Solvatochromic fluorene-linked nucleoside and DNA as color-changing fluorescent probes for sensing interactions

. 2016 Sep 01 ; 7 (9) : 5775-5785. [epub] 20160621

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30034716

A nucleoside bearing a solvatochromic push-pull fluorene fluorophore (dCFL ) was designed and synthesized by the Sonogashira coupling of alkyne-linked fluorene 8 with 5-iodo-2'-deoxycytidine. The fluorene building block 8 and labeled nucleoside dCFL exerted bright fluorescence with significant solvatochromic effect providing emission maxima ranging from 421 to 544 nm and high quantum yields even in highly polar solvents, including water. The solvatochromism of 8 was studied by DFT and ADC(2) calculations to show that, depending on the polarity of the solvent, emission either from the planar or the twisted conformation of the excited state can occur. The nucleoside was converted to its triphosphate variant dCFLTP which was found to be a good substrate for DNA polymerases suitable for the enzymatic synthesis of oligonucleotide or DNA probes by primer extension or PCR. The fluorene-linked DNA can be used as fluorescent probes for DNA-protein (p53) or DNA-lipid interactions, exerting significant color changes visible even to the naked eye. They also appear to be suitable for time-dependent fluorescence shift studies on DNA, yielding information on DNA hydration and dynamics.

Zobrazit více v PubMed

Demchenko A. P., Mély Y., Duportail G., Klymchenko A. S. Biophys. J. 2009;96:3461–3470. PubMed PMC

Loving G. S., Sainlos M., Imperiali B. Trends Biotechnol. 2010;28:73–83. PubMed PMC

Krueger A. T., Imperiali B. ChemBioChem. 2013;14:788–799. PubMed

Klymchenko A. S., Mely Y. Prog. Mol. Biol. Transl. Sci. 2013;113:35–58. PubMed

Amaro M., Šachl R., Jurkiewicz P., Coutinho A., Prieto M., Hof M. Biophys. J. 2014;107:2751–2760. PubMed PMC

Niko Y., Didier P., Mely Y., Konishi G.-i., Klymchenko A. S. Sci. Rep. 2016;6:18870. PubMed PMC

Sezgin E., Sadowski T., Simons K. Langmuir. 2014;30:8160–8166. PubMed

Jurkiewicz P., Cwiklik L., Jungwirth P., Hof M. Biochimie. 2012;94:26–32. PubMed

Kucherak O. A., Oncul S., Darwich Z., Yushchenko D. A., Arntz Y., Didier P., Mély Y., Klymchenko A. S. J. Am. Chem. Soc. 2010;132:4907–4916. PubMed

Fin A., Vargas Jentzsch A., Sakai N., Matile S. Angew. Chem., Int. Ed. 2012;51:12736–12739. PubMed

Cohen B. E., McAnaney T. B., Park E. S., Jan Y. N., Boxer S. G., Jan L. Y. Science. 2002;296:1700–1703. PubMed

Summerer D., Chen S., Wu N., Deiters A., Chin J. W., Schultz P. G. Proc. Natl. Acad. Sci. U. S. A. 2006;103:9785–9789. PubMed PMC

Loving G., Imperiali B. J. Am. Chem. Soc. 2008;130:13630–13638. PubMed PMC

Kuru E., Tekkam S., Hall E., Brun Y. V., Van Nieuwenhze M. S. Nat. Protoc. 2014;10:33–52. PubMed PMC

Amaro M., Brezovský J., Kováčová S., Sýkora J., Bednář D., Němec V., Lišková V., Kurumbang N. P., Beerens K., Chaloupková R., Paruch K., Hof M., Damborský J. J. Am. Chem. Soc. 2015;137:4988–4992. PubMed

Wang J., Xie J., Schultz P. G. J. Am. Chem. Soc. 2006;128:8738–8739. PubMed

Han J. H., Park S. K., Lim C. S., Park M. K., Kim H. J., Kim H. M., Cho B. R. Chem.–Eur. J. 2012;18:15246–15249. PubMed

Zhang H., Fan J., Dong H., Zhang S., Xu W., Wang J., Gao P., Peng X. J. Mater. Chem. B. 2013;1:5450–5455. PubMed

Karpenko I. A., Kreder R., Valencia C., Villa P., Mendre C., Mouillac B., Mély Y., Hibert M., Bonnet D., Klymchenko A. S. ChemBioChem. 2014;15:359–363. PubMed

Sinkeldam R. W., Greco N. J., Tor Y. Chem. Rev. 2010;110:2579–2619. PubMed PMC

Wilson J. N., Kool E. T. Org. Biomol. Chem. 2006;4:4265–4274. PubMed

Su X., Xiao X., Zhang C., Zhao M. Appl. Spectrosc. 2012;66:1249–1261. PubMed

Dodd D. W., Hudson R. H. E. Mini-Rev. Org. Chem. 2009;6:378–391.

