. doi: 10.1016/j.aninu.2016.07.003. PubMed DOI PMC

Adebiyi J.A., Kayitesi E., Adebo O.A., Changwa R., Njobeh P.B. Food fermentation and mycotoxin detoxification: An African perspective. Food Control. 2019;106:106731. doi: 10.1016/j.foodcont.2019.106731. DOI

Conte G., Fontanelli M., Galli F., Cotrozzi L., Pagni L., Pellegrini E. Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update. Toxins. 2020;12:486. doi: 10.3390/toxins12080486. PubMed DOI PMC

Pushpam A.K., Greena J.A.M., Mariyatra M.B., Shajan X.S. Cold plasma technology in agriculture and food industry—A review. Sci. Acta Xaveriana. 2018;9:15–32.

Turner M. Chapter 2—Physics of Cold Plasma. In: Misra N.N., Schlüter O., Cullen P.J., editors. Cold Plasma in Food and Agriculture. Academic Press; San Diego, CA, USA: 2016. pp. 17–51.

Nageswaran G., Jothi L., Jagannathan S. Chapter 4—Plasma Assisted Polymer Modifications. In: Thomas S., Mozetič M., Cvelbar U., Spatenka P., Praveen K.M., editors. Non-Thermal Plasma Technology for Polymeric Materials. Elsevier; Amsterdam, The Netherlands: 2019. pp. 95–127.

Segura-Ponce L.A., Reyes J.E., Troncoso-Contreras G., Valenzuela-Tapia G. Effect of Low-pressure Cold Plasma (LPCP) on the Wettability and the Inactivation of Escherichia coli and Listeria innocua on Fresh-Cut Apple (Granny Smith) Skin. Food Bioprocess. Technol. 2018;11:1075–1086. doi: 10.1007/s11947-018-2079-4. DOI

Julák J., Soušková H., Scholtz V., Kvasničková E., Savická D., Kříha V. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiol. 2017;63:63–68. doi: 10.1007/s12223-017-0535-6. PubMed DOI

Bekeschus S., Schmidt A., Kramer A., Metelmann H.-R., Adler F., Von Woedtke T., Niessner F., Weltmann K.-D., Wende K. High throughput image cytometry micronucleus assay to investigate the presence or absence of mutagenic effects of cold physical plasma. Environ. Mol. Mutagen. 2018;59:268–277. doi: 10.1002/em.22172. PubMed DOI

Laroussi M. Plasma Medicine: A Brief Introduction. Plasma. 2018;1:47–60. doi: 10.3390/plasma1010005. DOI

Šimončicová J., Kryštofová S., Medvecká V., Ďurišová K., Kaliňáková B. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019;103:5117–5129. doi: 10.1007/s00253-019-09877-x. PubMed DOI

Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI

Coutinho N.M., Silveira M.R., Rocha R.S., Moraes J., Ferreira M.V.S., Pimentel T.C., Freitas M.Q., Silva M.C., Raices R.S., Ranadheera C.S., et al. Cold plasma processing of milk and dairy products. Trends Food Sci. Technol. 2018;74:56–68. doi: 10.1016/j.tifs.2018.02.008. DOI

Lu P., Cullen P.J., Ostrikov K. Chapter 4—Atmospheric Pressure Nonthermal Plasma Sources. In: Misra N.N., Schlüter O., Cullen P.J., editors. Cold Plasma in Food and Agriculture. Academic Press; San Diego, CA, USA: 2016. pp. 83–116.

Ekezie F.-G.C., Sun D.-W., Cheng J.-H. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci. Technol. 2017;69:46–58. doi: 10.1016/j.tifs.2017.08.007. DOI

Bhatt H.K., Prasad R.V., Joshi D.C., Sagarika N. Non-Thermal plasma system for decontamination of fruits, vegetables and spices: A review. Int. J. Commun. Syst. IJCS. 2018;6:619–627.

