Solvatochromic fluorene-linked nucleoside and DNA as color-changing fluorescent probes for sensing interactions
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30034716
PubMed Central
PMC6021979
DOI
10.1039/c6sc02548j
PII: c6sc02548j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A nucleoside bearing a solvatochromic push-pull fluorene fluorophore (dCFL ) was designed and synthesized by the Sonogashira coupling of alkyne-linked fluorene 8 with 5-iodo-2'-deoxycytidine. The fluorene building block 8 and labeled nucleoside dCFL exerted bright fluorescence with significant solvatochromic effect providing emission maxima ranging from 421 to 544 nm and high quantum yields even in highly polar solvents, including water. The solvatochromism of 8 was studied by DFT and ADC(2) calculations to show that, depending on the polarity of the solvent, emission either from the planar or the twisted conformation of the excited state can occur. The nucleoside was converted to its triphosphate variant dCFLTP which was found to be a good substrate for DNA polymerases suitable for the enzymatic synthesis of oligonucleotide or DNA probes by primer extension or PCR. The fluorene-linked DNA can be used as fluorescent probes for DNA-protein (p53) or DNA-lipid interactions, exerting significant color changes visible even to the naked eye. They also appear to be suitable for time-dependent fluorescence shift studies on DNA, yielding information on DNA hydration and dynamics.
Zobrazit více v PubMed
Demchenko A. P., Mély Y., Duportail G., Klymchenko A. S. Biophys. J. 2009;96:3461–3470. PubMed PMC
Loving G. S., Sainlos M., Imperiali B. Trends Biotechnol. 2010;28:73–83. PubMed PMC
Krueger A. T., Imperiali B. ChemBioChem. 2013;14:788–799. PubMed
Klymchenko A. S., Mely Y. Prog. Mol. Biol. Transl. Sci. 2013;113:35–58. PubMed
Amaro M., Šachl R., Jurkiewicz P., Coutinho A., Prieto M., Hof M. Biophys. J. 2014;107:2751–2760. PubMed PMC
Niko Y., Didier P., Mely Y., Konishi G.-i., Klymchenko A. S. Sci. Rep. 2016;6:18870. PubMed PMC
Sezgin E., Sadowski T., Simons K. Langmuir. 2014;30:8160–8166. PubMed
Jurkiewicz P., Cwiklik L., Jungwirth P., Hof M. Biochimie. 2012;94:26–32. PubMed
Kucherak O. A., Oncul S., Darwich Z., Yushchenko D. A., Arntz Y., Didier P., Mély Y., Klymchenko A. S. J. Am. Chem. Soc. 2010;132:4907–4916. PubMed
Fin A., Vargas Jentzsch A., Sakai N., Matile S. Angew. Chem., Int. Ed. 2012;51:12736–12739. PubMed
Cohen B. E., McAnaney T. B., Park E. S., Jan Y. N., Boxer S. G., Jan L. Y. Science. 2002;296:1700–1703. PubMed
Summerer D., Chen S., Wu N., Deiters A., Chin J. W., Schultz P. G. Proc. Natl. Acad. Sci. U. S. A. 2006;103:9785–9789. PubMed PMC
Loving G., Imperiali B. J. Am. Chem. Soc. 2008;130:13630–13638. PubMed PMC
Kuru E., Tekkam S., Hall E., Brun Y. V., Van Nieuwenhze M. S. Nat. Protoc. 2014;10:33–52. PubMed PMC
Amaro M., Brezovský J., Kováčová S., Sýkora J., Bednář D., Němec V., Lišková V., Kurumbang N. P., Beerens K., Chaloupková R., Paruch K., Hof M., Damborský J. J. Am. Chem. Soc. 2015;137:4988–4992. PubMed
Wang J., Xie J., Schultz P. G. J. Am. Chem. Soc. 2006;128:8738–8739. PubMed
Han J. H., Park S. K., Lim C. S., Park M. K., Kim H. J., Kim H. M., Cho B. R. Chem.–Eur. J. 2012;18:15246–15249. PubMed
Zhang H., Fan J., Dong H., Zhang S., Xu W., Wang J., Gao P., Peng X. J. Mater. Chem. B. 2013;1:5450–5455. PubMed
Karpenko I. A., Kreder R., Valencia C., Villa P., Mendre C., Mouillac B., Mély Y., Hibert M., Bonnet D., Klymchenko A. S. ChemBioChem. 2014;15:359–363. PubMed
Sinkeldam R. W., Greco N. J., Tor Y. Chem. Rev. 2010;110:2579–2619. PubMed PMC
Wilson J. N., Kool E. T. Org. Biomol. Chem. 2006;4:4265–4274. PubMed
Su X., Xiao X., Zhang C., Zhao M. Appl. Spectrosc. 2012;66:1249–1261. PubMed
Dodd D. W., Hudson R. H. E. Mini-Rev. Org. Chem. 2009;6:378–391.