Wilhelmsson L. M. Q. Rev. Biophys. 2010;43:159–183. PubMed

Sholokh M., Sharma R., Shin D., Das R., Zaporozhets O. A., Tor Y., Mely Y. J. Am. Chem. Soc. 2015;137:3185–3188. PubMed PMC

Wilcox J. L., Bevilacqua P. C. J. Am. Chem. Soc. 2013;135:7390–7393. PubMed

Ming X., Seela F. Chem.–Eur. J. 2012;18:9590–9600. PubMed

Wahba A. S., Esmaeili A., Damha M. J., Hudson R. H. E. Nucleic Acids Res. 2010;38:1048–1056. PubMed PMC

Hudson R. H. E., Ghorbani-Choghamarani A. Synlett. 2007:870–873.

Hudson R. H. E., Ghorbani-Choghamarani A. Org. Biomol. Chem. 2007;5:1845–1848. PubMed

Nadler A., Strohmeier J., Diederichsen U. Angew. Chem., Int. Ed. 2011;50:5392–5396. PubMed

Gaied N. B., Glasser N., Ramalanjaona N., Beltz H., Wolff P., Marquet R., Burger A., Mély Y. Nucleic Acids Res. 2005;33:1031–1039. PubMed PMC

Kim K. T., Kim B. H. Chem. Commun. 2013;49:1717–1719. PubMed

Dziuba D., Pohl R., Hocek M. Chem. Commun. 2015;51:4880–4882. PubMed

Kanamori T., Ohzeki H., Masaki Y., Ohkubo A., Takahashi M., Tsuda K., Ito T., Shirouzu M., Kuwasako K., Muto Y., Sekine M., Seio K. ChemBioChem. 2015;16:167–176. PubMed

Tokugawa M., Masaki Y., Cauggadibrata J. C., Kaneko K., Shiozawa T., Kanamori T., Grotli M., Wilhelmsson L. M., Sekine M., Seio K. Chem. Commun. 2016;52:3809–3812. PubMed

Weber G., Farris F. J. Biochemistry. 1979;18:3075–3078. PubMed

Kimura T., Kawai K., Majima T. Org. Lett. 2005;7:5829–5832. PubMed

Kimura T., Kawai K., Majima T. Chem. Commun. 2006:1542–1544. PubMed

Tainaka K., Tanaka K., Ikeda S., Nishiza K.-i., Unzai T., Fujiwara Y., Saito I., Okamoto A. J. Am. Chem. Soc. 2007;129:4776–4784. PubMed

Weinberger M., Berndt F., Mahrwald R., Ernsting N. P., Wagenknecht H.-A. J. Org. Chem. 2013;78:2589–2599. PubMed

Okamoto A., Tainaka K., Fujiwara Y. J. Org. Chem. 2006;71:3592–3598. PubMed

Greco N. J., Tor Y. J. Am. Chem. Soc. 2005;127:10784–10785. PubMed

Greco N. J., Tor Y. Tetrahedron. 2007;63:3515–3527. PubMed PMC

Sinkeldam R. W., Greco N. J., Tor Y. ChemBioChem. 2008;9:706–709. PubMed

Greco N. J., Sinkeldam R. W., Tor Y. Org. Lett. 2009;11:1115–1118. PubMed PMC

Shin D., Sinkeldam R. W., Tor Y. J. Am. Chem. Soc. 2011;133:14912–14915. PubMed PMC

Sinkeldam R. W., Hopkins P. A., Tor Y. ChemPhysChem. 2012;13:3350–3356. PubMed PMC

Hopkins P. A., Sinkeldam R. W., Tor Y. Org. Lett. 2014;16:5290–5293. PubMed PMC

Shinohara Y., Matsumoto K., Kugenuma K., Morii T., Saito Y., Saito I. Bioorg. Med. Chem. Lett. 2010;20:2817–2820. PubMed

Saito Y., Suzuki A., Ishioroshi S., Saito I. Tetrahedron Lett. 2011;52:4726–4729.

Saito Y., Suzuki A., Okada Y., Yamasaka Y., Nemoto N., Saito I. Chem. Commun. 2013;49:5684–5686. PubMed

Suzuki A., Kimura K., Ishioroshi S., Saito I., Nemoto N., Saito Y. Tetrahedron Lett. 2013;54:2348–2352.

Suzuki A., Nemoto N., Saito I., Saito Y. Org. Biomol. Chem. 2014;12:660–666. PubMed

Saito Y., Suzuki A., Yamauchi T., Saito I. Tetrahedron Lett. 2015;56:3034–3038.

