Fluorescence quenching of (dimethylamino)naphthalene dyes Badan and Prodan by tryptophan in cytochromes P450 and micelles
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 DK019038
NIDDK NIH HHS - United States
R37 DK019038
NIDDK NIH HHS - United States
DK019038
NIDDK NIH HHS - United States
PubMed
25079965
PubMed Central
PMC4148165
DOI
10.1021/jp504625d
Knihovny.cz E-zdroje
- MeSH
- 2-naftylamin analogy a deriváty chemie MeSH
- archeální proteiny chemie MeSH
- bakteriální proteiny chemie MeSH
- fluorescence MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční spektrometrie MeSH
- kinetika MeSH
- micely MeSH
- molekulární modely MeSH
- NADPH-cytochrom c-reduktasa chemie MeSH
- systém (enzymů) cytochromů P-450 chemie MeSH
- tryptofan chemie MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 2-naftylamin MeSH
- 6-bromoacetyl-2-dimethylaminonaphthalene MeSH Prohlížeč
- archeální proteiny MeSH
- bakteriální proteiny MeSH
- CYP119 protein, Sulfolobus solfataricus MeSH Prohlížeč
- flavocytochrome P450 BM3 monoxygenases MeSH Prohlížeč
- fluorescenční barviva MeSH
- micely MeSH
- NADPH-cytochrom c-reduktasa MeSH
- prodan MeSH Prohlížeč
- systém (enzymů) cytochromů P-450 MeSH
- tryptofan MeSH
- voda MeSH
Fluorescence of 2-(N,N-dimethylamino)-6-propionylnaphthalene dyes Badan and Prodan is quenched by tryptophan in Brij 58 micelles as well as in two cytochrome P450 proteins (CYP102, CYP119) with Badan covalently attached to a cysteine residue. Formation of nonemissive complexes between a dye molecule and tryptophan accounts for about 76% of the fluorescence intensity quenching in micelles, the rest is due to diffusive encounters. In the absence of tryptophan, fluorescence of Badan-labeled cytochromes decays with triexponential kinetics characterized by lifetimes of about 100 ps, 700-800 ps, and 3 ns. Site mutation of a histidine residue in the vicinity of the Badan label by tryptophan results in shortening of all three decay lifetimes. The relative amplitude of the fastest component increases at the expense of the two slower ones. The average quenching rate constants are 4.5 × 10(8) s(-1) (CYP102) and 3.7 × 10(8) s(-1) (CYP119), at 288 K. Cyclic voltammetry of Prodan in MeCN shows a reversible reduction peak at -1.85 V vs NHE that becomes chemically irreversible and shifts positively upon addition of water. A quasireversible reduction at -0.88 V was observed in an aqueous buffer (pH 7.3). The excited-state reduction potential of Prodan (and Badan) is estimated to vary from about +0.6 V (vs NHE) in polar aprotic media (MeCN) to approximately +1.6 V in water. Tryptophan quenching of Badan/Prodan fluorescence in CYPs and Brij 58 micelles is exergonic by ≤0.5 V and involves tryptophan oxidation by excited Badan/Prodan, coupled with a fast reaction between the reduced dye and water. Photoreduction is a new quenching mechanism for 2-(N,N-dimethylamino)-6-propionylnaphthalene dyes that are often used as solvatochromic polarity probes, FRET donors and acceptors, as well as reporters of solvation dynamics.
Zobrazit více v PubMed
Lakowicz J. R.Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006.
Valeur B.Molecular Fluorescence. Principles and Applications; Wiley-VCH: Weinheim, 2002.
