Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins

. 2023 Feb 06 ; 62 (7) : e202213764. [epub] 20230112

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36533569

Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.

Zobrazit více v PubMed

Ramanathan M., Porter D. F., Khavari P. A., Nat. Methods 2019, 16, 225–234; PubMed PMC

Nechay M., Kleiner R. E., Curr. Opin. Chem. Biol. 2020, 54, 37–44; PubMed PMC

Hentze M. W., Castello A., Schwarzl T., Preiss T., Nat. Rev. Mol. Cell Biol. 2018, 19, 327–341; PubMed

Gräwe C., Stelloo S., van Hout F. A. H., Vermeulen M., Trends Biotechnol. 2021, 39, 890–900; PubMed

Castello A., Fischer B., Eichelbaum K., Horos R., Beckmann B. M., Strein C., Davey N. E., Humphreys D. T., Preiss T., Steinmetz L. M., Krijgsveld J., Hentze M. W., Cell 2012, 149, 1393–1406; PubMed

Castello A., Fischer B., Frese C. K., Horos R., Alleaume A. M., Foehr S., Curk T., Krijgsveld J., Hentze M. W., Mol. Cell 2016, 63, 696–710; PubMed PMC

Lee S., Suk Lee Y., Choi Y., Son A., Park Y., Lee K. M., Kim J., Kim J. S., Kim V. N., Mol. Cell 2021, 81, 2838–2850. PubMed PMC

Kramer K., Sachsenberg T., Beckmann B. M., Qamar S., Boon K. L., Hentze M. W., Kohlbacher O., Urlaub H., Nat. Methods 2014, 11, 1064–1070. PubMed PMC

Bae J. W., Kwon S. C., Na Y., Kim V. N., Kim J. S., Nat. Struct. Mol. Biol. 2020, 27, 678–682; PubMed

Malmqvist T., Spickett C., Gallo J. M., Anthony K., Biol. Methods Protoc. 2017, 2, bpx009; PubMed PMC

Panhale A., Richter F. M., Ramírez F., Shvedunova M., Manke T., Mittler G., Akhtar A., Nat. Commun. 2019, 10, 2682. PubMed PMC

Costas C., Yuriev E., Meyer K. L., Guion T. S., Hanna M. M., Nucleic Acids Res. 2000, 28, 1849–1858; PubMed PMC

Smith C. C., Hollenstein M., Leumann C. J., RSC Adv. 2014, 4, 48228–48235;

Kuboe S., Yoda M., Ogata A., Kitade Y., Tomari Y., Ueno Y., Chem. Commun. 2010, 46, 7367–7369; PubMed

Jeong H. S., Hayashi G., Okamoto A., ACS Chem. Biol. 2015, 10, 1450–1455; PubMed

Muttach F., Mäsing F., Studer A., Rentmeister A., Chem. Eur. J. 2017, 23, 5988–5993; PubMed

Arguello A. E., Deliberto A. N., Kleiner R. E., J. Am. Chem. Soc. 2017, 139, 17249–17252; PubMed

Perez-Perri J. I., Rogell B., Schwarzl T., Stein F., Zhou Y., Rettel M., Brosig A., Hentze M. W., Nat. Commun. 2018, 9, 4408; PubMed PMC

Luo H., Tang W., Liu H., Zeng X., Ngai W. S. C., Gao R., Li H., Li R., Zheng H., Guo J., Qin F., Wang G., Li K., Fan X., Zou P., Chen P. R., Angew. Chem. Int. Ed. 2022, 61, e202202008; PubMed

Angew. Chem. 2022, 134, e202202008; PubMed

Willis M. C., Hicke B. J., Uhlenbeck O. C., Cech T. R., Koch T. H., Science 1993, 262, 1255–1257. PubMed

Möller K., Rinke J., Ross A., Buddle G., Brimacombe R., Eur. J. Biochem. 1977, 76, 175–187; PubMed

Patton R. D., Sanjeev M., Woodward L. A., Mabin J. W., Bundschuh R., Singh G., RNA 2020, 26, 1216–1233. PubMed PMC

Chiaruttini C., Expert-Bezançon A., Hayes D., Ehresmann B., Nucleic Acids Res. 1982, 10, 7657–7676. PubMed PMC

Zaman U., Richter F. M., Hofele R., Kramer K., Sachsenberg T., Kohlbacher O., Lenz C., Urlaub H., Mol. Cell. Proteomics 2015, 14, 3196–3210. PubMed PMC

Dadová J., Orság P., Pohl R., Brázdová M., Fojta M., Hocek M., Angew. Chem. Int. Ed. 2013, 52, 10515–10518; PubMed

Angew. Chem. 2013, 125, 10709–10712.

