Zwitterionic DNA: enzymatic synthesis of hypermodified DNA bearing four different cationic substituents at all four nucleobases
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
20-00885X
Czech Science Foundation
PubMed
40057376
PubMed Central
PMC11890062
DOI
10.1093/nar/gkaf155
PII: 8063800
Knihovny.cz E-zdroje
- MeSH
- deoxyribonukleotidy metabolismus chemie MeSH
- DNA-dependentní DNA-polymerasy * metabolismus chemie MeSH
- DNA * chemie biosyntéza metabolismus MeSH
- kationty * chemie MeSH
- polymerázová řetězová reakce MeSH
- puriny chemie biosyntéza MeSH
- pyrimidiny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 7-deazapurine MeSH Prohlížeč
- deoxyribonukleotidy MeSH
- DNA-dependentní DNA-polymerasy * MeSH
- DNA * MeSH
- kationty * MeSH
- puriny MeSH
- pyrimidiny MeSH
We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) bearing cationic substituents (protonated amino, methylamino, dimethylamino and trimethylammonium groups) attached to position 5 of pyrimidines or position 7 of 7-deazapurines through hex-1-ynyl or propargyl linker. These cationic dNTPs were studied as substrates in enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase. In primer extension (PEX), we successfully obtained DNA containing one, two, three, or (all) four modified nucleotides, each bearing a different cationic modification. The cationic dNTPs were somewhat worse substrates compared to previously studied dNTPs bearing hydrophobic or anionic modifications, but the polymerase was still able to synthesize sequences up to 73 modified nucleotides. We also successfully combined one cationic modification with one anionic and two hydrophobic modifications in PEX. In polymerase chain reaction (PCR), we observed exponential amplification only in the case of one cationic modification, while the combination of more cationic nucleotides gave either very low amplification or no PCR product. The hypermodified oligonucleotides prepared by PEX were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies of hybridization, denaturation, and circular dichroism spectroscopy showed that the presence of cationic modifications increases the stability of duplexes.
Zobrazit více v PubMed
McKenzie LK, El-Khoury R, Thorpe JD et al. . Recent progress in non-native nucleic acid modifications. Chem Soc Rev. 2021; 50:5126–64.10.1039/D0CS01430C. PubMed DOI
Hollenstein M Nucleic acid enzymes based on functionalized nucleosides. Curr Opin Chem Biol. 2019; 52:93–101.10.1016/j.cbpa.2019.06.007. PubMed DOI
Silverman SK Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem Sci. 2016; 41:595–609.10.1016/j.tibs.2016.04.010. PubMed DOI PMC
Hollenstein M, Hipolito CJ, Lam CH et al. . A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2+). Nucleic Acids Res. 2009; 37:1638–49.10.1093/nar/gkn1070. PubMed DOI PMC
Röthlisberger P, Hollenstein M Aptamer chemistry. Adv Drug Deliv Rev. 2018; 134:3–21.10.1016/j.addr.2018.04.007. PubMed DOI
Diafa S, Hollenstein M Generation of aptamers with an expanded chemical repertoire. Molecules. 2015; 20:16643–71.10.3390/molecules200916643. PubMed DOI PMC
Ma H, Liu J, Ali MM et al. . Nucleic acid aptamers in cancer research, diagnostics and therapy. Chem Soc Rev. 2015; 44:1240–56.10.1039/C4CS00357H. PubMed DOI
Gold L, Ayers D, Bertino J et al. . Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010; 5:e15004.10.1371/journal.pone.0015004. PubMed DOI PMC
Taylor AI, Beuron F, Peak-Chew S-Y et al. . Nanostructures from synthetic genetic polymers. ChemBioChem. 2016; 17:1107–10.10.1002/cbic.201600136. PubMed DOI PMC
Wang J, Wang D-X, Liu B et al. . Recent advances in constructing higher-order DNA structures. Chem Asian J. 2022; 17:e202101315.10.1002/asia.202101315. PubMed DOI
Baker YR, Yuan L, Chen J et al. . Expanding the chemical functionality of DNA nanomaterials generated by rolling circle amplification. Nucleic Acids Res. 2021; 49:9042–52.10.1093/nar/gkab720. PubMed DOI PMC
Hottin A, Marx A Structural insights into the processing of nucleobase-modified nucleotides by DNA polymerases. Acc Chem Res. 2016; 49:418–27.10.1021/acs.accounts.5b00544. PubMed DOI
Hocek M Enzymatic synthesis of base-functionalized nucleic acids for sensing, cross-linking, and modulation of protein-DNA binding and transcription. Acc Chem Res. 2019; 52:1730–7.10.1021/acs.accounts.9b00195. PubMed DOI
Cheung Y-W, Röthlisberger P, Mechaly AE et al. . Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc Natl Acad Sci USA. 2020; 117:16790–8.10.1073/pnas.2003267117. PubMed DOI PMC
Dolot R, Lam CH, Sierant M et al. . Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity. Nucleic Acids Res. 2018; 46:4819–30.10.1093/nar/gky268. PubMed DOI PMC
Mulholland C, Jestřábová I, Sett A et al. . The selection of a hydrophobic 7-phenylbutyl-7-deazaadenine-modified DNA aptamer with high binding affinity for the Heat Shock Protein 70. Commun Chem. 2023; 6:65.10.1038/s42004-023-00862-0. PubMed DOI PMC
Gawande BN, Rohloff JC, Carter JD et al. . Selection of DNA aptamers with two modified bases. Proc Natl Acad Sci USA. 2017; 114:2898–903.10.1073/pnas.1615475114. PubMed DOI PMC
Jäger S, Famulok M Generation and enzymatic amplification of high-density functionalized DNA double strands. Angew Chem Int Ed. 2004; 43:3337–40.10.1002/anie.200453926. PubMed DOI
Jäger S, Rasched G, Kornreich-Leshem H et al. . A versatile toolbox for variable DNA functionalization at high density. J Am Chem Soc. 2005; 127:15071–82.10.1021/ja051725b. PubMed DOI
Kodr D, Yenice CP, Simonova A et al. . Carborane- or metallacarborane-linked nucleotides for redox labeling. Orthogonal multipotential coding of all four DNA bases for electrochemical analysis and sequencing. J Am Chem Soc. 2021; 143:7124–34.10.1021/jacs.1c02222. PubMed DOI
Ondruš M, Sýkorová V, Bednárová L et al. . Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups. Nucleic Acids Res. 2020; 48:11982–93.10.1093/nar/gkaa999. PubMed DOI PMC
Ondruš M, Sýkorová V, Hocek M Traceless enzymatic synthesis of monodispersed hypermodified oligodeoxyribonucleotide polymers from RNA templates. Chem Commun. 2022; 58:11248–51.10.1039/D2CC03588J. PubMed DOI
Kuprikova N, Ondruš M, Bednárová L et al. . Superanionic DNA. Enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases. Nucleic Acids Res. 2023; 51:11428–38.10.1093/nar/gkad893. PubMed DOI PMC
Krömer M, Poštová Slavětínská L, Hocek M Glyco-DNA: enzymatic synthesis of base-modified and hypermodified DNA displaying up to four different monosaccharide units in the major groove. Chem Eur J. 2024; 30:e202402318.10.1002/chem.202402318. PubMed DOI
Brunderová M, Havlíček V, Matyašovský J et al. . Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases. Nat Commun. 2024; 15:3054.10.1038/s41467-024-47444-9. PubMed DOI PMC
Lee SE, Sidorov AV, Gourlain T et al. . Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity. Nucleic Acids Res. 2001; 29:1565–73.10.1093/nar/29.7.1565. PubMed DOI PMC
Lermer L, Roupioz Y, Ting R et al. . Toward an RNaseA Mimic: a DNAzyme with imidazoles and cationic amines. J Am Chem Soc. 2002; 124:9960–1.10.1021/ja0205075. PubMed DOI
Gourlain T, Sidorov A, Mignet N et al. . Enhancing the catalytic repertoire of nucleic acids. II. Simultaneous incorporation of amino and imidazolyl functionalities by two modified triphosphates during PCR. Nucleic Acids Res. 2001; 29:1898–905.10.1093/nar/29.9.1898. PubMed DOI PMC
Sidorov AV, Grasby JA, Williams DM Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities. Nucleic Acids Res. 2004; 32:1591–601.10.1093/nar/gkh326. PubMed DOI PMC
Giller G, Tasara T, Angerer B et al. . Incorporation of reporter molecule-labeled nucleotides by DNA polymerases. I. Chemical synthesis of various reporter group-labeled 2’-deoxyribonucleoside-5’-triphosphates. Nucleic Acids Res. 2003; 31:2630–5.10.1093/nar/gkg370. PubMed DOI PMC
Baccaro A, Steck A-L, Marx A Barcoded nucleotides. Angew Chem Int Ed. 2012; 51:254–7.10.1002/anie.201105717. PubMed DOI
Bergen K, Steck A-L, Strütt S et al. . Structures of KlenTaq DNA polymerase caught while incorporating C5-modified pyrimidine and C7-modified 7-deazapurine nucleoside triphosphates. J Am Chem Soc. 2012; 134:11840–3.10.1021/ja3017889. PubMed DOI
Kuwahara M, Takahata Y, Shoji A et al. . Substrate properties of C5-substituted pyrimidine 2’-deoxynucleoside 5’-triphosphates for thermostable DNA polymerases during PCR. Bioorg Med Chem Lett. 2003; 13:3735–8.10.1016/j.bmcl.2003.08.001. PubMed DOI
Ohbayashi T, Kuwahara M, Hasegawa M et al. . Expansion of repertoire of modified DNAs prepared by PCR using KOD Dash DNA polymerase. Org Biomol Chem. 2005; 3:2463–8.10.1039/b504330a. PubMed DOI
Kuwahara M, Hanawa K, Ohsawa K et al. . Direct PCR amplification of various modified DNAs having amino acids: convenient preparation of DNA libraries with high-potential activities for in vitro selection. Bioorg Med Chem. 2006; 14:2518–26.10.1016/j.bmc.2005.11.030. PubMed DOI
Hollenstein M, Hipolito CJ, Lam CH et al. . A DNAzyme with three protein-like functional groups: enhancing catalytic efficiency of M2+-independent RNA cleavage. ChemBioChem. 2009; 10:1988–92.10.1002/cbic.200900314. PubMed DOI
Čapek P, Cahová H, Pohl R et al. . An efficient method for the construction of functionalized DNA bearing amino acid groups through cross-coupling reactions of nucleoside triphosphates followed by primer extension or PCR. Chem Eur J. 2007; 13:6196–203.10.1002/chem.200700220. PubMed DOI
Sýkorová V, Tichý M, Hocek M Polymerase synthesis of DNA containing iodinated pyrimidine or 7-deazapurine nucleobases and their post-synthetic modifications through the Suzuki-Miyaura cross-coupling reactions. ChemBioChem. 2022; 23:e202100608.10.1002/cbic.202100608. PubMed DOI
Kim YJ, Lek MT, Schramm MP pH influenced molecular switching with micelle bound cavitands. Chem Commun. 2011; 47:9636–8.10.1039/c1cc12901e. PubMed DOI
Kovács T, Ötvös L Simple synthesis of 5-vinyl- and 5-ethynyl-2′-deoxyuridine-5′-triphosphates. Tetrahedron Lett. 1988; 29:4525–8.10.1016/S0040-4039(00)80537-7. DOI
Cahová H, Panattoni A, Kielkowski P et al. . 5-Substituted pyrimidine and 7-Substituted 7-deazapurine dNTPs as substrates for DNA polymerases in competitive primer extension in the presence of natural dNTPs. ACS Chem Biol. 2016; 11:3165–71.10.1021/acschembio.6b00714. PubMed DOI
Hottin A, Betz K, Diederichs K et al. . Structural basis for the KlenTaq DNA polymerase catalysed incorporation of alkene- versus alkyne-modified nucleotides. Chem Eur J. 2017; 23:2109–18.10.1002/chem.201604515. PubMed DOI
Dande P, Liang G, Chen FX et al. . Regioselective effect of zwitterionic DNA substitutions on DNA alkylation: evidence for a strong side chain orientational preference. Biochemistry. 1997; 36:6024–32.10.1021/bi962602u. PubMed DOI
Li Z, Huang L, Dande P et al. . Structure of a tethered cationic 3-aminopropyl chain incorporated into an oligodeoxynucleotide: evidence for 3’-orientation in the major groove accompanied by DNA bending. J Am Chem Soc. 2002; 124:8553–60.10.1021/ja0201707. PubMed DOI
Moulaei T, Maehigashi T, Lountos GT et al. . Structure of B-DNA with cations tethered in the major groove. Biochemistry. 2005; 44:7458–68.10.1021/bi050128z. PubMed DOI
Wang F, Li F, Ganguly M et al. . A bridging water anchors the tethered 5-(3-aminopropyl)-2’-deoxyuridine amine in the DNA major groove proximate to the N+2 C.G base pair: implications for formation of interstrand 5’-GNC-3’ cross-links by nitrogen mustards. Biochemistry. 2008; 47:7147–57.10.1021/bi800375m. PubMed DOI PMC
Deglane G, Morvan F, Debart F et al. . 5-Propynylamino alpha-deoxyuridine promotes DNA duplex stabilization of anionic and neutral but not cationic alpha-oligonucleotides. Bioorg Med Chem Lett. 2007; 17:951–4.10.1016/j.bmcl.2006.11.052. PubMed DOI
Heystek LE, Zhou H, Dande P et al. . Control over the localization of positive charge in DNA: the effect on duplex DNA and RNA stability. J Am Chem Soc. 1998; 120:12165–6.10.1021/ja982039y. DOI
Le BH, Koo JC, Joo HN et al. . Diverse size approach to incorporate and extend highly fluorescent unnatural nucleotides into DNA. Bioorg Med Chem. 2017; 25:3591–6.10.1016/j.bmc.2017.03.045. PubMed DOI
Jestřábová I, Poštová Slavětínská L, Hocek M Arylethynyl- or alkynyl-linked pyrimidine and 7-deazapurine 2'-deoxyribonucleoside 3'-phosphoramidites for chemical synthesis of hypermodified hydrophobic oligonucleotides. ACS Omega. 2023; 8:39447–53.10.1021/acsomega.3c05202. PubMed DOI PMC
Barnes TW, Turner DH Long-range cooperativity in molecular recognition of RNA by oligodeoxynucleotides with multiple C5-(1-Propynyl) pyrimidines. J Am Chem Soc. 2001; 123:4107–4118.10.1021/ja003208t. PubMed DOI
Gyi JI, Gao D, Conn GL et al. . The solution structure of a DNA6RNA duplex containing 5-propynyl U and C; comparison with 5-MeModifications. Nucleic Acids Res. 2003; 31:2683–2693.10.1093/nar/gkg356. PubMed DOI PMC
Ghosh P, Betz K, Gutfreund C et al. . Structures of a DNA polymerase caught while incorporating responsive dual-functional nucleotide probes. Angew Chem Int Ed. 2025; 64:e202414319.10.1002/anie.202414319. PubMed DOI