Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00885X
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
CZ.02.01.01/00/22_008/0004575
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
38594306
PubMed Central
PMC11004144
DOI
10.1038/s41467-024-47444-9
PII: 10.1038/s41467-024-47444-9
Knihovny.cz E-zdroje
- MeSH
- DNA-dependentní DNA-polymerasy * genetika MeSH
- messenger RNA genetika MeSH
- nukleotidy chemie MeSH
- RNA * genetika chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-dependentní DNA-polymerasy * MeSH
- messenger RNA MeSH
- nukleotidy MeSH
- RNA * MeSH
Innovative approaches to controlled nucleobase-modified RNA synthesis are urgently needed to support RNA biology exploration and to synthesize potential RNA therapeutics. Here we present a strategy for enzymatic construction of nucleobase-modified RNA based on primer-dependent engineered thermophilic DNA polymerases - SFM4-3 and TGK. We demonstrate introduction of one or several different base-modified nucleotides in one strand including hypermodified RNA containing all four modified nucleotides bearing four different substituents, as well as strategy for primer segment removal. We also show facile site-specific or segmented introduction of fluorophores or other functional groups at defined positions in variety of RNA molecules, including structured or long mRNA. Intriguing translation efficacy of single-site modified mRNAs underscores the necessity to study isolated modifications placed at designer positions to disentangle their biological effects and enable development of improved mRNA therapeutics. Our toolbox paves the way for more precise dissecting RNA structures and functions, as well as for construction of diverse types of base-functionalized RNA for therapeutic applications and diagnostics.
MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge Biomedical Campus Cambridge UK
The Rosalind Franklin Institute Harwell Campus Didcot Oxfordshire UK
Zobrazit více v PubMed
Boccaletto P, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022;50:D231–D235. doi: 10.1093/nar/gkab1083. PubMed DOI PMC
Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA Modifications in Gene Expression Regulation. Cell. 2017;169:1187–1200. doi: 10.1016/j.cell.2017.05.045. PubMed DOI PMC
Song J, Yi C. Chemical Modifications to RNA: A New Layer of Gene Expression Regulation. ACS Chem. Biol. 2017;12:316–325. doi: 10.1021/acschembio.6b00960. PubMed DOI
Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat. Rev. Cancer. 2020;20:303–322. doi: 10.1038/s41568-020-0253-2. PubMed DOI
Matsumura Y, Wei FY, Sakai J. Epitranscriptomics in metabolic disease. Nat. Metab. 2023;5:370–384. doi: 10.1038/s42255-023-00764-4. PubMed DOI
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. Mol. Biomed. 2023;4:1–56. doi: 10.1186/s43556-023-00139-x. PubMed DOI PMC
Gatsiou A, Stellos K. RNA modifications in cardiovascular health and disease. Nat. Rev. Cardiol. 2022;20:325–346. doi: 10.1038/s41569-022-00804-8. PubMed DOI
Frye M, Jaffrey SR, Pan T, Rechavi G, Suzuki T. RNA modifications: what have we learned and where are we headed? Nat. Rev. Genet. 2016;17:365–372. doi: 10.1038/nrg.2016.47. PubMed DOI
Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 2022;13:1–15. doi: 10.1038/s41419-022-05075-2. PubMed DOI PMC