Ehlbeck J., Schnabel U., Polak M., Winter J., Von Woedtke T., Brandenburg R., von dem Hagen T., Weltmann K.-D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D Appl. Phys. 2011;44:013002. doi: 10.1088/0022-3727/44/1/013002. DOI

Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012;45 doi: 10.1088/0022-3727/45/26/263001. DOI

Ono R. Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma. J. Phys. D Appl. Phys. 2016;49:083001. doi: 10.1088/0022-3727/49/8/083001. DOI

Bourke P., Ziuzina D., Boehm D., Cullen P.J., Keener K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018;36:615–626. doi: 10.1016/j.tibtech.2017.11.001. PubMed DOI

Misra N., Yadav B., Roopesh M., Jo C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr. Rev. Food Sci. Food Saf. 2018;18:106–120. doi: 10.1111/1541-4337.12398. PubMed DOI

Dasan B.G., Onal-Ulusoy B., Pawlat J., Diatczyk J., Sen Y., Mutlu M. A New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma. Food Bioprocess. Technol. 2017;10:650–661. doi: 10.1007/s11947-016-1847-2. DOI

Scholtz V., Šerá B., Khun J., Šerý M., Julák J. Effects of Nonthermal Plasma on Wheat Grains and Products. J. Food Qual. 2019;2019:1–10. doi: 10.1155/2019/7917825. DOI

Bourke P., Ziuzina D., Han L., Cullen P., Gilmore B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017;123:308–324. doi: 10.1111/jam.13429. PubMed DOI

Honarvar Z., Farhoodi M., Khani M.R., Mohammadi A., Shokri B., Ferdowsi R., Shojaee-Aliabadi S. Application of cold plasma to develop carboxymethyl cellulose-coated polypropylene films containing essential oil. Carbohydr. Polym. 2017;176:1–10. doi: 10.1016/j.carbpol.2017.08.054. PubMed DOI

Jiang J., Jiangang L., Yuanhua D. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato. Plasma Sci. Technol. 2018;20:044007. doi: 10.1088/2058-6272/aaa0bf. DOI

Casas-Junco P.P., Solís-Pacheco J.R., Ragazzo-Sánchez J.A., Aguilar-Uscanga B.R., Bautista-Rosales P.U., Calderón-Santoyo M. Cold Plasma Treatment as an Alternative for Ochratoxin a Detoxification and Inhibition of Mycotoxigenic Fungi in Roasted Coffee. Toxins. 2019;11:337. doi: 10.3390/toxins11060337. PubMed DOI PMC

Puligundla P., Lee T., Mok C. Effect of corona discharge plasma jet treatment on the degradation of aflatoxin B1 on glass slides and in spiked food commodities. LWT. 2020;124:108333. doi: 10.1016/j.lwt.2019.108333. DOI

Sen Y., Onal-Ulusoy B., Mutlu M. Detoxification of hazelnuts by different cold plasmas and gamma irradiation treatments. Innov. Food Sci. Emerg. Technol. 2019;54:252–259. doi: 10.1016/j.ifset.2019.05.002. DOI

Wielogorska E., Ahmed Y., Meneely J., Graham W.G., Elliott C.T., Gilmore B.F. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chem. 2019;301:125281. doi: 10.1016/j.foodchem.2019.125281. PubMed DOI

Keklik N.M., Elik A., Salgin U., Demirci A., Koçer G. Inactivation of Staphylococcus aureus and Escherichia coli O157: H7 on fresh kashar cheese with pulsed ultraviolet light. Food Sci. Technol. Int. 2019;25:680–691. doi: 10.1177/1082013219860925. PubMed DOI

Moreau M., Lescure G., Agoulon A., Svinareff P., Orange N., Feuilloley M. Application of the pulsed light technology to mycotoxin degradation and inactivation. J. Appl. Toxicol. 2011;33:357–363. doi: 10.1002/jat.1749. PubMed DOI

