Solvent relaxation in phospholipid bilayers: principles and recent applications
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- buněčná membrána chemie metabolismus MeSH
- fluidita membrány * MeSH
- fluorescenční barviva analýza MeSH
- fluorescenční spektrometrie metody MeSH
- fosfolipidy chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- rozpouštědla chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fluorescenční barviva MeSH
- fosfolipidy MeSH
- lipidové dvojvrstvy MeSH
- rozpouštědla MeSH
Although there exist a number of methods, such as NMR, X-ray, e.g., which explore the hydration of phospholipid bilayers, the solvent relaxation (SR) method has the advantage of simple instrumentation, easy data treatment and possibility of measuring fully hydrated samples. The main information gained from SR by the analysis of recorded "time-resolved emission spectra" (TRES) is micro-viscosity and micro-polarity of the dye microenvironment. Based on these parameters, one can draw conclusions about water structure in the bilayer. In this review, we focus on physical background of this method, on all the procedures that are needed in order to obtain relevant parameters, and on the requirements on the fluorescence dyes. Furthermore, a few recent applications (the effect of curvature, binding of antibacterial peptides and phase transition) illustrating the versatility of this method are mentioned. Moreover, limitations and potential problems are discussed.
Zobrazit více v PubMed
Biophys J. 1990 Feb;57(2):335-49 PubMed
Chem Phys Lipids. 2003 Jan;122(1-2):65-76 PubMed
Biochemistry. 1988 Oct 18;27(21):8239-49 PubMed
Curr Opin Cell Biol. 2001 Aug;13(4):478-84 PubMed
Curr Biol. 2004 Mar 23;14(6):R250-2 PubMed
Biochim Biophys Acta. 1999 Dec 15;1462(1-2):1-10 PubMed
Chem Phys Lipids. 2004 Jan;127(1):3-14 PubMed
Chem Phys Lipids. 1999 Aug;101(1):3-35 PubMed
Chem Phys Lipids. 1974 Feb;12(1):1-16 PubMed
Biochemistry. 1992 Aug 25;31(33):7672-82 PubMed
Biophys J. 1997 Mar;72(3):1264-77 PubMed
Biophys J. 2004 May;86(5):2929-41 PubMed
Cell Mol Biol Lett. 2003;8(4):943-54 PubMed
Biophys J. 1976 Jun;16(6):571-83 PubMed
Biophys Chem. 1996 Oct 30;61(2-3):151-60 PubMed
Biophys J. 1996 Jul;71(1):327-35 PubMed
Biophys J. 2000 May;78(5):2441-51 PubMed
Biochim Biophys Acta. 1988 Jul 7;942(1):1-10 PubMed
Biochemistry. 1989 Oct 17;28(21):8358-63 PubMed
Chem Phys Lipids. 1993 Apr;65(1):23-30 PubMed
Biochim Biophys Acta. 2000 Nov 10;1469(3):159-95 PubMed
Biochim Biophys Acta. 1998 Nov 11;1414(1-2):155-64 PubMed
Chem Phys Lipids. 2003 Jan;122(1-2):3-17 PubMed
Biochemistry. 1996 Jan 23;35(3):1037-45 PubMed
Biochemistry. 1988 Jan 12;27(1):386-92 PubMed
Biochim Biophys Acta. 1999 Jan 8;1415(2):323-30 PubMed
Biochemistry. 1987 Jan 13;26(1):39-45 PubMed
Chem Phys Lipids. 2005 Jun;135(2):213-21 PubMed
Adv Protein Chem. 1991;41:37-172 PubMed
Biochim Biophys Acta. 1997 Jan 31;1323(2):195-207 PubMed
Eur J Biochem. 2003 Nov;270(22):4478-87 PubMed
Biophys Chem. 1994 Oct;52(2):165-72 PubMed
Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions
What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on?
The complex nature of calcium cation interactions with phospholipid bilayers
Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state
Properties of mixed cationic membranes studied by fluorescence solvent relaxation