Suzuki A., Saito M., Katoh R., Saito Y. Org. Biomol. Chem. 2015;13:7459–7468. PubMed

Dziuba D., Postupalenko V. Y., Spadafora M., Klymchenko A. S., Guérineau V., Mély Y., Benhida R., Burger A. J. Am. Chem. Soc. 2012;134:10209–10213. PubMed

Kuznetsova A. A., Kuznetsov N. A., Vorobjev Y. N., Barthes N. P. F., Michel B. Y., Burger A., Fedorova O. S. PLoS One. 2014;9:e100007. PubMed PMC

Dziuba D., Karpenko I. A., Barthes N. P. F., Michel B. Y., Klymchenko A. S., Benhida R., Demchenko A. P., Mély Y., Burger A. Chem.–Eur. J. 2014;20:1998–2009. PubMed

Barthes N. P. F., Karpenko I. A., Dziuba D., Spadafora M., Auffret J., Demchenko A. P., Mély Y., Benhida R., Michel B. Y., Burger A. RSC Adv. 2015;5:33536–33545.

Barthes N. P. F., Gavvala K., Dziuba D., Bonhomme D., Karpenko I. A., Dabert-Gay A. S., Debayle D., Demchenko A. P., Benhida R., Michel B. Y., Mély Y., Burger A. J.J. Mater. Chem. CMater. Chem. C. 2016;4:3010–3017.

Riedl J., Pohl R., Rulíšek L., Hocek M. J. Org. Chem. 2012;77:1026–1044. PubMed

Riedl J., Pohl R., Ernsting N. P., Orsag P., Fojta M., Hocek M. Chem. Sci. 2012;3:2797–2806.

Saito Y., Suzuki A., Imai K., Nemoto N., Saito I. Tetrahedron Lett. 2010;51:2606–2609.

Kim K. T., Kim H. W., Moon D., Rhee Y. M., Kim B. H. Org. Biomol. Chem. 2013;11:5605–5614. PubMed

Kucherak O. A., Didier P., Mély Y., Klymchenko A. S. J. Phys. Chem. Lett. 2010;1:616–620.

Lu Z., Lord S. J., Wang H., Moerner W. E., Twieg R. J. J. Org. Chem. 2006;71:9651–9657. PubMed PMC

Benedetti E., Kocsis L. S., Brummond K. M. J. Am. Chem. Soc. 2012;134:12418–12421. PubMed

Benedetti E., Veliz A. B. E., Charpenay M., Kocsis L. S., Brummond K. M. Org. Lett. 2013;15:2578–2581. PubMed PMC

Niko Y., Kawauchi S., Konishi G.-i. Chem.–Eur. J. 2013;19:9760–9765. PubMed

Park K. K., Park J. W., Hamilton A. D. Org. Biomol. Chem. 2009;7:4225–4232. PubMed

Albericio F., Cruz M., Debéthune L., Eritja R., Giralt E., Grandas A., Marchán V., Pastor J. J., Pedroso E., Rabanal F., Royo M. Synth. Commun. 2001;31:225–232.

Ludwig J. Acta Biochim. Biophys. Acad. Sci. Hung. 1981;16:131–133. PubMed

Huang G.-J., Ho J.-H., Prabhakar C., Liu Y.-H., Peng S.-M., Yang J.-S. Org. Lett. 2012;14:5034–5037. PubMed

Tanpure A. A., Srivatsan S. G. Chem.–Eur. J. 2011;17:12820–12827. PubMed

Saito Y., Shinohara Y., Ishioroshi S., Suzuki A., Tanaka M., Saito I. Tetrahedron Lett. 2011;52:2359–2361.

Reichardt C. Chem. Rev. 1994;94:2319–2358.

Nowak W., Adamczak P., Balter A., Sygula A. THEOCHEM. 1986;139:13–23.

Balter A., Nowak W., Pawełkiewicz W., Kowalczyk A. Chem. Phys. Lett. 1988;143:565–570.

Ilich P., Prendergast F. G. J. Phys. Chem. 1989;93:4441–4447.

Parusel A. B. J., Schneider F. W., Köhler G. THEOCHEM. 1997;398–399:341–346.

Parusel A. B. J. J. Chem. Soc., Faraday Trans. 1998;94:2923–2927.

Lobo B. C., Abelt C. J. J. Phys. Chem. A. 2003;107:10938–10943.