Doose S.; Neuweiler H.; Sauer M. Fluorescence Quenching by Photoinduced Electron Transfer: A Reporter for Conformational Dynamics of Macromolecules. ChemPhysChem 2009, 10, 1389–1398. PubMed
Doose S.; Neuweiler H.; Sauer M.; Close A. Look at Fluorescence Quenching of Organic Dyes by Tryptophan. ChemPhysChem 2005, 6, 2277–2285. PubMed
Tsalkova T. N.; Davydova N. Y.; Halpert J. R.; Davydov D. R. Mechanism of Interactions of R-Naphthoflavone with Cytochrome P450 3A4 Explored with an Engineered Enzyme Bearing a Fluorescent Probe. Biochemistry 2007, 46, 106–119. PubMed PMC
Dunn A. R.; Hays A.-M. A.; Goodin D. B.; Stout C. D.; Chiu R.; Winkler J. R.; Gray H. B. Fluorescent Probes for Cytochrome P450 Structural Characterization and Inhibitor Screening. J. Am. Chem. Soc. 2002, 124, 10254–10255. PubMed
Holt A.; Koehorst R. B. M.; Rutters-Meijneke T.; Gelb M. H.; Rijkers D. T. S.; Hemminga M. A.; Killian J. A. Tilt and Rotation Angles of a Transmembrane Model Peptide as Studied by Fluorescence Spectroscopy. Biophys. J. 2009, 97, 2258–2266. PubMed PMC
Gray H. B.; Winkler J. R. Long-Range Electron Transfer. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 3534–3539. PubMed PMC
Vaiana A. C.; Neuweiler H.; Schulz A.; Wolfrum J.; Sauer M.; Smith J. C. Fluorescence Quenching of Dyes by Tryptophan: Interactions at Atomic Detail from Combination of Experiment and Computer Simulation. J. Am. Chem. Soc. 2003, 125, 14564–14572. PubMed
Neuweiler H.; Johnson C. M.; Fersht A. R. Direct Observation of Ultrafast Folding and Denatured State Dynamics in Single Protein Molecules. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18569–18574. PubMed PMC
Neuweiler H.; Banachewicz W.; Fersht A. R. Kinetics of Chain Motions Within a Protein-Folding Intermediate. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 22106–22110. PubMed PMC
Goldberg J. M.; Batjargal S.; Chen B. S.; Petersson E. J. Thioamide Quenching of Fluorescent Probes through Photoinduced Electron Transfer: Mechanistic Studies and Applications. J. Am. Chem. Soc. 2013, 135, 18651–18658. PubMed PMC
Sancar A. Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors. Chem. Rev. 2003, 103, 2203–2237. PubMed
Tanaka F.; Chosrowjan H.; Taniguchi S.; Mataga N.; Sato K.; Nishina Y.; Kiyoshi Shiga K. Donor-Acceptor Distance-Dependence of Photoinduced Electron-Transfer Rate in Flavoproteins. J. Phys. Chem. B 2007, 111, 5694–5699. PubMed
Byrdin M.; Lukacs A.; Thiagarajan V.; Eker A. P. M.; Brettel K.; Vos M. H. Quantum Yield Measurements of Short-Lived Photoactivation Intermediates in DNA Photolyase: Toward a Detailed Understanding of the Triple Tryptophan Electron Transfer Chain. J. Phys. Chem. A 2010, 114, 3207–3214. PubMed
Lukacs A.; Eker A. P. M.; Byrdin M.; Brettel K.; Vos M. H. Electron Hopping through the 15 Å Triple Tryptophan Molecular Wire in DNA Photolyase Occurs within 30 ps. J. Am. Chem. Soc. 2008, 130, 14394–14395. PubMed
Jurkiewicz P.; Sýkora J.; Olžinska A.; Humpolíčková J.; Hof M. Solvent Relaxation in Phospholipid Bilayers: Principles and Recent Applications. J. Fluoresc. 2005, 15, 883–894. PubMed
Klymchenko A. S.; Mely Y. Fluorescent Environment-Sensitive Dyes as Reporters of Biomolecular Interactions. Prog. Mol. Biol. Transl. Sci. 2013, 113, 35–58. PubMed
Novaira M.; Biasutti M. A.; Silber J. J.; Correa N. M. New Insights on the Photophysical Behavior of PRODAN in Anionic and Cationic Reverse Micelles: From Which State or States Does It Emit?. J. Phys. Chem. B 2007, 111, 748–759. PubMed
Guha S.; Sahu K.; Roy D.; Mondal S. K.; Roy S.; Bhattacharyya K. Slow Solvation Dynamics at the Active Site of an Enzyme: Implications for Catalysis. Biochemistry 2005, 44, 8940–8947. PubMed
Samaddar S.; Mandal A. K.; Mondal S. K.; Sahu K.; Bhattacharyya K.; Roy S. Solvation Dynamics of a Protein in the Pre Molten Globule State. J. Phys. Chem. B 2006, 110, 21210–21215. PubMed