Wilhelmsson L. M. Q. Rev. Biophys. 2010;43:159–183. PubMed
Sholokh M., Sharma R., Shin D., Das R., Zaporozhets O. A., Tor Y., Mely Y. J. Am. Chem. Soc. 2015;137:3185–3188. PubMed PMC
Wilcox J. L., Bevilacqua P. C. J. Am. Chem. Soc. 2013;135:7390–7393. PubMed
Ming X., Seela F. Chem.–Eur. J. 2012;18:9590–9600. PubMed
Wahba A. S., Esmaeili A., Damha M. J., Hudson R. H. E. Nucleic Acids Res. 2010;38:1048–1056. PubMed PMC
Hudson R. H. E., Ghorbani-Choghamarani A. Synlett. 2007:870–873.
Hudson R. H. E., Ghorbani-Choghamarani A. Org. Biomol. Chem. 2007;5:1845–1848. PubMed
Nadler A., Strohmeier J., Diederichsen U. Angew. Chem., Int. Ed. 2011;50:5392–5396. PubMed
Gaied N. B., Glasser N., Ramalanjaona N., Beltz H., Wolff P., Marquet R., Burger A., Mély Y. Nucleic Acids Res. 2005;33:1031–1039. PubMed PMC
Kim K. T., Kim B. H. Chem. Commun. 2013;49:1717–1719. PubMed
Dziuba D., Pohl R., Hocek M. Chem. Commun. 2015;51:4880–4882. PubMed
Kanamori T., Ohzeki H., Masaki Y., Ohkubo A., Takahashi M., Tsuda K., Ito T., Shirouzu M., Kuwasako K., Muto Y., Sekine M., Seio K. ChemBioChem. 2015;16:167–176. PubMed
Tokugawa M., Masaki Y., Cauggadibrata J. C., Kaneko K., Shiozawa T., Kanamori T., Grotli M., Wilhelmsson L. M., Sekine M., Seio K. Chem. Commun. 2016;52:3809–3812. PubMed
Weber G., Farris F. J. Biochemistry. 1979;18:3075–3078. PubMed
Kimura T., Kawai K., Majima T. Org. Lett. 2005;7:5829–5832. PubMed
Kimura T., Kawai K., Majima T. Chem. Commun. 2006:1542–1544. PubMed
Tainaka K., Tanaka K., Ikeda S., Nishiza K.-i., Unzai T., Fujiwara Y., Saito I., Okamoto A. J. Am. Chem. Soc. 2007;129:4776–4784. PubMed
Weinberger M., Berndt F., Mahrwald R., Ernsting N. P., Wagenknecht H.-A. J. Org. Chem. 2013;78:2589–2599. PubMed
Okamoto A., Tainaka K., Fujiwara Y. J. Org. Chem. 2006;71:3592–3598. PubMed
Greco N. J., Tor Y. J. Am. Chem. Soc. 2005;127:10784–10785. PubMed
Greco N. J., Tor Y. Tetrahedron. 2007;63:3515–3527. PubMed PMC
Sinkeldam R. W., Greco N. J., Tor Y. ChemBioChem. 2008;9:706–709. PubMed
Greco N. J., Sinkeldam R. W., Tor Y. Org. Lett. 2009;11:1115–1118. PubMed PMC
Shin D., Sinkeldam R. W., Tor Y. J. Am. Chem. Soc. 2011;133:14912–14915. PubMed PMC
Sinkeldam R. W., Hopkins P. A., Tor Y. ChemPhysChem. 2012;13:3350–3356. PubMed PMC
Hopkins P. A., Sinkeldam R. W., Tor Y. Org. Lett. 2014;16:5290–5293. PubMed PMC
Shinohara Y., Matsumoto K., Kugenuma K., Morii T., Saito Y., Saito I. Bioorg. Med. Chem. Lett. 2010;20:2817–2820. PubMed
Saito Y., Suzuki A., Ishioroshi S., Saito I. Tetrahedron Lett. 2011;52:4726–4729.
Saito Y., Suzuki A., Okada Y., Yamasaka Y., Nemoto N., Saito I. Chem. Commun. 2013;49:5684–5686. PubMed
Suzuki A., Kimura K., Ishioroshi S., Saito I., Nemoto N., Saito Y. Tetrahedron Lett. 2013;54:2348–2352.
Suzuki A., Nemoto N., Saito I., Saito Y. Org. Biomol. Chem. 2014;12:660–666. PubMed
Saito Y., Suzuki A., Yamauchi T., Saito I. Tetrahedron Lett. 2015;56:3034–3038.
