• This record comes from PubMed

Polymerase Synthesis of DNA Containing Iodinated Pyrimidine or 7-Deazapurine Nucleobases and Their Post-synthetic Modifications through the Suzuki-Miyaura Cross-Coupling Reactions

. 2022 Feb 04 ; 23 (3) : e202100608. [epub] 20211202

Language English Country Germany Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
Academy of Sciences of the Czech Republic
18-03305S Czech Science Foundation

All four iodinated 2'-deoxyribonucleoside triphosphates (dNTPs) derived from 5-iodouracil, 5-iodocytosine, 7-iodo-7-deazaadenine and 7-iodo-7-deazaguanine were prepared and studied as substrates for KOD XL DNA polymerase. All of the nucleotides were readily incorporated by primer extension and by PCR amplification to form DNA containing iodinated nucleobases. Systematic study of the Suzuki-Miyaura cross-coupling reactions with two bulkier arylboronic acids revealed that the 5-iodopyrimidines were more reactive and gave cross-coupling products both in the terminal or internal position in single-stranded oligonucleotides (ssONs) and in the terminal position of double-stranded DNA (dsDNA), whereas the 7-iodo-7-deazapurines were less reactive and gave cross-coupling products only in the terminal position. None of the four iodinated bases reacted in an internal position of dsDNA. These findings are useful for the use of the iodinated nucleobases for post-synthetic modification of DNA with functional groups for various applications.

See more in PubMed

H. G. Gratzner, Science 1982, 218, 474-475.

B. Michalska, I. Sobolewski, K. Polska, J. Zielonka, A. Zylicz-Stachula, P. Skowron, J. Rak, J. Pharm. Biomed. Anal. 2011, 56, 671-677.

P. Wityk, M. Zdrowowicz, J. Wiczk, J. Rak, J. Pharm. Biomed. Anal. 2017, 142, 262-269.

K. Westphal, M. Zdrowowicz, A. Zylicz-Stachula, J. Rak, J. Photochem. Photobiol. B 2017, 167, 228-235.

T. Watanabe, T. Bando, Y. Xu, R. Tashiro, H. Sugiyama, J. Am. Chem. Soc. 2005, 127, 44-45.

T. Watanabe, R. Tashiro, H. Sugiyama, J. Am. Chem. Soc. 2007, 129, 8163-8168.

F. Hashiya, A. Saha, S. Kizaki, Y. Li, H. Sugiyama, Nucleic Acids Res. 2014, 42, 13469-13473.

E. E. Blatter, Y. W. Ebright, R. H. Ebright, Nature 1992, 359, 650-652.

M. C. Willis, B. J. Hicke, O. C. Uhlenbeck, T. R. Cech, T. H. Koch, Science 1993, 262, 1255-1257.

J. Liu, M. Sodeoka, W. S. Lane, G. L. Verdine, Proc. Natl. Acad. Sci. USA 1994, 91, 908-912.

M. Mücke, V. Pingoud, G. Grelle, R. Kraft, D. H. Krüger, M. Reuter, J. Biol. Chem. 2002, 277, 14288-14293.

B. Holz, N. Dank, J. E. Eickhoff, G. Lipps, G. Krauss, E. Weinhold, J. Biol. Chem. 1999, 274, 15066-15072.

V. A. Malkov, I. Biswas, R. D. Camerini-Otero, P. Hsieh, J. Biol. Chem. 1997, 272, 23811-23817.

V. Pingoud, H. Thole, F. Christ, W. Grindl, W. Wende, A. Pingoud, J. Biol. Chem. 1999, 274, 10235-10243.

E. A. Kubareva, H. Thole, A. S. Karyagina, T. S. Oretskaya, A. Pingoud, V. Pingoud, Nucleic Acids Res. 2000, 28, 1085-1091.

M.-E. Dextraze, S. Cecchini, F. Bergeron, S. Girouard, K. Turcotte, J. R. Wagner, D. J. Hunting, Biochemistry 2009, 48, 2005-2011.

