Zwitterionic DNA: enzymatic synthesis of hypermodified DNA bearing four different cationic substituents at all four nucleobases

. 2025 Feb 27 ; 53 (5) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40057376

Grantová podpora
20-00885X Czech Science Foundation

We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) bearing cationic substituents (protonated amino, methylamino, dimethylamino and trimethylammonium groups) attached to position 5 of pyrimidines or position 7 of 7-deazapurines through hex-1-ynyl or propargyl linker. These cationic dNTPs were studied as substrates in enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase. In primer extension (PEX), we successfully obtained DNA containing one, two, three, or (all) four modified nucleotides, each bearing a different cationic modification. The cationic dNTPs were somewhat worse substrates compared to previously studied dNTPs bearing hydrophobic or anionic modifications, but the polymerase was still able to synthesize sequences up to 73 modified nucleotides. We also successfully combined one cationic modification with one anionic and two hydrophobic modifications in PEX. In polymerase chain reaction (PCR), we observed exponential amplification only in the case of one cationic modification, while the combination of more cationic nucleotides gave either very low amplification or no PCR product. The hypermodified oligonucleotides prepared by PEX were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies of hybridization, denaturation, and circular dichroism spectroscopy showed that the presence of cationic modifications increases the stability of duplexes.

Zobrazit více v PubMed

McKenzie  LK, El-Khoury  R, Thorpe  JD  et al. .  Recent progress in non-native nucleic acid modifications. Chem Soc Rev. 2021; 50:5126–64.10.1039/D0CS01430C. PubMed DOI

Hollenstein  M  Nucleic acid enzymes based on functionalized nucleosides. Curr Opin Chem Biol. 2019; 52:93–101.10.1016/j.cbpa.2019.06.007. PubMed DOI

Silverman  SK  Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem Sci. 2016; 41:595–609.10.1016/j.tibs.2016.04.010. PubMed DOI PMC

Hollenstein  M, Hipolito  CJ, Lam  CH  et al. .  A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2+). Nucleic Acids Res. 2009; 37:1638–49.10.1093/nar/gkn1070. PubMed DOI PMC

Röthlisberger  P, Hollenstein  M  Aptamer chemistry. Adv Drug Deliv Rev. 2018; 134:3–21.10.1016/j.addr.2018.04.007. PubMed DOI

Diafa  S, Hollenstein  M  Generation of aptamers with an expanded chemical repertoire. Molecules. 2015; 20:16643–71.10.3390/molecules200916643. PubMed DOI PMC

Ma  H, Liu  J, Ali  MM  et al. .  Nucleic acid aptamers in cancer research, diagnostics and therapy. Chem Soc Rev. 2015; 44:1240–56.10.1039/C4CS00357H. PubMed DOI

Gold  L, Ayers  D, Bertino  J  et al. .  Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010; 5:e15004.10.1371/journal.pone.0015004. PubMed DOI PMC

Taylor  AI, Beuron  F, Peak-Chew  S-Y  et al. .  Nanostructures from synthetic genetic polymers. ChemBioChem. 2016; 17:1107–10.10.1002/cbic.201600136. PubMed DOI PMC

Wang  J, Wang  D-X, Liu  B  et al. .  Recent advances in constructing higher-order DNA structures. Chem Asian J. 2022; 17:e202101315.10.1002/asia.202101315. PubMed DOI

Baker  YR, Yuan  L, Chen  J  et al. .  Expanding the chemical functionality of DNA nanomaterials generated by rolling circle amplification. Nucleic Acids Res. 2021; 49:9042–52.10.1093/nar/gkab720. PubMed DOI PMC

Hottin  A, Marx  A  Structural insights into the processing of nucleobase-modified nucleotides by DNA polymerases. Acc Chem Res. 2016; 49:418–27.10.1021/acs.accounts.5b00544. PubMed DOI

Hocek  M  Enzymatic synthesis of base-functionalized nucleic acids for sensing, cross-linking, and modulation of protein-DNA binding and transcription. Acc Chem Res. 2019; 52:1730–7.10.1021/acs.accounts.9b00195. PubMed DOI

Cheung  Y-W, Röthlisberger  P, Mechaly  AE  et al. .  Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc Natl Acad Sci USA. 2020; 117:16790–8.10.1073/pnas.2003267117. PubMed DOI PMC

Dolot  R, Lam  CH, Sierant  M  et al. .  Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity. Nucleic Acids Res. 2018; 46:4819–30.10.1093/nar/gky268. PubMed DOI PMC

Mulholland  C, Jestřábová  I, Sett  A  et al. .  The selection of a hydrophobic 7-phenylbutyl-7-deazaadenine-modified DNA aptamer with high binding affinity for the Heat Shock Protein 70. Commun Chem. 2023; 6:65.10.1038/s42004-023-00862-0. PubMed DOI PMC

Gawande  BN, Rohloff  JC, Carter  JD  et al. .  Selection of DNA aptamers with two modified bases. Proc Natl Acad Sci USA. 2017; 114:2898–903.10.1073/pnas.1615475114. PubMed DOI PMC