Suzuki A., Saito M., Katoh R., Saito Y. Org. Biomol. Chem. 2015;13:7459–7468. PubMed
Dziuba D., Postupalenko V. Y., Spadafora M., Klymchenko A. S., Guérineau V., Mély Y., Benhida R., Burger A. J. Am. Chem. Soc. 2012;134:10209–10213. PubMed
Kuznetsova A. A., Kuznetsov N. A., Vorobjev Y. N., Barthes N. P. F., Michel B. Y., Burger A., Fedorova O. S. PLoS One. 2014;9:e100007. PubMed PMC
Dziuba D., Karpenko I. A., Barthes N. P. F., Michel B. Y., Klymchenko A. S., Benhida R., Demchenko A. P., Mély Y., Burger A. Chem.–Eur. J. 2014;20:1998–2009. PubMed
Barthes N. P. F., Karpenko I. A., Dziuba D., Spadafora M., Auffret J., Demchenko A. P., Mély Y., Benhida R., Michel B. Y., Burger A. RSC Adv. 2015;5:33536–33545.
Barthes N. P. F., Gavvala K., Dziuba D., Bonhomme D., Karpenko I. A., Dabert-Gay A. S., Debayle D., Demchenko A. P., Benhida R., Michel B. Y., Mély Y., Burger A. J.J. Mater. Chem. CMater. Chem. C. 2016;4:3010–3017.
Riedl J., Pohl R., Rulíšek L., Hocek M. J. Org. Chem. 2012;77:1026–1044. PubMed
Riedl J., Pohl R., Ernsting N. P., Orsag P., Fojta M., Hocek M. Chem. Sci. 2012;3:2797–2806.
Saito Y., Suzuki A., Imai K., Nemoto N., Saito I. Tetrahedron Lett. 2010;51:2606–2609.
Kim K. T., Kim H. W., Moon D., Rhee Y. M., Kim B. H. Org. Biomol. Chem. 2013;11:5605–5614. PubMed
Kucherak O. A., Didier P., Mély Y., Klymchenko A. S. J. Phys. Chem. Lett. 2010;1:616–620.
Lu Z., Lord S. J., Wang H., Moerner W. E., Twieg R. J. J. Org. Chem. 2006;71:9651–9657. PubMed PMC
Benedetti E., Kocsis L. S., Brummond K. M. J. Am. Chem. Soc. 2012;134:12418–12421. PubMed
Benedetti E., Veliz A. B. E., Charpenay M., Kocsis L. S., Brummond K. M. Org. Lett. 2013;15:2578–2581. PubMed PMC
Niko Y., Kawauchi S., Konishi G.-i. Chem.–Eur. J. 2013;19:9760–9765. PubMed
Park K. K., Park J. W., Hamilton A. D. Org. Biomol. Chem. 2009;7:4225–4232. PubMed
Albericio F., Cruz M., Debéthune L., Eritja R., Giralt E., Grandas A., Marchán V., Pastor J. J., Pedroso E., Rabanal F., Royo M. Synth. Commun. 2001;31:225–232.
Ludwig J. Acta Biochim. Biophys. Acad. Sci. Hung. 1981;16:131–133. PubMed
Huang G.-J., Ho J.-H., Prabhakar C., Liu Y.-H., Peng S.-M., Yang J.-S. Org. Lett. 2012;14:5034–5037. PubMed
Tanpure A. A., Srivatsan S. G. Chem.–Eur. J. 2011;17:12820–12827. PubMed
Saito Y., Shinohara Y., Ishioroshi S., Suzuki A., Tanaka M., Saito I. Tetrahedron Lett. 2011;52:2359–2361.
Reichardt C. Chem. Rev. 1994;94:2319–2358.
Nowak W., Adamczak P., Balter A., Sygula A. THEOCHEM. 1986;139:13–23.
Balter A., Nowak W., Pawełkiewicz W., Kowalczyk A. Chem. Phys. Lett. 1988;143:565–570.
Ilich P., Prendergast F. G. J. Phys. Chem. 1989;93:4441–4447.
Parusel A. B. J., Schneider F. W., Köhler G. THEOCHEM. 1997;398–399:341–346.
Parusel A. B. J. J. Chem. Soc., Faraday Trans. 1998;94:2923–2927.
Lobo B. C., Abelt C. J. J. Phys. Chem. A. 2003;107:10938–10943.