Olszewska A., Pohl R., Brázdová M., Fojta M., Hocek M., Bioconjugate Chem. 2016, 27, 2089–2094. PubMed

Raiber E. A., Portella G., Martínez Cuesta S., Hardisty R., Murat P., Li Z., Iurlaro M., Dean W., Spindel J., Beraldi D., Liu Z., Dawson M. A., Reik W., Balasubramanian S., Nat. Chem. 2018, 10, 1258–1266; PubMed

Ji S., Fu I., Naldiga S., Shao H., Basu A. K., Broyde S., Tretyakova N. Y., Nucleic Acids Res. 2018, 46, 6455–6469; PubMed PMC

Ji S., Shao H., Han Q., Seiler C. L., Tretyakova N. Y., Angew. Chem. Int. Ed. 2017, 56, 14130–14134; PubMed PMC

Angew. Chem. 2017, 129, 14318–14322;

Runtsch L. S., Stadlmeier M., Schön A., Müller M., Carell T., Chem. Eur. J. 2021, 27, 12747–12752; PubMed PMC

Li F., Zhang Y., Bai J., Greenberg M. M., Xi Z., Zhou C., J. Am. Chem. Soc. 2017, 139, 10617–10620; PubMed PMC

Krömer M., Brunderová M., Ivancová I., Poštová Slavětínská L., Hocek M., ChemPlusChem 2020, 85, 1164–1170. PubMed

Ivancová I., Pohl R., Hubálek M., Hocek M., Angew. Chem. Int. Ed. 2019, 58, 13345–13348; PubMed PMC

Angew. Chem. 2019, 131, 13479–13482.

Leone D., Pohl R., Hubálek M., Kadeřábková M., Krömer M., Sýkorová V., Hocek M., Chem. Eur. J. 2022, 28, e202104208. PubMed

Leone D., Hubálek M., Pohl R., Sýkorová V., Hocek M., Angew. Chem. Int. Ed. 2021, 60, 17383–17387. PubMed PMC

Dai W., Li A., Yu N. J., Nguyen T., Leach R. W., Wühr M., Kleiner R. E., Nat. Chem. Biol. 2021, 17, 1178–1187; PubMed PMC

Liu Y., Santi D. v., Proc. Natl. Acad. Sci. USA 2000, 97, 8263–8265; PubMed PMC

Khoddami V., Cairns B. R., Nat. Biotechnol. 2013, 31, 458–464. PubMed PMC

Flamme M., McKenzie L. K., Sarac I., Hollenstein M., Methods 2019, 161, 64–82; PubMed

Tanpure A. A., Pawar M. G., Srivatsan S. G., Isr. J. Chem. 2013, 53, 366–378.

Vaught J. D., Dewey T., Eaton B. E., J. Am. Chem. Soc. 2004, 126, 11231–11237; PubMed

Pawar M. G., Nuthanakanti A., Srivatsan S. G., Bioconjugate Chem. 2013, 24, 1367–1377; PubMed

Srivatsan S. G., Tor Y., Chem. Asian J. 2009, 4, 419–427; PubMed PMC

Höltke H. J., Kessler C., Nucleic Acids Res. 1990, 18, 5843–5851; PubMed PMC

Langer P. R., Waldrop A. A., Ward D. C., Proc. Natl. Acad. Sci. USA 1981, 78, 6633–6637; PubMed PMC

Domnick C., Eggert F., Wuebben C., Bornewasser L., Hagelueken G., Schiemann O., Kath-Schorr S., Angew. Chem. Int. Ed. 2020, 59, 7891–7896; PubMed PMC

Angew. Chem. 2020, 132, 7965–7970.

