2-Allyl- and Propargylamino-dATPs for Site-Specific Enzymatic Introduction of a Single Modification in the Minor Groove of DNA

. 2018 Oct 09 ; 24 (56) : 14938-14941. [epub] 20180906

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30074286

Grantová podpora
17-03419S Grantová Agentura České Republiky
18-03305S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund
H2020-MSCA-ITN-2014-642023 H2020 Marie Skłodowska-Curie Actions
Praemium Academiae Akademie Věd České Republiky

A series of 2-alkylamino-2'-deoxyadenosine triphosphates (dATP) was prepared and found to be substrates for the Therminator DNA polymerase, which incorporated only one modified nucleotide into the primer. Using a template encoding for two consecutive adenines, conditions were found for incorporation of either one or two modified nucleotides. In all cases, addition of a mixture of natural dNTPs led to primer extension resulting in site-specific single modification of DNA in the minor groove. The allylamino-substituted DNA was used for the thiol-ene addition, whereas the propargylamino-DNA for the CuAAC click reaction was used to label the DNA with a fluorescent dye in the minor groove. The approach was used to construct FRET probes for detection of oligonucleotides.

Zobrazit více v PubMed

Modified Nucleic Acids, Nucleic Acids and Molecular Biology Series, Vol. 31 (Eds.: K. Nakatani, Y. Tor), Springer, 2016, pp. 1–276.

Reviews:

Hottin A., Marx A., Acc. Chem. Res. 2016, 49, 418–427; PubMed

Hollenstein M., Molecules 2012, 17, 13569–13591; PubMed PMC

Hocek M., J. Org. Chem. 2014, 79, 9914–9921; PubMed

Kuwahara M., Sugimoto N., Molecules 2010, 15, 5423–5444. PubMed PMC

Obeid S., Baccaro A., Welte W., Diederichs K., Marx A., Proc. Natl. Acad. Sci. USA 2010, 107, 21327–21331; PubMed PMC

Bergen K., Steck A. L., Strütt S., Baccaro A., Welte W., Diederichs K., Marx A., J. Am. Chem. Soc. 2012, 134, 11840–11843; PubMed

Kielkowski P., Fanfrlík J., Hocek M., Angew. Chem. Int. Ed. 2014, 53, 7552–7555; PubMed

Angew. Chem. 2014, 126, 7682–7685;

Cahová H., Panattoni A., Kielkowski P., Fanfrlík J., Hocek M., ACS Chem. Biol. 2016, 11, 3165–3171; PubMed

Hottin A., Betz K., Diederichs K., Marx A., Chem. Eur. J. 2017, 23, 2109–2118. PubMed

Recent examples:

Hollenstein M., Chem. Eur. J. 2012, 18, 13320–13330; PubMed

Ren X., El-Sagheer A. H., Brown T., Analyst 2015, 140, 2671–2678; PubMed

Dziuba D., Jurkiewicz P., Cebecauer M., Hof M., Hocek M., Angew. Chem. Int. Ed. 2016, 55, 174–178; PubMed

Angew. Chem. 2016, 128, 182–186;

Dziuba D., Pospíšil P., Matyašovský J., Brynda J., Nachtigallová D., Rulíšek L., Pohl R., Hof M., Hocek M., Chem. Sci. 2016, 7, 5775–5785; PubMed PMC

Welter M., Verga D., Marx A., Angew. Chem. Int. Ed. 2016, 55, 10131–10135; PubMed

Angew. Chem. 2016, 128, 10286–10290;

Merkel M., Arndt S., Ploschik D., Cserép G. B., Wenge U., Kele P., Wagenknecht H.-A., J. Org. Chem. 2016, 81, 7527–7538; PubMed

Hoshino H., Kasahara Y., Fujita H., Kuwahara M., Morihiro K., Tsunoda S.-I., Obika S., Bioorg. Med. Chem. Lett. 2016, 26, 530–533; PubMed

Ortiz M., Debela A. M., Svobodova M., Thorimbert S., Lesage D., Cole R. B., Hasenknopf B., O'Sullivan C. K., Chem. Eur. J. 2017, 23, 10597–10603; PubMed

Yamabe M., Kaihatsu K., Ebara Y., Bioconjugate Chem. 2018, 29, 1490–1494. PubMed

Ménová P., Cahová H., Plucnara M., Havran L., Fojta M., Hocek M., Chem. Commun. 2013, 49, 4652–4654. PubMed