Davis B. N., Abelt C. J. J. Phys. Chem. A. 2005;109:1295–1298. PubMed
Mennucci B., Caricato M., Ingrosso F., Cappelli C., Cammi R., Tomasi J., Scalmani G., Frisch M. J. J. Phys. Chem. B. 2008;112:414–423. PubMed
Cwiklik L., Aquino A. J. A., Vazdar M., Jurkiewicz P., Pittner J., Hof M., Lischka H. J. Phys. Chem. A. 2011;115:11428–11437. PubMed
Hocek M. J. Org. Chem. 2014;79:9914–9921. PubMed
Knebelsberger T., Stöger I. Methods Mol. Biol. 2012;858:311–338. PubMed
Boom R., Sol C. J., Salimans M. M., Jansen C. L., Wertheim-van Dillen P. M., van der Noordaa J. J. Clin. Microbiol. 1990;28:495–503. PubMed PMC
Dadová J., Orság P., Pohl R., Brázdová M., Fojta M., Hocek M. Angew. Chem., Int. Ed. 2013;52:10515–10518. PubMed
Dziuba D., Jurkiewicz P., Cebecauer M., Hof M., Hocek M. Angew. Chem., Int. Ed. 2016;55:174–178. PubMed
Okamoto A., Tainaka K., Saito I. Bioconjugate Chem. 2005;16:1105–1111. PubMed
Brazdova M., Palecek J., Cherny D. I., Billova S., Fojta M., Pecinka P., Vojtesek B., Jovin T. M., Palecek E. Nucleic Acids Res. 2002;30:4966–4974. PubMed PMC
Fojta M., Pivonkova H., Brazdova M., Nemcova K., Palecek J., Vojtesek B. Eur. J. Biochem. 2004;271:3865–3876. PubMed
For a review see: Schäferling M., Angew. Chem., Int. Ed., 2012, 51 , 3532 –3554 . PubMed
Schwaebel T., Trapp O., Bunz U. H. F. Chem. Sci. 2013;4:273–281.
Hakonen A., Beves J. E., Stromberg N. Analyst. 2014;139:3524–3527. PubMed
Fenzl C., Wilhelm S., Hirsch T., Wolfbeis O. S. ACS Appl. Mater. Interfaces. 2013;5:173–178. PubMed
Bidmanova S., Steiner M.-S., Stepan M., Vymazalova K., Gruber M. A., Duerkop A., Damborsky J., Prokop Z., Wolfbeis O. S. Anal. Chem. 2016;88:6044–6049. PubMed
Krieger E., Joo K., Lee J., Raman S., Thompson J., Tyka M., Baker D., Karplus K. Proteins: Struct., Funct., Bioinf. 2009;77(S9):114–122. PubMed PMC
Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P. J. Comput. Chem. 2003;24:1999–2012. PubMed
Jakalian A., Jack D. B., Bayly C. I. J. Comput. Chem. 2002;23:1623–1641. PubMed
Elouahabi A., Ruysschaert J.-M. Mol. Ther. 2005;11:336–347. PubMed
Junquera E., Aicart E. Curr. Top. Med. Chem. 2014;14:649–663. PubMed
Pattni B. S., Chupin V. V., Torchilin V. P. Chem. Rev. 2015;115:10938–10966. PubMed
Verma S. D., Pal N., Singh M. K., Sen S. J. Phys. Chem. B. 2015;119:11019–11029. PubMed
Pal N., Shweta H., Singh M. K., Verma S. D., Sen S. J. Phys. Chem. Lett. 2015;6:1754–1760. PubMed
Jimenez R., Fleming G. R., Kumar P. V., Maroncelli M. Nature. 1994;369:471–473.
Furse K. E., Corcelli S. A. J. Phys. Chem. Lett. 2010;1:1813–1820.
Verma S. D., Pal N., Singh M. K., Sen S. J. Phys. Chem. Lett. 2012;3:2621–2626. PubMed
Sajadi M., Furse K. E., Zhang X. X., Dehmel L., Kovalenko S. A., Corcelli S. A., Ernsting M. P. Angew. Chem., Int. Ed. 2011;50:9501–9505. PubMed
Dallmann A., Pfaffe M., Mügge C., Mahrwald R., Kovalenko S. A., Ernsting N. P. J. Phys. Chem. B. 2009;113:15619–15628. PubMed
Banerjee D., Pal S. K. J. Phys. Chem. B. 2008;112:1016–1021. PubMed
Andreatta D., Sen S., Lustres J. L. P., Kovalenko S. A., Ernsting N. P., Murphy C. J., Coleman R. S., Berg M. A. J. Am. Chem. Soc. 2006;128:6885–6892. PubMed PMC
Pal N., Verma S. D., Sen S. J. Am. Chem. Soc. 2010;132:9277–9279. PubMed
Jurkiewicz P., Sykora J., Olzynska A., Humpolickova J., Hof M. J. Fluoresc. 2005;15:883–894. PubMed
Sun B., Shen H. J. Nanomater. 2015;2015:784836.