Y. Zeng, Y. Wang, J. Am. Chem. Soc. 2004, 126, 6552-6553.

T. Chen, G. P. Cook, A. T. Koppisch, M. M. Greenberg, J. Am. Chem. Soc. 2000, 122, 3861-3866.

G. P. Cook, M. M. Greenberg, J. Am. Chem. Soc. 1996, 118, 10025-10030.

F. Seela, M. Zulauf, Chem. Eur. J. 1998, 4, 1781-1790.

F. Seela, N. Ramzaeva, Y. Chen, Bioorg. Med. Chem. Lett. 1995, 5, 3049-3052.

N. Ramzaeva, F. Seela, Helv. Chim. Acta 1996, 79, 1549-1558.

E. Ferrer, M. Wiersma, B. Kazimierczak, C. W. Müller, R. Eritja, Bioconjugate Chem. 1997, 8, 757-761.

J. Bodnarz, W. Zempsky, D. Warder, C. Bergson, D. Ward, J. Biol. Chem. 1983, 258, 5206-5213.

K. He, K. W. Porter, A. Hasan, J. D. Briley, B. R. Shaw, Nucleic Acids Res. 1999, 27, 1788-1794.

O. I. Lavrik, A. L. Zakharenko, R. Prasad, V. A. Vlasov, V. S. Bogachev, A. Favre, Mol. Biol. 1998, 32, 510-517.

M. G. McDougall, L. P. Hosta, S. Kumar, C. W. Fuller, Nucleosides Nucleotides 1999, 18, 1009-1011.

M. G. McDougall, L. Sun, I. Livshin, L. P. Hosta, B. F. McArdle, S. B. Samols, C. W. Fuller, S. Kumar, Nucleosides Nucleotides Nucleic Acids 2001, 20, 501-506.

G. Hervé, G. Sartori, G. Enderlin, G. Mackenzie, C. Len, RSC Adv. 2014, 4, 18558.

K. H. Shaughnessy, Molecules 2015, 20, 9419-9454.

E. Defrancq, S. Messaoudi, ChemBioChem 2017, 18, 426-431.

S. I. Khan, M. W. Grinstaff, J. Am. Chem. Soc. 1999, 121, 4704-4705.

M. Rist, N. Amann, H.-A. Wagenknecht, Eur. J. Org. Chem. 2003, 2498-2504.

M. Ejlersen, C. Lou, Y. S. Sanghvi, Y. Tor, J. Wengel, Chem. Commun. 2018, 54, 8003-8006.

A. Omumi, D. G. Beach, M. Baker, W. Gabryelski, R. A. Manderville, J. Am. Chem. Soc. 2011, 133, 42-50.

H. Cahová, A. Jäschke, Angew. Chem. Int. Ed. 2013, 52, 3186-3190;

Angew. Chem. 2013, 125, 3268-3272.

L. Lercher, J. F. McGouran, B. M. Kessler, C. J. Schofield, B. G. Davis, Angew. Chem. Int. Ed. 2013, 52, 10553-10558;

Angew. Chem. 2013, 125, 10747-10752.

M. B. Walunj, A. A. Tanpure, S. G. Srivatsan, Nucleic Acids Res. 2018, 46, e65;

M. B. Walunj, S. G. Srivatsan, Methods Mol. Biol. 2020, 2166, 473-486.

M. B. Walunj, S. G. Srivatsan, Bioconjugate Chem. 2020, 31, 2513-2521.

P. Capek, H. Cahová, R. Pohl, M. Hocek, C. Gloeckner, A. Marx, Chem. Eur. J. 2007, 13, 6196-6203.

B. H. Le, J. C. Koo, H. N. Joo, Y. J. Seo, Bioorg. Med. Chem. 2017, 25, 3591-3596.

H. Cahová, L. Havran, P. Brázdilová, H. Pivonková, R. Pohl, M. Fojta, M. Hocek, Angew. Chem. Int. Ed. 2008, 47, 2059-2062;

Angew. Chem. 2008, 120, 2089-2092.

P. Güixens-Gallardo, M. Hocek, P. Perlíková, Bioorg. Med. Chem. Lett. 2016, 26, 288-291.

P. Ménová, D. Dziuba, P. Güixens-Gallardo, P. Jurkiewicz, M. Hof, M. Hocek, Bioconjugate Chem. 2015, 26, 361-366.

P. Brázdilová, M. Vrábel, R. Pohl, H. Pivonková, L. Havran, M. Hocek, M. Fojta, Chem. Eur. J. 2007, 13, 9527-9533.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...