Davis B. N., Abelt C. J. J. Phys. Chem. A. 2005;109:1295–1298. PubMed

Mennucci B., Caricato M., Ingrosso F., Cappelli C., Cammi R., Tomasi J., Scalmani G., Frisch M. J. J. Phys. Chem. B. 2008;112:414–423. PubMed

Cwiklik L., Aquino A. J. A., Vazdar M., Jurkiewicz P., Pittner J., Hof M., Lischka H. J. Phys. Chem. A. 2011;115:11428–11437. PubMed

Hocek M. J. Org. Chem. 2014;79:9914–9921. PubMed

Knebelsberger T., Stöger I. Methods Mol. Biol. 2012;858:311–338. PubMed

Boom R., Sol C. J., Salimans M. M., Jansen C. L., Wertheim-van Dillen P. M., van der Noordaa J. J. Clin. Microbiol. 1990;28:495–503. PubMed PMC

Dadová J., Orság P., Pohl R., Brázdová M., Fojta M., Hocek M. Angew. Chem., Int. Ed. 2013;52:10515–10518. PubMed

Dziuba D., Jurkiewicz P., Cebecauer M., Hof M., Hocek M. Angew. Chem., Int. Ed. 2016;55:174–178. PubMed

Okamoto A., Tainaka K., Saito I. Bioconjugate Chem. 2005;16:1105–1111. PubMed

Brazdova M., Palecek J., Cherny D. I., Billova S., Fojta M., Pecinka P., Vojtesek B., Jovin T. M., Palecek E. Nucleic Acids Res. 2002;30:4966–4974. PubMed PMC

Fojta M., Pivonkova H., Brazdova M., Nemcova K., Palecek J., Vojtesek B. Eur. J. Biochem. 2004;271:3865–3876. PubMed

For a review see: Schäferling M., Angew. Chem., Int. Ed., 2012, 51 , 3532 –3554 . PubMed

Schwaebel T., Trapp O., Bunz U. H. F. Chem. Sci. 2013;4:273–281.

Hakonen A., Beves J. E., Stromberg N. Analyst. 2014;139:3524–3527. PubMed

Fenzl C., Wilhelm S., Hirsch T., Wolfbeis O. S. ACS Appl. Mater. Interfaces. 2013;5:173–178. PubMed

Bidmanova S., Steiner M.-S., Stepan M., Vymazalova K., Gruber M. A., Duerkop A., Damborsky J., Prokop Z., Wolfbeis O. S. Anal. Chem. 2016;88:6044–6049. PubMed

Krieger E., Joo K., Lee J., Raman S., Thompson J., Tyka M., Baker D., Karplus K. Proteins: Struct., Funct., Bioinf. 2009;77(S9):114–122. PubMed PMC

Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P. J. Comput. Chem. 2003;24:1999–2012. PubMed

Jakalian A., Jack D. B., Bayly C. I. J. Comput. Chem. 2002;23:1623–1641. PubMed

Elouahabi A., Ruysschaert J.-M. Mol. Ther. 2005;11:336–347. PubMed

Junquera E., Aicart E. Curr. Top. Med. Chem. 2014;14:649–663. PubMed

Pattni B. S., Chupin V. V., Torchilin V. P. Chem. Rev. 2015;115:10938–10966. PubMed

Verma S. D., Pal N., Singh M. K., Sen S. J. Phys. Chem. B. 2015;119:11019–11029. PubMed

Pal N., Shweta H., Singh M. K., Verma S. D., Sen S. J. Phys. Chem. Lett. 2015;6:1754–1760. PubMed

Jimenez R., Fleming G. R., Kumar P. V., Maroncelli M. Nature. 1994;369:471–473.

Furse K. E., Corcelli S. A. J. Phys. Chem. Lett. 2010;1:1813–1820.

Verma S. D., Pal N., Singh M. K., Sen S. J. Phys. Chem. Lett. 2012;3:2621–2626. PubMed

Sajadi M., Furse K. E., Zhang X. X., Dehmel L., Kovalenko S. A., Corcelli S. A., Ernsting M. P. Angew. Chem., Int. Ed. 2011;50:9501–9505. PubMed

Dallmann A., Pfaffe M., Mügge C., Mahrwald R., Kovalenko S. A., Ernsting N. P. J. Phys. Chem. B. 2009;113:15619–15628. PubMed

Banerjee D., Pal S. K. J. Phys. Chem. B. 2008;112:1016–1021. PubMed

Andreatta D., Sen S., Lustres J. L. P., Kovalenko S. A., Ernsting N. P., Murphy C. J., Coleman R. S., Berg M. A. J. Am. Chem. Soc. 2006;128:6885–6892. PubMed PMC

Pal N., Verma S. D., Sen S. J. Am. Chem. Soc. 2010;132:9277–9279. PubMed

Jurkiewicz P., Sykora J., Olzynska A., Humpolickova J., Hof M. J. Fluoresc. 2005;15:883–894. PubMed

Sun B., Shen H. J. Nanomater. 2015;2015:784836.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...