Delaunay S, Helm M, Frye M. RNA modifications in physiology and disease: towards clinical applications. Nat. Rev. Genet. 2024;25:104–122. doi: 10.1038/s41576-023-00645-2. PubMed DOI
Kulkarni JA, et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 2021;16:630–643. doi: 10.1038/s41565-021-00898-0. PubMed DOI
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 2014;13:759–780. doi: 10.1038/nrd4278. PubMed DOI
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 2018;17:261–279. doi: 10.1038/nrd.2017.243. PubMed DOI PMC
Verbeke R, Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today. 2019;28:100766. doi: 10.1016/j.nantod.2019.100766. DOI
Vogel AB, et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature. 2021;592:283–289. doi: 10.1038/s41586-021-03275-y. PubMed DOI
Harcourt EM, Kietrys AM, Kool ET. Chemical and structural effects of base modifications in messenger RNA. Nature. 2017;541:339–346. doi: 10.1038/nature21351. PubMed DOI PMC
Nance KD, Meier JL. Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Cent. Sci. 2021;7:748–756. doi: 10.1021/acscentsci.1c00197. PubMed DOI PMC
Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity. 2005;23:165–175. doi: 10.1016/j.immuni.2005.06.008. PubMed DOI
Breaker RR. Natural and engineered nucleic acids as tools to explore biology. Nature. 2004;432:838–845. doi: 10.1038/nature03195. PubMed DOI
Wachowius F, Höbartner C. Chemical RNA Modifications for Studies of RNA Structure and Dynamics. ChemBioChem. 2010;11:469–480. doi: 10.1002/cbic.200900697. PubMed DOI
Flamme M, McKenzie LK, Sarac I, Hollenstein M. Chemical methods for the modification of RNA. Methods. 2019;161:64–82. doi: 10.1016/j.ymeth.2019.03.018. PubMed DOI
Somoza À. Protecting groups for RNA synthesis: an increasing need for selective preparative methods. Chem. Soc. Rev. 2008;37:2668–2675. doi: 10.1039/b809851d. PubMed DOI
Moody ER, Obexer R, Nickl F, Spiess R, Lovelock SL. An enzyme cascade enables production of therapeutic oligonucleotides in a single operation. Science. 2023;380:1150–1154. doi: 10.1126/science.add5892. PubMed DOI
Lang K, Micura R. The preparation of site-specifically modified riboswitch domains as an example for enzymatic ligation of chemically synthesized RNA fragments. Nat. Protoc. 2008;3:1457–1466. doi: 10.1038/nprot.2008.135. PubMed DOI
Hertler J, et al. Synthesis of point-modified mRNA. Nucleic Acids Res. 2022;50:e115–e115. doi: 10.1093/nar/gkac719. PubMed DOI PMC
Mattay J, Dittmar M, Rentmeister A. Chemoenzymatic strategies for RNA modification and labeling. Curr. Opin. Chem. Biol. 2021;63:46–56. doi: 10.1016/j.cbpa.2021.01.008. PubMed DOI
Ovcharenko A, Weissenboeck FP, Rentmeister A. Tag-Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angew. Chem. Int. Ed. 2021;60:4098–4103. doi: 10.1002/anie.202013936. PubMed DOI PMC
Beckert B, Masquida B. Synthesis of RNA by In Vitro Transcription. Methods Mol. Biol. 2011;703:29–41. doi: 10.1007/978-1-59745-248-9_3. PubMed DOI
Pokrovskaya ID, Gurevich VV. In Vitro Transcription: Preparative RNA Yields in Analytical Scale Reactions. Anal. Biochem. 1994;220:420–423. doi: 10.1006/abio.1994.1360. PubMed DOI
George JT, Srivatsan SG. Vinyluridine as a Versatile Chemoselective Handle for the Post-transcriptional Chemical Functionalization of RNA. Bioconjug. Chem. 2017;28:1529–1536. doi: 10.1021/acs.bioconjchem.7b00169. PubMed DOI PMC