Milisavljevič N., Perlíková P., Pohl R., Hocek M., Org. Biomol. Chem. 2018, 16, 5800–5807. PubMed

Liu Y., Holmstrom E., Zhang J., Yu P., Wang J., Dyba M. A., Chen D., Ying J., Lockett S., Nesbitt D. J., Ferré-D'Amaré A. R., Sousa R., Stagno J. R., Wang Y. X., Nature 2015, 522, 368–372; PubMed PMC

Hertler J., Slama K., Schober B., Zeynepözrendeci Z. Z., Marchand V., Motorin Y., Helm M., Nucleic Acids Res. 2022, 50, e115. PubMed PMC

George J. T., Srivatsan S. G., Chem. Commun. 2020, 56, 12307–12318; PubMed PMC

George J. T., Srivatsan S. G., Methods 2017, 120, 28–38; PubMed

Paredes E., Evans M., Das S. R., Methods 2011, 54, 251–259; PubMed

Fantoni N. Z., El-Sagheer A. H., Brown T., Chem. Rev. 2021, 121, 7122–7154; PubMed

Kath-Schorr S., Top. Curr. Chem. 2016, 374, 4; PubMed

Depmeier H., Hoffmann E., Bornewasser L., Kath-Schorr S., ChemBioChem 2021, 22, 2826–2847. PubMed PMC

Sawant A. A., Tanpure A. A., Mukherjee P. P., Athavale S., Kelkar A., Galande S., Srivatsan S. G., Nucleic Acids Res. 2016, 44, e16; PubMed PMC

Walunj M. B., Tanpure A. A., Srivatsan S. G., Nucleic Acids Res. 2018, 46, e65; PubMed PMC

Eggert F., Kath-Schorr S., Chem. Commun. 2016, 52, 7284–7287; PubMed

Someya T., Ando A., Kimoto M., Hirao I., Nucleic Acids Res. 2015, 43, 6665–6676; PubMed PMC

Pyka A. M., Domnick C., Braun F., Kath-Schorr S., Bioconjugate Chem. 2014, 25, 1438–1443; PubMed

Asare-Okai P. A., Agustin E., Fabris D., Royzen M., Chem. Commun. 2014, 50, 7844–7847. PubMed

Holstein J. M., Schulz D., Rentmeister A., Chem. Commun. 2014, 50, 4478–4481; PubMed

Holstein J. M., Anhäuser L., Rentmeister A., Angew. Chem. Int. Ed. 2016, 55, 10899–10903; PubMed

Angew. Chem. 2016, 128, 11059–11063; PubMed

Rao H., Tanpure A. A., Sawant A. A., Srivatsan S. G., Nat. Protoc. 2012, 7, 1097–1112; PubMed

Anhäuser L., Hüwel S., Zobel T., Rentmeister A., Nucleic Acids Res. 2019, 47, e42. PubMed PMC

Nakano S., Seko T., Zhang Z., Morii T., Appl. Sci. 2020, 10, 8920–8929.

Gauthier F., Malher A., Vasseur J. J., Dupouy C., Debart F., Eur. J. Org. Chem. 2019, 5636–5645.

Sousa R., Chung Y. J., Rose J. P., Wang B. C., Nature 1993, 364, 593–599. PubMed

Wang H., Ach R. A., Curry B. O., RNA 2007, 13, 151–159. PubMed PMC

Schirle N. T., MacRae I. J., Science 2012, 336, 1037–1040. PubMed PMC

Ma W. J., Cheng S., Campbell C., Wright A., Furneaux H., J. Biol. Chem. 1996, 271, 8144–8151. PubMed

Sarafianos S. G., Marchand B., Das K., Himmel D. M., Parniak M. A., Hughes S. H., Arnold E., J. Mol. Biol. 2009, 385, 693–713. PubMed PMC

Mishima Y., Steitz J. A., EMBO J. 1995, 14, 2679–2687; PubMed PMC

McGregor A., Vaman Rao M., Duckworth G., Stockley P. G., Connolly B. A., Nucleic Acids Res. 1996, 24, 3173–3180. PubMed PMC

Yang B., Tang S., Ma C., Li S. T., Shao G. C., Dang B., DeGrado W. F., Dong M. Q., Wang P. G., Ding S., Wang L., Nat. Commun. 2017, 8, 1–10; PubMed PMC

Wang N., Yang B., Fu C., Zhu H., Zheng F., Kobayashi T., Liu J., Li S., Ma C., Wang P. G., Wang Q., Wang L., J. Am. Chem. Soc. 2018, 140, 4995–4999. PubMed PMC

Barnes C., Kanhere A., Methods Mol. Biol. 2016, 1480, 99–113. PubMed

Fialcowitz-White E. J., Brewer B. Y., Ballin J. D., Willis C. D., Toth E. A., Wilson G. M., J. Biol. Chem. 2007, 282, 20948–20959. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace