• This record comes from PubMed

Synthesis of 2-Substituted Adenosine Triphosphate Derivatives and their use in Enzymatic Synthesis and Postsynthetic Labelling of RNA

. 2025 Jun 16 ; 26 (12) : e202500241. [epub] 20250521

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
CZ.02.01.01/00/22_008/0004575 Ministry of Education, Youth and Sports
H2020-MSCA-ITN-2019-861381 Horizon 2020

A series of adenosine triphosphate (ATP) derivatives bearing chloro, fluoro, amino, methyl, vinyl, and ethynyl groups at position 2 are synthesized and tested as substrates for RNA and DNA polymerases. The modified nucleotides work well in in vitro transcription with T7 RNA polymerase and primer extension (PEX) using engineered DNA polymerases (TGK, 2M) except for the bulkier 2-vinyl- and 2-ethynyl-ATP derivatives that give truncated products. However, in single nucleotide incorporation followed by PEX, they still can be used for site-specific incorporation of reactive modifications into RNA that can be further used for postsynthetic labeling through thiol-ene or Cu-catalyzed alkyne-azide cycloadditions reactions. All modified ATPs work in polyadenylation catalyzed by poly(A) polymerase to form long 3'-polyA tails containing the modifications that also can be used for labeling.

See more in PubMed

Patel R., Kaki M., Potluri V. S., Kahar P., Khanna D., Hum. Vaccines Immunother. 2022, 18, 2002083. PubMed PMC

Androsavich J. R., Nat. Rev. Drug Discovery 2024, 23, 421. PubMed

a) Pardi N., Krammer F., Nat. Rev. Drug Discovery 2024, 23, 838; PubMed

b) Shi Y., Shi M., Wang Y., You J., Signal Transducion Targeted Ther. 2024, 9, 322. PubMed PMC

a) Roundtree I. A., Evans M. E., Pan T., He C., Cell 2017, 169, 1187; PubMed PMC

b) Delaunay S., Helm M., Frye M., Nat. Rev. Genet. 2024, 25, 104. PubMed

Karikó K., Muramatsu H., Welsh F. A., Ludwig J., Kato H., Akira S., Weissman D., Mol. Ther. 2008, 16, 1833. PubMed PMC

Aboshi M., Matsuda K., Kawakami D., Kono K., Kazami Y., Sekida T., Komori M., Morey A. L., Suga S., Smith J. F., Fukuhara T., Iwatani Y., Yamamoto T., Sato N., Akahata W., iScience 2024, 27, 108964. PubMed PMC

McGee J. E., Kirsch J. R., Kenney D., Cerbo F., Chavez E. C., Shih T.‐Y., Douam F., Wong W. W., Grinstaff M. W., Nat. Biotechnol. 2024, 10.1038/s41587-024-02306-z. PubMed DOI PMC

Zhang M., Singh N., Ehmann M. E., Zheng L., Zhao H., iScience 2023, 26, 107739. PubMed PMC

Bizat P. N., Sabat N., Hollenstein M., ChemBioChem 2025, e202400987. PubMed

a) Flamme M., McKenzie L. K., Sarac I., Hollenstein M., Methods 2019, 161, 64; PubMed

b) Vaught J. D., Dewey T., Eaton B. E., J. Am. Chem. Soc. 2004, 126, 11231. PubMed

Gupta M., Levine S. R., Spitale R. C., Acc. Chem. Res. 2022, 55, 2647. PubMed

Kha T.‐K., Zhao Y., Zhu R.‐Y., Chem. Eur. J. 2025, 31, e202404244. PubMed PMC

a) Lang K., Micura R., Nat. Protoc. 2008, 3, 1457; PubMed

b) Hertler J., Slama K., Schober B., Özrendeci Z., Marchand V., Motorin Y., Helm M., Nucl. Acids Res. 2022, 50, e115. PubMed PMC

Liu Y., Holmstrom E., Zhang J., Yu P., Wang J., Dyba M. A., Chen D., Ying J., Lockett S., Nesbitt D. J., Ferré‐D’Amaré A. R., Sousa R., Stagno J. R., Wang Y.‐X., Nature 2015, 522, 368. PubMed PMC

Hartstock K., Nilges B. S., Ovcharenko A., Cornelissen N. V., Püllen N., Lawrence‐Dörner A.‐M., Leidel S. A., Rentmeister A., Angew. Chem. Int. Ed 2018, 57, 6342. PubMed

Okuda T., Lenz A.‐K., Seitz F., Vogel J., Höbartner C., Nat. Chem. 2023, 15, 1523. PubMed PMC

Domnick C., Eggert F., Wuebben C., Bornewasser L., Hagelueken G., Schiemann O., Kath‐Schorr S., Angew. Chem. Int. Ed 2020, 59, 7891. PubMed PMC

Brunderová M., Havlíček V., Matyašovský J., Pohl R., Poštová Slavětínská L., Krömer M., Hocek M., Nat. Commun. 2024, 15, 3054. PubMed PMC

a) Haslecker R., Pham V. V., Glänzer D., Kreutz C., Dayie T. K., D’Souza V. M., Nat. Commun. 2023, 14, 8422; PubMed PMC

b) Grossman B. D., Beyene B. G., Tekle B., Sakowicz W., Ji X., Camacho J. M., Vaishnav N., Ahmed A., Bhandari N., Desai K., Hardy J., Hollman N. M., Marchant J., Summers M. F., J. Mol. Biol. 2025, 169073; PubMed PMC

c) Chen D., Han Z., Liang X., Liu Y., Nat. Chem. 2025, 17, 382–392. PubMed

a) George J. T., Srivatsan S. G., Chem. Commun. 2020, 56, 12307; PubMed PMC

b) George J. T., Srivatsan S. G., Bioconjug. Chem. 2017, 28, 1529. PubMed PMC

a) Brunderová M., Krömer M., Vlková M., Hocek M., Angew. Chem. Int. Ed. 2023, 62, e202213764; PubMed PMC

b) Ivancová I., Quirante T. S., Ondruš M., Pohl R., Vlková M., Žilecká E., Bouřa E., Hocek M., Commun. Chem. 2025, 8, 1. PubMed PMC

Matyašovský J., Perlíková P., Malnuit V., Pohl R., Hocek M., Angew. Chem. Int. Ed. 2016, 55, 15856. PubMed PMC

Matyašovský J., Hocek M., Org. Biomol. Chem. 2020, 18, 255. PubMed

Krömer M., Brunderová M., Ivancová I., Poštová Slavětínská L., Hocek M., ChemPlusChem 2020, 85, 1164. PubMed

Howlader A. H., Fernandez R., Tsegay P. S., Liu Y., Wnuk S. F., Molecules 2025, 30, 1358. PubMed PMC

Matyašovský J., Pohl R., Hocek M., Chem. Eur. J. 2018, 24, 14938. PubMed PMC

Xia Z., Kondhare D., Deshmukh S., Chandankar S., Leonard P., Chem. Eur. J. 2025, 31, e202500529. PubMed

Curanovic D., Cohen M., Singh I., Slagle C. E., Leslie C. S., Jaffrey S. R., Nat. Chem. Biol. 2013, 9, 671. PubMed PMC

Mitton‐Fry R. M., Eschenbach J., Schepers H., Rasche R., Erguven M., Kümmel D., Rentmeister A., Cornelissen N. V., Chem. Sci. 2024, 15, 13068. PubMed PMC

Kovács T., Ötvös L., Tetrahedron Lett. 1988, 29, 4525.

Gupta M., Singha M., Rasale D. B., Zhou Z., Bhandari S., Beasley S., Sakr J., Parker S. M., Spitale R. C., Org. Lett. 2021, 23, 7183. PubMed

Creech C., Kanaujia M., Causey C. P., Org. Biomol. Chem. 2015, 13, 8550. PubMed

Yan F., LaMarre J. M., Röhrich R., Wiesner J., Jomaa H., Mankin A. S., Galonić Fujimori D., J. Am. Chem. Soc. 2010, 132, 3953. PubMed PMC

Cozens C., Pinheiro V. B., Vaisman A., Woodgate R., Holliger P. A., Proc. Natl. Acad. Sci. 2012, 109, 8067. PubMed PMC

Dunn M. R., Otto C., Fenton K. E., Chaput J. C., ACS Chem. Biol. 2016, 11, 1210. PubMed

Freund N., Taylor A. I., Arangundy‐Franklin S., Subramanian N., Peak‐Chew S.‐Y., Whitaker A. M., Freudenthal B. D., Abramov M., Herdewijn P., Holliger P., Nat. Chem. 2023, 15, 91. PubMed PMC

Chen T., Hongdilokkul N., Liu Z., Adhikary R., Tsuen S. S., Romesberg F. E., Nat. Chem. 2016, 8, 556. PubMed PMC

Ménová P., Cahová H., Plucnara M., Havran L., Fojta M., Hocek M., Chem. Commun. 2013, 49, 4652. PubMed

Ghosh P., Kropp H. M., Betz K., Ludmann S., Diederichs K., Marx A., Srivatsan S. G., J. Am. Chem. Soc. 2022, 144, 10556. PubMed

Ghosh P., Betz K., Gutfreund C., Pal A., Marx A., Srivatsan S. G., Angew. Chem. Int. Ed. 2025, 64, e202414319. PubMed

Hoyle C. E., Bowman C. N., Angew. Chem. Int. Ed. 2010, 49, 1540. PubMed

a) Gramlich P. M. E., Wirges C. T., Manetto A., Carell T., Angew. Chem. Int. Ed. 2008, 47, 8350; PubMed

b) Gramlich P. M. E., Wirges C. T., Manetto A., Carell T., Angew. Chem. 2008, 120, 8478. PubMed

Fantoni N. Z., El‐Sagheer A. H., Brown T., Chem. Rev. 2021, 121, 7122. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...