Jäger  S, Famulok  M  Generation and enzymatic amplification of high-density functionalized DNA double strands. Angew Chem Int Ed. 2004; 43:3337–40.10.1002/anie.200453926. PubMed DOI

Jäger  S, Rasched  G, Kornreich-Leshem  H  et al. .  A versatile toolbox for variable DNA functionalization at high density. J Am Chem Soc. 2005; 127:15071–82.10.1021/ja051725b. PubMed DOI

Kodr  D, Yenice  CP, Simonova  A  et al. .  Carborane- or metallacarborane-linked nucleotides for redox labeling. Orthogonal multipotential coding of all four DNA bases for electrochemical analysis and sequencing. J Am Chem Soc. 2021; 143:7124–34.10.1021/jacs.1c02222. PubMed DOI

Ondruš  M, Sýkorová  V, Bednárová  L  et al. .  Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups. Nucleic Acids Res. 2020; 48:11982–93.10.1093/nar/gkaa999. PubMed DOI PMC

Ondruš  M, Sýkorová  V, Hocek  M  Traceless enzymatic synthesis of monodispersed hypermodified oligodeoxyribonucleotide polymers from RNA templates. Chem Commun. 2022; 58:11248–51.10.1039/D2CC03588J. PubMed DOI

Kuprikova  N, Ondruš  M, Bednárová  L  et al. .  Superanionic DNA. Enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases. Nucleic Acids Res. 2023; 51:11428–38.10.1093/nar/gkad893. PubMed DOI PMC

Krömer  M, Poštová  Slavětínská L, Hocek  M  Glyco-DNA: enzymatic synthesis of base-modified and hypermodified DNA displaying up to four different monosaccharide units in the major groove. Chem Eur J. 2024; 30:e202402318.10.1002/chem.202402318. PubMed DOI

Brunderová  M, Havlíček  V, Matyašovský  J  et al. .  Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases. Nat Commun. 2024; 15:3054.10.1038/s41467-024-47444-9. PubMed DOI PMC

Lee  SE, Sidorov  AV, Gourlain  T  et al. .  Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity. Nucleic Acids Res. 2001; 29:1565–73.10.1093/nar/29.7.1565. PubMed DOI PMC

Lermer  L, Roupioz  Y, Ting  R  et al. .  Toward an RNaseA Mimic: a DNAzyme with imidazoles and cationic amines. J Am Chem Soc. 2002; 124:9960–1.10.1021/ja0205075. PubMed DOI

Gourlain  T, Sidorov  A, Mignet  N  et al. .  Enhancing the catalytic repertoire of nucleic acids. II. Simultaneous incorporation of amino and imidazolyl functionalities by two modified triphosphates during PCR. Nucleic Acids Res. 2001; 29:1898–905.10.1093/nar/29.9.1898. PubMed DOI PMC

Sidorov  AV, Grasby  JA, Williams  DM  Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities. Nucleic Acids Res. 2004; 32:1591–601.10.1093/nar/gkh326. PubMed DOI PMC

Giller  G, Tasara  T, Angerer  B  et al. .  Incorporation of reporter molecule-labeled nucleotides by DNA polymerases. I. Chemical synthesis of various reporter group-labeled 2’-deoxyribonucleoside-5’-triphosphates. Nucleic Acids Res. 2003; 31:2630–5.10.1093/nar/gkg370. PubMed DOI PMC

Baccaro  A, Steck  A-L, Marx  A  Barcoded nucleotides. Angew Chem Int Ed. 2012; 51:254–7.10.1002/anie.201105717. PubMed DOI

Bergen  K, Steck  A-L, Strütt  S  et al. .  Structures of KlenTaq DNA polymerase caught while incorporating C5-modified pyrimidine and C7-modified 7-deazapurine nucleoside triphosphates. J Am Chem Soc. 2012; 134:11840–3.10.1021/ja3017889. PubMed DOI

Kuwahara  M, Takahata  Y, Shoji  A  et al. .  Substrate properties of C5-substituted pyrimidine 2’-deoxynucleoside 5’-triphosphates for thermostable DNA polymerases during PCR. Bioorg Med Chem Lett. 2003; 13:3735–8.10.1016/j.bmcl.2003.08.001. PubMed DOI

Ohbayashi  T, Kuwahara  M, Hasegawa  M  et al. .  Expansion of repertoire of modified DNAs prepared by PCR using KOD Dash DNA polymerase. Org Biomol Chem. 2005; 3:2463–8.10.1039/b504330a. PubMed DOI

Kuwahara  M, Hanawa  K, Ohsawa  K  et al. .  Direct PCR amplification of various modified DNAs having amino acids: convenient preparation of DNA libraries with high-potential activities for in vitro selection. Bioorg Med Chem. 2006; 14:2518–26.10.1016/j.bmc.2005.11.030. PubMed DOI

Hollenstein  M, Hipolito  CJ, Lam  CH  et al. .  A DNAzyme with three protein-like functional groups: enhancing catalytic efficiency of M2+-independent RNA cleavage. ChemBioChem. 2009; 10:1988–92.10.1002/cbic.200900314. PubMed DOI