Abuagela M.O., Iqdiam B.M., Baker G.L., MacIntosh A.J. Temperature-Controlled Pulsed Light Treatment: Impact on Aflatoxin Level and Quality Parameters of Peanut Oil. Food Bioprocess. Technol. 2018;11:1350–1358. doi: 10.1007/s11947-018-2105-6. DOI

Wekhof A. Disinfection with flash lamps. PDA J. Pharm. Sci. Technol. 2000;54:264–276. PubMed

Ten Bosch L., Pfohl K., Avramidis G., Wieneke S., Viöl W., Karlovsky P. Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins. 2017;9:97. doi: 10.3390/toxins9030097. PubMed DOI PMC

Ouf S.A., Mohamed A.-A.H., El-Sayed W.S. Fungal Decontamination of Fleshy Fruit Water Washes by Double Atmospheric Pressure Cold Plasma. Clean Soil Air Water. 2015;44:134–142. doi: 10.1002/clen.201400575. DOI

Siciliano I., Spadaro D., Prelle A., Vallauri D., Cavallero M.C., Garibaldi A., Gullino M.L. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins. 2016;8:125. doi: 10.3390/toxins8050125. PubMed DOI PMC

Liu R., Chang M., Jin Q., Huang J., Liu Y., Wang X. Degradation of aflatoxin B1 in aqueous medium through UV irradiation. Eur. Food Res. Technol. 2011;233:1007–1012. doi: 10.1007/s00217-011-1591-9. DOI

Shi H., Cooper B., Stroshine R.L., Ileleji K.E., Keener K.M. Structures of Degradation Products and Degradation Pathways of Aflatoxin B1 by High-Voltage Atmospheric Cold Plasma (HVACP) Treatment. J. Agric. Food Chem. 2017;65:6222–6230. doi: 10.1021/acs.jafc.7b01604. PubMed DOI

Feizollahi E., Iqdiam B., Vasanthan T., Thilakarathna M.S., Roopesh M.S. Effects of Atmospheric-Pressure Cold Plasma Treatment on Deoxynivalenol Degradation, Quality Parameters, and Germination of Barley Grains. Appl. Sci. 2020;10:3530. doi: 10.3390/app10103530. DOI

Shi H., Ileleji K., Stroshine R.L., Keener K., Jensen J.L. Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess. Technol. 2017;10:1042–1052. doi: 10.1007/s11947-017-1873-8. DOI

Wei C., Zhang F., Hu Y., Feng C., Wu H. Ozonation in water treatment: The generation, basic properties of ozone and its practical application. Rev. Chem. Eng. 2017;33:49–89. doi: 10.1515/revce-2016-0008. DOI

Tsehaye M.T., Velizarov S., Van der Bruggen B. Stability of polyethersulfone membranes to oxidative agents: A review. Polym. Degrad. Stab. 2018;157:15–33. doi: 10.1016/j.polymdegradstab.2018.09.004. DOI

Devi Y., Thirumdas R., Sarangapani C., Deshmukh R., Annapure U. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control. 2017;77:187–191. doi: 10.1016/j.foodcont.2017.02.019. DOI

Ouf S.A., Basher A.H., Mohamed A.A.H. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J. Sci. Food Agric. 2015;95:3204–3210. doi: 10.1002/jsfa.7060. PubMed DOI

Jablonowski H., Sousa J.S., Weltmann K.-D., Wende K., Reuter S. Quantification of the ozone and singlet delta oxygen produced in gas and liquid phases by a non-thermal atmospheric plasma with relevance for medical treatment. Sci. Rep. 2018;8:1–12. doi: 10.1038/s41598-018-30483-w. PubMed DOI PMC

Jalili M. A review on aflatoxins reduction in food. Iran J. Health Saf. Environ. 2016;3:445–459.