Vaught JD, Dewey T, Eaton BE. T7 RNA polymerase transcription with 5-position modified UTP derivatives. J. Am. Chem. Soc. 2004;126:11231–11237. doi: 10.1021/ja049009h. PubMed DOI
Milisavljevič N, Perlíková P, Pohl R, Hocek M. Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates. Org. Biomol. Chem. 2018;16:5800–5807. doi: 10.1039/C8OB01498A. PubMed DOI
Liu Y, et al. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature. 2015;522:368–372. doi: 10.1038/nature14352. PubMed DOI PMC
Sawant AA, et al. A versatile toolbox for posttranscriptional chemical labeling and imaging of RNA. Nucleic Acids Res. 2016;44:e16–e16. doi: 10.1093/nar/gkv903. PubMed DOI PMC
Brunderová M, et al. Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins. Angew. Chem. Int. Ed. 2023;62:e202213764. doi: 10.1002/anie.202213764. PubMed DOI PMC
Conrad T, Plumbom I, Alcobendas M, Vidal R, Sauer S. Maximizing transcription of nucleic acids with efficient T7 promoters. Commun. Biol. 2020;3:1–8. doi: 10.1038/s42003-020-01167-x. PubMed DOI PMC
Lyakhov DL, et al. Pausing and termination by bacteriophage T7 RNA polymerase. J. Mol. Biol. 1998;280:201–213. doi: 10.1006/jmbi.1998.1854. PubMed DOI
Hollenstein M. Nucleoside Triphosphates — Building Blocks for the Modification of Nucleic Acids. Molecules. 2012;17:13569–13591. doi: 10.3390/molecules171113569. PubMed DOI PMC
George JT, Srivatsan SG. Bioorthogonal chemistry-based RNA labeling technologies: evolution and current state. Chem. Commun. 2020;56:12307–12318. doi: 10.1039/D0CC05228K. PubMed DOI PMC
Kodr D, et al. Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of all Four DNA Bases for Electrochemical Analysis and Sequencing. J. Am. Chem. Soc. 2021;143:7124–7134. doi: 10.1021/jacs.1c02222. PubMed DOI
Ondruš M, et al. Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups. Nucleic Acids Res. 2020;48:11982–11993. doi: 10.1093/nar/gkaa999. PubMed DOI PMC
McElhinny SAN, et al. Genome instability due to ribonucleotide incorporation into DNA. Nat. Chem. Biol. 2010;6:774–781. doi: 10.1038/nchembio.424. PubMed DOI PMC
Chen T, et al. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2ʹ-modified DNA. Nat. Chem. 2016;8:556–562. doi: 10.1038/nchem.2493. PubMed DOI PMC
Chen T, Romesberg FE. Polymerase Chain Transcription: Exponential Synthesis of RNA and Modified RNA. J. Am. Chem. Soc. 2017;139:9949–9954. doi: 10.1021/jacs.7b03981. PubMed DOI
Cozens C, Pinheiro VB, Vaisman A, Woodgate R, Holliger P. A short adaptive path from DNA to RNA polymerases. Proc. Natl Acad. Sci. USA. 2012;109:8067–8072. doi: 10.1073/pnas.1120964109. PubMed DOI PMC
Hottin A, Marx A. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases. Acc. Chem. Res. 2016;49:418–427. doi: 10.1021/acs.accounts.5b00544. PubMed DOI
Hölz K, Pavlic A, Lietard J, Somoza MM. Specificity and Efficiency of the Uracil DNA Glycosylase-Mediated Strand Cleavage Surveyed on Large Sequence Libraries. Sci. Rep. 2019;9:1–12. doi: 10.1038/s41598-019-54044-x. PubMed DOI PMC
Mchugh PJ, Knowland J. Novel reagents for chemical cleavage at abasic sites and UV photoproducts in DNA. Nucleic Acids Res. 1995;23:1664–1670. doi: 10.1093/nar/23.10.1664. PubMed DOI PMC
Ménová P, et al. Polymerase synthesis of oligonucleotides containing a single chemically modified nucleobase for site-specific redox labelling. Chem. Commun. 2013;49:4652–4654. doi: 10.1039/c3cc41438h. PubMed DOI
Lemay JF, Penedo JC, Tremblay R, Lilley DMJ, Lafontaine DAA. Folding of the Adenine Riboswitch. Chem. Biol. 2006;13:857–868. doi: 10.1016/j.chembiol.2006.06.010. PubMed DOI