Čapek  P, Cahová  H, Pohl  R  et al. .  An efficient method for the construction of functionalized DNA bearing amino acid groups through cross-coupling reactions of nucleoside triphosphates followed by primer extension or PCR. Chem Eur J. 2007; 13:6196–203.10.1002/chem.200700220. PubMed DOI

Sýkorová  V, Tichý  M, Hocek  M  Polymerase synthesis of DNA containing iodinated pyrimidine or 7-deazapurine nucleobases and their post-synthetic modifications through the Suzuki-Miyaura cross-coupling reactions. ChemBioChem. 2022; 23:e202100608.10.1002/cbic.202100608. PubMed DOI

Kim  YJ, Lek  MT, Schramm  MP  pH influenced molecular switching with micelle bound cavitands. Chem Commun. 2011; 47:9636–8.10.1039/c1cc12901e. PubMed DOI

Kovács  T, Ötvös  L  Simple synthesis of 5-vinyl- and 5-ethynyl-2′-deoxyuridine-5′-triphosphates. Tetrahedron Lett. 1988; 29:4525–8.10.1016/S0040-4039(00)80537-7. DOI

Cahová  H, Panattoni  A, Kielkowski  P  et al. .  5-Substituted pyrimidine and 7-Substituted 7-deazapurine dNTPs as substrates for DNA polymerases in competitive primer extension in the presence of natural dNTPs. ACS Chem Biol. 2016; 11:3165–71.10.1021/acschembio.6b00714. PubMed DOI

Hottin  A, Betz  K, Diederichs  K  et al. .  Structural basis for the KlenTaq DNA polymerase catalysed incorporation of alkene- versus alkyne-modified nucleotides. Chem Eur J. 2017; 23:2109–18.10.1002/chem.201604515. PubMed DOI

Dande  P, Liang  G, Chen  FX  et al. .  Regioselective effect of zwitterionic DNA substitutions on DNA alkylation: evidence for a strong side chain orientational preference. Biochemistry. 1997; 36:6024–32.10.1021/bi962602u. PubMed DOI

Li  Z, Huang  L, Dande  P  et al. .  Structure of a tethered cationic 3-aminopropyl chain incorporated into an oligodeoxynucleotide: evidence for 3’-orientation in the major groove accompanied by DNA bending. J Am Chem Soc. 2002; 124:8553–60.10.1021/ja0201707. PubMed DOI

Moulaei  T, Maehigashi  T, Lountos  GT  et al. .  Structure of B-DNA with cations tethered in the major groove. Biochemistry. 2005; 44:7458–68.10.1021/bi050128z. PubMed DOI

Wang  F, Li  F, Ganguly  M  et al. .  A bridging water anchors the tethered 5-(3-aminopropyl)-2’-deoxyuridine amine in the DNA major groove proximate to the N+2 C.G base pair: implications for formation of interstrand 5’-GNC-3’ cross-links by nitrogen mustards. Biochemistry. 2008; 47:7147–57.10.1021/bi800375m. PubMed DOI PMC

Deglane  G, Morvan  F, Debart  F  et al. .  5-Propynylamino alpha-deoxyuridine promotes DNA duplex stabilization of anionic and neutral but not cationic alpha-oligonucleotides. Bioorg Med Chem Lett. 2007; 17:951–4.10.1016/j.bmcl.2006.11.052. PubMed DOI

Heystek  LE, Zhou  H, Dande  P  et al. .  Control over the localization of positive charge in DNA: the effect on duplex DNA and RNA stability. J Am Chem Soc. 1998; 120:12165–6.10.1021/ja982039y. DOI

Le  BH, Koo  JC, Joo  HN  et al. .  Diverse size approach to incorporate and extend highly fluorescent unnatural nucleotides into DNA. Bioorg Med Chem. 2017; 25:3591–6.10.1016/j.bmc.2017.03.045. PubMed DOI

Jestřábová  I, Poštová  Slavětínská L, Hocek  M  Arylethynyl- or alkynyl-linked pyrimidine and 7-deazapurine 2'-deoxyribonucleoside 3'-phosphoramidites for chemical synthesis of hypermodified hydrophobic oligonucleotides. ACS Omega. 2023; 8:39447–53.10.1021/acsomega.3c05202. PubMed DOI PMC

Barnes  TW, Turner  DH  Long-range cooperativity in molecular recognition of RNA by oligodeoxynucleotides with multiple C5-(1-Propynyl) pyrimidines. J Am Chem Soc. 2001; 123:4107–4118.10.1021/ja003208t. PubMed DOI

Gyi  JI, Gao  D, Conn  GL  et al. .  The solution structure of a DNA6RNA duplex containing 5-propynyl U and C; comparison with 5-MeModifications. Nucleic Acids Res. 2003; 31:2683–2693.10.1093/nar/gkg356. PubMed DOI PMC

Ghosh  P, Betz  K, Gutfreund  C  et al. .  Structures of a DNA polymerase caught while incorporating responsive dual-functional nucleotide probes. Angew Chem Int Ed. 2025; 64:e202414319.10.1002/anie.202414319. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...