Pekárek S. Non-thermal plasma ozone generation. Acta Polytech. 2003;43 doi: 10.14311/498. DOI

Trojanowicz M., Bojanowska-Czajka A., Capodaglio A.G. Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review. Environ. Sci. Pollut. Res. 2017;24:20187–20208. doi: 10.1007/s11356-017-9836-1. PubMed DOI

Hossain K., Maruthi Y.A., Das N.L., Rawat K.P., Sarma K.S.S. Irradiation of wastewater with electron beam is a key to sustainable smart/green cities: A review. Appl. Water Sci. 2018;8:6. doi: 10.1007/s13201-018-0645-6. DOI

Plank H., Winkler R., Schwalb C.H., Hütner J., Fowlkes J.D., Rack P.D., Utke I., Huth M. Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review. Micromachines. 2020;11:48. doi: 10.3390/mi11010048. PubMed DOI PMC

Iuliano A., Nowacka M., Rybak K., Rzepna M. The effects of electron beam radiation on material properties and degradation of commercial PBAT/PLA blend. J. Appl. Polym. Sci. 2020;137 doi: 10.1002/app.48462. DOI

Kotzem D., Arold T., Niendorf T., Walther F. Influence of specimen position on the build platform on the mechanical properties of as-built direct aged electron beam melted Inconel 718 alloy. Mater. Sci. Eng. A. 2020;772:138785. doi: 10.1016/j.msea.2019.138785. DOI

Rummeli M.H. In Situ Electron Beam Driven Nano-Devices—A Route to New Materials Development for Energy Applications and Beyond. ECS Meet. Abstr. 2017;MA2017-02(30):1271. doi: 10.1149/ma2017-02/30/1271. DOI

Zhong Y., Rännar L.-E., Liu L., Koptyug A., Wikman S., Olsen J., Cui D., Shen Z. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J. Nucl. Mater. 2017;486:234–245. doi: 10.1016/j.jnucmat.2016.12.042. DOI

Hrabe N., Gnäupel-Herold T., Quinn T. Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress. Int. J. Fatigue. 2017;94:202–210. doi: 10.1016/j.ijfatigue.2016.04.022. DOI

Kretschmer S., Komsa H.-P., Bøggild P., Krasheninnikov A.V. Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS2 under an Electron Beam: Insights from First-Principles Calculations. J. Phys. Chem. Lett. 2017;8:3061–3067. doi: 10.1021/acs.jpclett.7b01177. PubMed DOI

Gotzmann G., Beckmann J., Wetzel C., Scholz B., Herrmann U., Neunzehn J. Electron-beam modification of DLC coatings for biomedical applications. Surf. Coat. Technol. 2017;311:248–256. doi: 10.1016/j.surfcoat.2016.12.080. DOI

Pillai S.D., Shayanfar S. Electron Beam Technology and Other Irradiation Technology Applications in the Food Industry. Top. Curr. Chem. 2016;375:6. doi: 10.1007/s41061-016-0093-4. PubMed DOI

Calado T., Fernández-Cruz M.L., Verde S.C., Venâncio A., Abrunhosa L. Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food Chem. 2018;240:463–471. doi: 10.1016/j.foodchem.2017.07.136. PubMed DOI

Kalagatur N.K., Kamasani J.R., Mudili V. Assessment of detoxification efficacy of irradiation on zearalenone mycotoxin in various fruit juices by response surface methodology and elucidation of its in-vitro toxicity. Front. Microbiol. 2018;9:2937. doi: 10.3389/fmicb.2018.02937. PubMed DOI PMC

Patras A., Julakanti S., Yannam S., Bansode R.R., Burns M., Vergne M.J. Effect of UV irradiation on aflatoxin reduction: A cytotoxicity evaluation study using human hepatoma cell line. Mycotoxin Res. 2017;33:343–350. doi: 10.1007/s12550-017-0291-0. PubMed DOI

Pereira E., Antonio A., Barreira J.C., Santos-Buelga C., Barros L., Ferreira I.C. How gamma and electron-beam irradiations modulate phenolic profile expression in Melissa officinalis L. and Melittis melissophyllum L. Food Chem. 2018;240:253–258. doi: 10.1016/j.foodchem.2017.07.113. PubMed DOI

Fan X., Sokorai K., Weidauer A., Gotzmann G., Rögner F.-H., Koch E. Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds. Radiat. Phys. Chem. 2017;130:306–315. doi: 10.1016/j.radphyschem.2016.09.015. DOI

Luo X., Qi L., Liu Y., Wang R., Yang D., Li K., Wang L., Li Y., Zhang Y., Chen Z. Effects of Electron Beam Irradiation on Zearalenone and Ochratoxin A in Naturally Contaminated Corn and Corn Quality Parameters. Toxins. 2017;9:84. doi: 10.3390/toxins9030084. PubMed DOI PMC

Hertwig C., Meneses N., Mathys A. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends Food Sci. Technol. 2018;77:131–142. doi: 10.1016/j.tifs.2018.05.011. DOI

Hasanpour S., Rahimi S., Makki O.F., Shahhosseini G., Khosravi A. In Vivo Assessment of Gamma Rays, Electron-beam Irradiation plus a Commercial Toxin Binder (Milbond-TX) As an Anti-Aflatoxin B1 in a Chicken Model. Iran. J. Toxicol. 2018;12:15–20. doi: 10.29252/arakmu.12.2.15. DOI

Peng C., Ding Y., An F., Wang L., Li S., Nie Y., Zhou L., Li Y., Wang C., Li S. Degradation of ochratoxin A in aqueous solutions by electron beam irradiation. J. Radioanal. Nucl. Chem. 2015;306:39–46. doi: 10.1007/s10967-015-4086-5. DOI

Wang R., Liu R., Chang M., Jin Q., Huang J., Liu Y., Wang X. Ultra-performance Liquid Chromatography Quadrupole Time-of-Flight MS for Identification of Electron Beam from Accelerator Degradation Products of Aflatoxin B1. Appl. Biochem. Biotechnol. 2014;175:1548–1556. doi: 10.1007/s12010-014-1377-1. PubMed DOI

Liu R., Wang R., Lu J., Chang M., Jin Q., Du Z., Wang S., Li Q., Wang X. Degradation of AFB1 in aqueous medium by electron beam irradiation: Kinetics, pathway and toxicology. Food Control. 2016;66:151–157. doi: 10.1016/j.foodcont.2016.02.002. DOI

Assunção E., Reis T.A., Baquião A.C., Corrêa B. Effects of Gamma and Electron Beam Radiation on Brazil Nuts Artificially Inoculated with Aspergillus flavus. J. Food Prot. 2015;78:1397–1401. doi: 10.4315/0362-028X.JFP-14-595. PubMed DOI

Yang K., Li K., Pan L., Luo X., Xing J., Wang J., Wang L., Wang R., Zhai Y., Chen Z. Effect of Ozone and Electron Beam Irradiation on Degradation of Zearalenone and Ochratoxin, A. Toxins. 2020;12:138. doi: 10.3390/toxins12020138. PubMed DOI PMC

Zhao X.-M., Huang E.-L., Zhu Y.-S., Li J., Song B., Zhu X., Hao X.-Q. Oxidative sulfonamidomethylation of imidazopyridines utilizing methanol as the main C1 source. Org. Biomol. Chem. 2019;17:4869–4878. doi: 10.1039/C9OB00596J. PubMed DOI

Liu R., Lu M., Wang R., Wang S., Chang M., Jin Q., Wang X. Degradation of aflatoxin B1 in peanut meal by electron beam irradiation. Int. J. Food Prop. 2018;21:892–901. doi: 10.1080/10942912.2018.1466321. DOI

Unni L.E., Chauhan O.P. Use of Pulsed Light in Food Processing. Apple Academic Press; Cambridge, MA, USA: 2019. pp. 173–188.