Wenge U., Ehrenschwender T., Wagenknecht H. A., Bioconjugate Chem. 2013, 24, 301–304; PubMed

Lauridsen L. H., Rothnagel J. A., Veedu R. N., ChemBioChem 2012, 13, 19–25; PubMed

Kuwahara M., Obika S., Nagashima J., Ohta Y., Suto Y., Ozaki H., Sawai H., Imanishi T., Nucleic Acids Res. 2008, 36, 4257–4265; PubMed PMC

Chen T., Hongdilokkul N., Liu Z., Adhikary R., Tsuen S. S., Romesberg F. E., Nat. Chem. 2016, 8, 556–562; PubMed PMC

Marx A., MacWilliams M. P., Bickle T. A., Schwitter U., Giese B., J. Am. Chem. Soc. 1997, 119, 1131–1132.

Matyašovský J., Perlíková P., Malnuit V., Pohl R., Hocek M., Angew. Chem. Int. Ed. 2016, 55, 15856–15859; PubMed PMC

Angew. Chem. 2016, 128, 16088–16091. PubMed

Gowda A. S. P., Lee M., Spratt T. E., Angew. Chem. Int. Ed. 2017, 56, 2628–2631; PubMed PMC

Angew. Chem. 2017, 129, 2672–2675.

Matsuda S., Leconte A. M., Romesberg F. E., J. Am. Chem. Soc. 2007, 129, 5551–5557. PubMed PMC

Kovács T., Ötvös L., Tetrahedron Lett. 1988, 29, 4525–4528.

In some cases, the PEX was conducted using a 31-nucleotide template modified with TINA at 3′-end to prevent non-templated incorporation: Güixens-Gallardo P., Hocek M., Perlíková P., Bioorg. Med. Chem. Lett. 2016, 26, 288–291. PubMed

Brázdilová P., Vrábel M., Pohl R., Pivonková H., Havran L., Hocek M., Fojta M., Chem. Eur. J. 2007, 13, 9527–9533. PubMed

Examples of DNA FRET probes using combination of Cy3 and Cy5:

Ha T., Rasnik I., Cheng W., Babcock H. P., Gauss G. H., Lohman T. M., Chu S., Nature 2002, 419, 638–641; PubMed

Sabanayagam C. R., Eid J. S., Meller A., J. Chem. Phys. 2005, 123, 224708. PubMed

Other examples of nucleic acids FRET probes and related applications:

Xie Y., Dix A. V., Tor Y., J. Am. Chem. Soc. 2009, 131, 17605–17614; PubMed PMC

Holzhauser C., Wagenknecht H., ChemBioChem 2012, 13, 1136–1138; PubMed

Holzhauser C., Rubner M. M., Wagenknecht H., Photochem. Photobiol. Sci. 2013, 12, 722–724; PubMed

Walter H., Bauer J., Steinmeyer J., Kuzuya A., Niemeyer C. M., Wagenknecht H., Nano Lett. 2017, 17, 2467–2472. PubMed

Examples of DNA probes for cross-linking with proteins in major groove:

Winnacker M., Breeger S., Strasser R., Carell T., ChemBioChem 2009, 10, 109–118; PubMed

Wickramaratne S., Mukherjee S., Villalta P. W., Schärer O. D., Tretyakova N. Y., Bioconjugate Chem. 2013, 24, 1496–1506; PubMed PMC

Dadová J., Orság P., Pohl R., Brázdová M., Fojta M., Hocek M., Angew. Chem. Int. Ed. 2013, 52, 10515–10518; PubMed

Angew. Chem. 2013, 125, 10709–10712;

Pande P., Ji S., Mukherjee S., Schärer O. D., Tretyakova N. Y., Basu A. K., Chem. Res. Toxicol. 2017, 30, 669–677. PubMed PMC

Examples of major-groove DNA caging and regulation of protein binding:

Kielkowski P., Macíčková-Cahová H., Pohl R., Hocek M., Angew. Chem. Int. Ed. 2011, 50, 8727–8730; PubMed

Angew. Chem. 2011, 123, 8886–8889;

Vaníková Z., Hocek M., Angew. Chem. Int. Ed. 2014, 53, 6734–6737; PubMed

Angew. Chem. 2014, 126, 6852–6855;

Slavíčková M., Janoušková M., Šimonová A., Cahová H., Kambová M., Šanderová H., Krásný L., Hocek M., Chem. Eur. J. 2018, 24, 8311–8314. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...