Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36533569
PubMed Central
PMC10107093
DOI
10.1002/anie.202213764
Knihovny.cz E-zdroje
- Klíčová slova
- Bioconjugations, Cross-Linking, Modified RNA, Proteins, RNA Polymerases,
- MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- DNA metabolismus MeSH
- nukleotidy * metabolismus MeSH
- proteiny vázající RNA MeSH
- reagencia zkříženě vázaná MeSH
- RNA sondy MeSH
- RNA * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chloroacetamide MeSH Prohlížeč
- DNA řízené RNA-polymerasy MeSH
- DNA MeSH
- nukleotidy * MeSH
- proteiny vázající RNA MeSH
- reagencia zkříženě vázaná MeSH
- RNA sondy MeSH
- RNA * MeSH
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
Zobrazit více v PubMed
Ramanathan M., Porter D. F., Khavari P. A., Nat. Methods 2019, 16, 225–234; PubMed PMC
Nechay M., Kleiner R. E., Curr. Opin. Chem. Biol. 2020, 54, 37–44; PubMed PMC
Hentze M. W., Castello A., Schwarzl T., Preiss T., Nat. Rev. Mol. Cell Biol. 2018, 19, 327–341; PubMed
Gräwe C., Stelloo S., van Hout F. A. H., Vermeulen M., Trends Biotechnol. 2021, 39, 890–900; PubMed
Castello A., Fischer B., Eichelbaum K., Horos R., Beckmann B. M., Strein C., Davey N. E., Humphreys D. T., Preiss T., Steinmetz L. M., Krijgsveld J., Hentze M. W., Cell 2012, 149, 1393–1406; PubMed
Castello A., Fischer B., Frese C. K., Horos R., Alleaume A. M., Foehr S., Curk T., Krijgsveld J., Hentze M. W., Mol. Cell 2016, 63, 696–710; PubMed PMC
Lee S., Suk Lee Y., Choi Y., Son A., Park Y., Lee K. M., Kim J., Kim J. S., Kim V. N., Mol. Cell 2021, 81, 2838–2850. PubMed PMC
Kramer K., Sachsenberg T., Beckmann B. M., Qamar S., Boon K. L., Hentze M. W., Kohlbacher O., Urlaub H., Nat. Methods 2014, 11, 1064–1070. PubMed PMC
Bae J. W., Kwon S. C., Na Y., Kim V. N., Kim J. S., Nat. Struct. Mol. Biol. 2020, 27, 678–682; PubMed
Malmqvist T., Spickett C., Gallo J. M., Anthony K., Biol. Methods Protoc. 2017, 2, bpx009; PubMed PMC
Panhale A., Richter F. M., Ramírez F., Shvedunova M., Manke T., Mittler G., Akhtar A., Nat. Commun. 2019, 10, 2682. PubMed PMC
Costas C., Yuriev E., Meyer K. L., Guion T. S., Hanna M. M., Nucleic Acids Res. 2000, 28, 1849–1858; PubMed PMC
Smith C. C., Hollenstein M., Leumann C. J., RSC Adv. 2014, 4, 48228–48235;
Kuboe S., Yoda M., Ogata A., Kitade Y., Tomari Y., Ueno Y., Chem. Commun. 2010, 46, 7367–7369; PubMed
Jeong H. S., Hayashi G., Okamoto A., ACS Chem. Biol. 2015, 10, 1450–1455; PubMed
Muttach F., Mäsing F., Studer A., Rentmeister A., Chem. Eur. J. 2017, 23, 5988–5993; PubMed
Arguello A. E., Deliberto A. N., Kleiner R. E., J. Am. Chem. Soc. 2017, 139, 17249–17252; PubMed
Perez-Perri J. I., Rogell B., Schwarzl T., Stein F., Zhou Y., Rettel M., Brosig A., Hentze M. W., Nat. Commun. 2018, 9, 4408; PubMed PMC
Luo H., Tang W., Liu H., Zeng X., Ngai W. S. C., Gao R., Li H., Li R., Zheng H., Guo J., Qin F., Wang G., Li K., Fan X., Zou P., Chen P. R., Angew. Chem. Int. Ed. 2022, 61, e202202008; PubMed
Angew. Chem. 2022, 134, e202202008; PubMed
Willis M. C., Hicke B. J., Uhlenbeck O. C., Cech T. R., Koch T. H., Science 1993, 262, 1255–1257. PubMed
Möller K., Rinke J., Ross A., Buddle G., Brimacombe R., Eur. J. Biochem. 1977, 76, 175–187; PubMed
Patton R. D., Sanjeev M., Woodward L. A., Mabin J. W., Bundschuh R., Singh G., RNA 2020, 26, 1216–1233. PubMed PMC
Chiaruttini C., Expert-Bezançon A., Hayes D., Ehresmann B., Nucleic Acids Res. 1982, 10, 7657–7676. PubMed PMC
Zaman U., Richter F. M., Hofele R., Kramer K., Sachsenberg T., Kohlbacher O., Lenz C., Urlaub H., Mol. Cell. Proteomics 2015, 14, 3196–3210. PubMed PMC
Dadová J., Orság P., Pohl R., Brázdová M., Fojta M., Hocek M., Angew. Chem. Int. Ed. 2013, 52, 10515–10518; PubMed
Angew. Chem. 2013, 125, 10709–10712.
Olszewska A., Pohl R., Brázdová M., Fojta M., Hocek M., Bioconjugate Chem. 2016, 27, 2089–2094. PubMed
Raiber E. A., Portella G., Martínez Cuesta S., Hardisty R., Murat P., Li Z., Iurlaro M., Dean W., Spindel J., Beraldi D., Liu Z., Dawson M. A., Reik W., Balasubramanian S., Nat. Chem. 2018, 10, 1258–1266; PubMed
Ji S., Fu I., Naldiga S., Shao H., Basu A. K., Broyde S., Tretyakova N. Y., Nucleic Acids Res. 2018, 46, 6455–6469; PubMed PMC
Ji S., Shao H., Han Q., Seiler C. L., Tretyakova N. Y., Angew. Chem. Int. Ed. 2017, 56, 14130–14134; PubMed PMC
Angew. Chem. 2017, 129, 14318–14322;
Runtsch L. S., Stadlmeier M., Schön A., Müller M., Carell T., Chem. Eur. J. 2021, 27, 12747–12752; PubMed PMC
Li F., Zhang Y., Bai J., Greenberg M. M., Xi Z., Zhou C., J. Am. Chem. Soc. 2017, 139, 10617–10620; PubMed PMC
Krömer M., Brunderová M., Ivancová I., Poštová Slavětínská L., Hocek M., ChemPlusChem 2020, 85, 1164–1170. PubMed
Ivancová I., Pohl R., Hubálek M., Hocek M., Angew. Chem. Int. Ed. 2019, 58, 13345–13348; PubMed PMC
Angew. Chem. 2019, 131, 13479–13482.
Leone D., Pohl R., Hubálek M., Kadeřábková M., Krömer M., Sýkorová V., Hocek M., Chem. Eur. J. 2022, 28, e202104208. PubMed
Leone D., Hubálek M., Pohl R., Sýkorová V., Hocek M., Angew. Chem. Int. Ed. 2021, 60, 17383–17387. PubMed PMC
Dai W., Li A., Yu N. J., Nguyen T., Leach R. W., Wühr M., Kleiner R. E., Nat. Chem. Biol. 2021, 17, 1178–1187; PubMed PMC
Liu Y., Santi D. v., Proc. Natl. Acad. Sci. USA 2000, 97, 8263–8265; PubMed PMC
Khoddami V., Cairns B. R., Nat. Biotechnol. 2013, 31, 458–464. PubMed PMC
Flamme M., McKenzie L. K., Sarac I., Hollenstein M., Methods 2019, 161, 64–82; PubMed
Tanpure A. A., Pawar M. G., Srivatsan S. G., Isr. J. Chem. 2013, 53, 366–378.
Vaught J. D., Dewey T., Eaton B. E., J. Am. Chem. Soc. 2004, 126, 11231–11237; PubMed
Pawar M. G., Nuthanakanti A., Srivatsan S. G., Bioconjugate Chem. 2013, 24, 1367–1377; PubMed
Srivatsan S. G., Tor Y., Chem. Asian J. 2009, 4, 419–427; PubMed PMC
Höltke H. J., Kessler C., Nucleic Acids Res. 1990, 18, 5843–5851; PubMed PMC
Langer P. R., Waldrop A. A., Ward D. C., Proc. Natl. Acad. Sci. USA 1981, 78, 6633–6637; PubMed PMC
Domnick C., Eggert F., Wuebben C., Bornewasser L., Hagelueken G., Schiemann O., Kath-Schorr S., Angew. Chem. Int. Ed. 2020, 59, 7891–7896; PubMed PMC
Angew. Chem. 2020, 132, 7965–7970.