Saxla T.; Khana F.; Matthews D. R.; Zhia Z.-L.; Rolinski O.; Ameer-Beg S.; Pickup J. Fluorescence Lifetime Spectroscopy and Imaging of Nano-Engineered Glucose Sensor Microcapsules Based on Glucose/Galactose-Binding Protein. Biosens. Bioelectron. 2009, 24, 3229–3234. PubMed
Batabyal S.; Mondol T.; Pal S. K. Picosecond-Resolved Solvent Reorganization and Energy Transfer in Biological and Model Cavities. Biochimie 2013, 95, 1127–1135. PubMed
Bouley Ford N. D.; Dong-Woo Shin D.-W.; Gray H. B.; Winkler J. R. Intrachain Contact Dynamics in Unfolded Cytochrome cb562. J. Phys. Chem. B 2013, 117, 13206–13211. PubMed PMC
Yamada S.; Bouley Ford N. D.; Keller G. E.; Ford W. C.; Gray H. B.; Winkler J. R. Snapshots of a Protein Folding Intermediate. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 1606–1610. PubMed PMC
Mondol T.; Batabyal S.; Pal S. K. Ultrafast Electron Transfer in the Recognition of Different DNA Sequences by a DNA-Binding Protein with Different Dynamical Conformations. J. Biomol. Struct. Dyn. 2012, 30, 362–370. PubMed
Girvan H. M.; Seward H. E.; Toogood H. S.; Cheesman M. R.; Leys D.; Munro A. W. Structural and Spectroscopic Characterization of P450 BM3Mutants with Unprecedented P450 Heme Iron Ligand Sets. J. Biol. Chem. 2007, 282, 564–572. PubMed
Kishan K. V. R.; Newcomer M. E.; Rhodes T. H.; Guilliot S. D. Effect of pH and Salt Bridges on Structural Assembly: Molecular Structures of the Monomer and Intertwined Dimer of the Eps8 SH3 Domain. Protein Sci. 2001, 10, 1046–1055. PubMed PMC
Ener M. E.; Lee Y.-T.; Winkler J. R.; Gray H. B.; Cheruzel L. Photooxidation of Cytochrome P450-BM3. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 18783–18786. PubMed PMC
Klammt C.; Schwarz D.; Fendler K.; Haase W.; Dotsch V.; Bernhard F. Evaluation of Detergents for the Soluble Expression of Alpha-Helical and Beta-Barrel-Type Integral Membrane Proteins by a Preparative Scale Individual Cell-Free Expression System. FEBS J. 2005, 272, 6024–6038. PubMed
Pavlishchuk V. V.; Addison A. W. Conversion Constants for Redox Potentials Measured Versus Different Reference Electrodes in Acetonitrile Solutions at 25°C. Inorg. Chim. Acta 2000, 298, 97–102.
Horng M. L.; Gardecki J. A.; Papazyan A.; Maroncelli M. Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited. J. Phys. Chem. 1995, 99, 17311–17337.
Moressi M. B.; Zón M. A.; Fernández H. Electrochemical Oxidation of 6-propionyl-2-(N,N-dimethylamino)naphthalene (Prodan) in Acetonitrile on Pt Electrodes: Reversible Dimerization of Prodan Radical Cations. Can. J. Chem. 2002, 80, 1232–1241.
Harriman A. Further comments on the Redox Potentials of Tryptophan and Tyrosine. J. Phys. Chem. 1987, 91, 6102–6104.
Gagliardi C. J.; Binstead R. A.; Thorp H. H.; Meyer T. J. Concerted Electron Proton Transfer (EPT) in the Oxidation of Tryptophan with Hydroxide as a Base. J. Am. Chem. Soc. 2011, 133, 19594–19597. PubMed
Tommos C.; Skalicky J. J.; Pilloud D. L.; Wand A. J.; Dutton P. L. De Novo Proteins as Models of Radical Enzymes. Biochemistry 1999, 38, 9495–9507. PubMed
Stewart D. J.; Napolitano M. J.; Bakhmutova-Albert E. V.; Margerum D. W. Kinetics and Mechanisms of Chlorine Dioxide Oxidation of Tryptophan. Inorg. Chem. 2008, 47, 1639–1647. PubMed
Schefer J.; McDaniel R.; Schoenborn B. P. Small-Angle Neutron Scattering Studies on Brij-58 Micelles. J. Phys. Chem. 1988, 92, 729–732.
Jesenská A.; Sýkora J.; Olzynska A.; Brezovský J.; Zdráhal Z.; Damborský J.; Hof M. Nanosecond Time-Dependent Stokes Shift at the Tunnel Mouth of Haloalkane Dehalogenases. J. Am. Chem. Soc. 2009, 131, 494–501. PubMed
Sengupta B.; Guharay J.; Sengupta P. K. Characterization of the Fluorescence Emission Properties of Prodan in Different Reverse Micellar Environments. Spectrochim. Acta, Part A 2000, 56, 1433–1441. PubMed