Dalgarno PA, et al. Single-molecule chemical denaturation of riboswitches. Nucleic Acids Res. 2013;41:4253–4265. doi: 10.1093/nar/gkt128. PubMed DOI PMC
Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39:e142. doi: 10.1093/nar/gkr695. PubMed DOI PMC
Kieft JS. Viral IRES RNA structures and ribosome interactions. Trends Biochem. Sci. 2008;33:274–283. doi: 10.1016/j.tibs.2008.04.007. PubMed DOI PMC
England CG, Ehlerding EB, Cai W. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. Bioconjug. Chem. 2016;27:1175–1187. doi: 10.1021/acs.bioconjchem.6b00112. PubMed DOI PMC
Bebenek K, Roberts JD, Kunkel TA. The effects of dNTP pool imbalances on frameshift fidelity during DNA replication. J. Biol. Chem. 1992;267:3589–3596. doi: 10.1016/S0021-9258(19)50565-8. PubMed DOI
Liao X, Wise JA. A simple high-efficiency method for random mutagenesis of cloned genes using forced nucleotide misincorporation. Gene. 1990;88:107–111. doi: 10.1016/0378-1119(90)90066-Z. PubMed DOI
de Paz AM, et al. High-resolution mapping of DNA polymerase fidelity using nucleotide imbalances and next-generation sequencing. Nucleic Acids Res. 2018;46:e78–e78. doi: 10.1093/nar/gky296. PubMed DOI PMC
Kropp HM, Diederichs K, Marx A. The Structure of an Archaeal B-Family DNA Polymerase in Complex with a Chemically Modified Nucleotide. Angew. Chem. Int. Ed. 2019;58:5457–5461. doi: 10.1002/anie.201900315. PubMed DOI
Praetorius F, et al. Biotechnological mass production of DNA origami. Nature. 2017;552:84–87. doi: 10.1038/nature24650. PubMed DOI
Shepherd TR, Du RR, Huang H, Wamhoff EC, Bathe M. Bioproduction of pure, kilobase-scale single-stranded DNA. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-42665-1. PubMed DOI PMC
Minev D, et al. Rapid in vitro production of single-stranded DNA. Nucleic Acids Res. 2019;47:11956–11962. PubMed PMC
Huang F, He J, Zhang Y, Guo Y. Synthesis of biotin–AMP conjugate for 5′ biotin labeling of RNA through one-step in vitro transcription. Nat. Protoc. 2008;3:1848–1861. doi: 10.1038/nprot.2008.185. PubMed DOI
Samanta A, Krause A, Jäschke A. A modified dinucleotide for site-specific RNA-labelling by transcription priming and click chemistry. Chem. Commun. 2014;50:1313–1316. doi: 10.1039/C3CC46132G. PubMed DOI
Pitulle C, Kleineidam RG, Sproat B, Krupp G. Initiator oligonucleotides for the combination of chemical and enzymatic RNA synthesis. Gene. 1992;112:101–105. doi: 10.1016/0378-1119(92)90309-D. PubMed DOI
Anhäuser L, Rentmeister A. Enzyme-mediated tagging of RNA. Curr. Opin. Biotechnol. 2017;48:69–76. doi: 10.1016/j.copbio.2017.03.013. PubMed DOI
Mamot A, et al. Ethylenediamine derivatives efficiently react with oxidized RNA 3′ ends providing access to mono and dually labelled RNA probes for enzymatic assays and in vivo translation. Nucleic Acids Res. 2022;50:e3–e3. doi: 10.1093/nar/gkab867. PubMed DOI PMC
Liu Y, et al. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA. Nat. Protoc. 2018;13:987–1005. doi: 10.1038/nprot.2018.002. PubMed DOI PMC
Liu Y, et al. Applications of PLOR in labeling large RNAs at specific sites. Methods. 2016;103:4–10. doi: 10.1016/j.ymeth.2016.03.014. PubMed DOI PMC
Hoernes TP, et al. Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions. Nat. Commun. 2018;9:1–12. doi: 10.1038/s41467-018-07321-8. PubMed DOI PMC