Li D., Lin S.-B., Cheng B. Intense Pulsed Light Treatment for Meibomian Gland Dysfunction in Skin Types III/IV. Photobiomodulat. Photomed. Laser Surg. 2019;37:70–76. doi: 10.1089/photob.2018.4509. PubMed DOI

Garvey M., Rowan N. Pulsed UV as a potential surface sanitizer in food production processes to ensure consumer safety. Curr. Opin. Food Sci. 2019;26:65–70. doi: 10.1016/j.cofs.2019.03.003. DOI

Mahendran R., Ramanan K.R., Barba F.J., Lorenzo J.M., López-Fernández O., Munekata P.E., Roohinejad S., Sant’Ana A.S., Tiwari B.K. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci. Technol. 2019;88:67–79. doi: 10.1016/j.tifs.2019.03.010. DOI

Bank H.L., John J., Schmehl M.K., Dratch R.J. Bactericidal effectiveness of modulated UV light. Appl. Environ. Microbiol. 1990;56:3888–3889. doi: 10.1128/AEM.56.12.3888-3889.1990. PubMed DOI PMC

Oms-Oliu G., Martín-Belloso O., Soliva-Fortuny R. Pulsed Light Treatments for Food Preservation. A Review. Food Bioprocess. Technol. 2010;3:13–23. doi: 10.1007/s11947-008-0147-x. DOI

Rowan N.J. Pulsed light as an emerging technology to cause disruption for food and adjacent industries–Quo vadis? Trends Food Sci. Technol. 2019;88:316–332. doi: 10.1016/j.tifs.2019.03.027. DOI

Mukhopadhyay S., Sokorai K., Ukuku D.O., Fan X., Olanya M., Juneja V. Effects of pulsed light and sanitizer wash combination on inactivation of Escherichia coli O157:H7, microbial loads and apparent quality of spinach leaves. Food Microbiol. 2019;82:127–134. doi: 10.1016/j.fm.2019.01.022. PubMed DOI

Feuilloley M.G., Bourdet G., Orange N. Effect of white pulsed light on Pseudomonas aeruginosa culturability and its endotoxin when present in ampoules for injectables. Eur. J. Parenter. Pharm. Sci. 2006;11:9–14.

Wang B., Mahoney N.E., Pan Z., Khir R., Wu B., Ma H., Zhao L. Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B1 and B2 in rough rice and rice bran. Food Control. 2016;59:461–467. doi: 10.1016/j.foodcont.2015.06.030. DOI

Mandal R., Mohammadi X., Wiktor A., Singh A., Singh A.P. Applications of Pulsed Light Decontamination Technology in Food Processing: An Overview. Appl. Sci. 2020;10:3606. doi: 10.3390/app10103606. DOI

Funes G.J., Gómez P.L., Resnik S.L., Alzamora S.M. Application of pulsed light to patulin reduction in McIlvaine buffer and apple products. Food Control. 2013;30:405–410. doi: 10.1016/j.foodcont.2012.09.001. DOI

Wang B., Mahoney N.E., Khir R., Wu B., Zhou C., Pan Z., Ma H. Degradation kinetics of aflatoxin B1 and B2 in solid medium by using pulsed light irradiation. J. Sci. Food Agric. 2018;98:5220–5224. doi: 10.1002/jsfa.9058. PubMed DOI

Jing L., Chen B., Zhang B., Zheng J., Liu B. Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration. Mar. Pollut. Bull. 2014;81:149–156. doi: 10.1016/j.marpolbul.2014.02.003. PubMed DOI

Abuagela M.O., Iqdiam B.M., Mostafa H., Gu L., Smith M.E., Sarnoski P.J. Assessing pulsed light treatment on the reduction of aflatoxins in peanuts with and without skin. Int. J. Food Sci. Technol. 2018;53:2567–2575. doi: 10.1111/ijfs.13851. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma

. 2021 Nov 26 ; 10 (12) : . [epub] 20211126

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...