Milisavljevič N., Perlíková P., Pohl R., Hocek M., Org. Biomol. Chem. 2018, 16, 5800–5807. PubMed
Liu Y., Holmstrom E., Zhang J., Yu P., Wang J., Dyba M. A., Chen D., Ying J., Lockett S., Nesbitt D. J., Ferré-D'Amaré A. R., Sousa R., Stagno J. R., Wang Y. X., Nature 2015, 522, 368–372; PubMed PMC
Hertler J., Slama K., Schober B., Zeynepözrendeci Z. Z., Marchand V., Motorin Y., Helm M., Nucleic Acids Res. 2022, 50, e115. PubMed PMC
George J. T., Srivatsan S. G., Chem. Commun. 2020, 56, 12307–12318; PubMed PMC
George J. T., Srivatsan S. G., Methods 2017, 120, 28–38; PubMed
Paredes E., Evans M., Das S. R., Methods 2011, 54, 251–259; PubMed
Fantoni N. Z., El-Sagheer A. H., Brown T., Chem. Rev. 2021, 121, 7122–7154; PubMed
Kath-Schorr S., Top. Curr. Chem. 2016, 374, 4; PubMed
Depmeier H., Hoffmann E., Bornewasser L., Kath-Schorr S., ChemBioChem 2021, 22, 2826–2847. PubMed PMC
Sawant A. A., Tanpure A. A., Mukherjee P. P., Athavale S., Kelkar A., Galande S., Srivatsan S. G., Nucleic Acids Res. 2016, 44, e16; PubMed PMC
Walunj M. B., Tanpure A. A., Srivatsan S. G., Nucleic Acids Res. 2018, 46, e65; PubMed PMC
Eggert F., Kath-Schorr S., Chem. Commun. 2016, 52, 7284–7287; PubMed
Someya T., Ando A., Kimoto M., Hirao I., Nucleic Acids Res. 2015, 43, 6665–6676; PubMed PMC
Pyka A. M., Domnick C., Braun F., Kath-Schorr S., Bioconjugate Chem. 2014, 25, 1438–1443; PubMed
Asare-Okai P. A., Agustin E., Fabris D., Royzen M., Chem. Commun. 2014, 50, 7844–7847. PubMed
Holstein J. M., Schulz D., Rentmeister A., Chem. Commun. 2014, 50, 4478–4481; PubMed
Holstein J. M., Anhäuser L., Rentmeister A., Angew. Chem. Int. Ed. 2016, 55, 10899–10903; PubMed
Angew. Chem. 2016, 128, 11059–11063; PubMed
Rao H., Tanpure A. A., Sawant A. A., Srivatsan S. G., Nat. Protoc. 2012, 7, 1097–1112; PubMed
Anhäuser L., Hüwel S., Zobel T., Rentmeister A., Nucleic Acids Res. 2019, 47, e42. PubMed PMC
Nakano S., Seko T., Zhang Z., Morii T., Appl. Sci. 2020, 10, 8920–8929.
Gauthier F., Malher A., Vasseur J. J., Dupouy C., Debart F., Eur. J. Org. Chem. 2019, 5636–5645.
Sousa R., Chung Y. J., Rose J. P., Wang B. C., Nature 1993, 364, 593–599. PubMed
Wang H., Ach R. A., Curry B. O., RNA 2007, 13, 151–159. PubMed PMC
Schirle N. T., MacRae I. J., Science 2012, 336, 1037–1040. PubMed PMC
Ma W. J., Cheng S., Campbell C., Wright A., Furneaux H., J. Biol. Chem. 1996, 271, 8144–8151. PubMed
Sarafianos S. G., Marchand B., Das K., Himmel D. M., Parniak M. A., Hughes S. H., Arnold E., J. Mol. Biol. 2009, 385, 693–713. PubMed PMC
Mishima Y., Steitz J. A., EMBO J. 1995, 14, 2679–2687; PubMed PMC
McGregor A., Vaman Rao M., Duckworth G., Stockley P. G., Connolly B. A., Nucleic Acids Res. 1996, 24, 3173–3180. PubMed PMC
Yang B., Tang S., Ma C., Li S. T., Shao G. C., Dang B., DeGrado W. F., Dong M. Q., Wang P. G., Ding S., Wang L., Nat. Commun. 2017, 8, 1–10; PubMed PMC
Wang N., Yang B., Fu C., Zhu H., Zheng F., Kobayashi T., Liu J., Li S., Ma C., Wang P. G., Wang Q., Wang L., J. Am. Chem. Soc. 2018, 140, 4995–4999. PubMed PMC
Barnes C., Kanhere A., Methods Mol. Biol. 2016, 1480, 99–113. PubMed
Fialcowitz-White E. J., Brewer B. Y., Ballin J. D., Willis C. D., Toth E. A., Wilson G. M., J. Biol. Chem. 2007, 282, 20948–20959. PubMed PMC