Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
22-25953S
Czech Science Foundation
860592
European Union
PRIMUS/20/SCI/015
Charles University Grant Agency
PubMed
36551322
PubMed Central
PMC9775051
DOI
10.3390/biom12121894
PII: biom12121894
Knihovny.cz E-zdroje
- Klíčová slova
- Laurdan, anionic lipids, calcium, headgroup mobility, headgroup organization, lipid hydration, molecular dynamics, phospholipid bilayer, proton, time dependent fluorescence shift,
- MeSH
- fosfatidylseriny MeSH
- ionty MeSH
- lipidové dvojvrstvy * chemie MeSH
- protony * MeSH
- simulace molekulární dynamiky MeSH
- vápník chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylseriny MeSH
- ionty MeSH
- lipidové dvojvrstvy * MeSH
- protony * MeSH
- vápník MeSH
Biomembranes, important building blocks of living organisms, are often exposed to large local fluctuations of pH and ionic strength. To capture changes in the membrane organization under such harsh conditions, we investigated the mobility and hydration of zwitterionic and anionic lipid bilayers upon elevated H3O+ and Ca2+ content by the time-dependent fluorescence shift (TDFS) technique. While the zwitterionic bilayers remain inert to lower pH and increased calcium concentrations, anionic membranes are responsive. Specifically, both bilayers enriched in phosphatidylserine (PS) and phosphatidylglycerol (PG) become dehydrated and rigidified at pH 4.0 compared to at pH 7.0. However, their reaction to the gradual Ca2+ increase in the acidic environment differs. While the PG bilayers exhibit strong rehydration and mild loosening of the carbonyl region, restoring membrane properties to those observed at pH 7.0, the PS bilayers remain dehydrated with minor bilayer stiffening. Molecular dynamics (MD) simulations support the strong binding of H3O+ to both PS and PG. Compared to PS, PG exhibits a weaker binding of Ca2+ also at a low pH.
Zobrazit více v PubMed
Van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. doi: 10.1038/nrm2330. PubMed DOI PMC
Ghazvini S., Alonso R., Alhakamel N., Dhar P. pH-Induced Changes in the Surface Viscosity of Unsaturated Phospholipids Monitored Using Active Interfacial Microrheology. Langmuir. 2018;34:1159–1170. doi: 10.1021/acs.langmuir.7b02803. PubMed DOI
Suresh S., Edwardson J.M. Phase separation in lipid bilayers triggered by low pH. Biochem. Biophys. Res. Commun. 2010;399:571–574. doi: 10.1016/j.bbrc.2010.07.113. PubMed DOI
Chen R., Jaattela M., Liu B. Lysosome as a Central Hub for Rewiring PH Homeostasis in Tumors. Cancers. 2020;12:2437. doi: 10.3390/cancers12092437. PubMed DOI PMC
Conn S., Gilliham M. Comparative physiology of elemental distributions in plants. Ann. Bot. 2010;105:1081–1102. doi: 10.1093/aob/mcq027. PubMed DOI PMC
Venable R.M., Luo Y., Gawrisch K., Roux B., Pastor R.W. Simulations of Anionic Lipid Membranes: Development of Interaction-Specific Ion Parameters and Validation Using NMR Data. J. Phys. Chem. B. 2013;117:10183–10192. doi: 10.1021/jp401512z. PubMed DOI PMC
Wilks J.C., Slonczewski J.L. pH of the cytoplasm and periplasm of Escherichia coli: Rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol. 2007;189:5601–5607. doi: 10.1128/JB.00615-07. PubMed DOI PMC
McNulty R., Ulmschneider J.P., Luecke H., Ulmschneider M.B. Mechanisms of molecular transport through the urea channel of Helicobacter pylori. Nat. Commun. 2013;4:2900. doi: 10.1038/ncomms3900. PubMed DOI PMC
Fuller N., Benatti C.R., Rand R.P. Curvature and bending constants for phosphatidylserine-containing membranes. Biophys. J. 2003;85:1667–1674. doi: 10.1016/S0006-3495(03)74596-2. PubMed DOI PMC
Seddon J.M., Kaye R.D., Marsh D. Induction of the Lamellar-Inverted Hexagonal Phase-Transition in Cardiolipin by Protons and Mono-Valent Cations. Biochim. Biophys. Acta. 1983;734:347–352. doi: 10.1016/0005-2736(83)90134-7. DOI
Valentine M.L., Cardenas A.E., Elber R., Baiz C.R. Calcium-Lipid Interactions Observed with Isotope-Edited Infrared Spectroscopy. Biophys. J. 2020;118:2694–2702. doi: 10.1016/j.bpj.2020.04.013. PubMed DOI PMC
Branden M., Sanden T., Brzezinski P., Widengren J. Localized proton microcircuits at the biological membrane-water interface. Proc. Natl. Acad. Sci. USA. 2006;103:19766–19770. doi: 10.1073/pnas.0605909103. PubMed DOI PMC
Cranfield C.G., Berry T., Holt S.A., Hossain K.R., Le Brun A.P., Carne S., Al Khamici H., Coster H., Valenzuela S.M., Cornell B. Evidence of the Key Role of H3O+ in Phospholipid Membrane Morphology. Langmuir. 2016;32:10725–10734. doi: 10.1021/acs.langmuir.6b01988. PubMed DOI
Melcrova A., Pokorna S., Vosahlikova M., Sykora J., Svoboda P., Hof M., Cwiklik L., Jurkiewicz P. Concurrent Compression of Phospholipid Membranes by Calcium and Cholesterol. Langmuir. 2019;35:11358–11368. doi: 10.1021/acs.langmuir.9b00477. PubMed DOI
Yamashita T., Voth G.A. Properties of Hydrated Excess Protons near Phospholipid Bilayers. J. Phys. Chem. B. 2010;114:592–603. doi: 10.1021/jp908768c. PubMed DOI
Mao Y.Y., Du Y., Cang X.H., Wang J.A., Chen Z.X., Yang H.Y., Jiang H.L. Binding Competition to the POPG Lipid Bilayer of Ca2+, Mg2+, Na+, and K+ in Different Ion Mixtures and Biological Implication. J. Phys. Chem. B. 2013;117:850–858. doi: 10.1021/jp310163z. PubMed DOI
Deplazes E., White J., Murphy C., Cranfield C.G., Garcia A.A.-O. Competing for the same space: Protons and alkali ions at the interface of phospholipid bilayers. Biophys. Rev. 2019;11:483–490. doi: 10.1007/s12551-019-00541-2. PubMed DOI PMC
Deplazes E., Poger D., Cornell B., Cranfield C.G. The effect of hydronium ions on the structure of phospholipid membranes. Phys. Chem. Chem. Phys. 2018;20:357–366. doi: 10.1039/C7CP06776C. PubMed DOI
Nguyen C.V., Nakahara H., Phan C.M. Surface Potential of the Air/Water Interface. J. Oleo Sci. 2020;69:519–528. doi: 10.5650/jos.ess20024. PubMed DOI
Melcrova A., Pokorna S., Pullanchery S., Kohagen M., Jurkiewicz P., Hof M., Jungwirth P., Cremer P.S., Cwiklik L. The complex nature of calcium cation interactions with phospholipid bilayers. Sci. Rep. 2016;6:38035. doi: 10.1038/srep38035. PubMed DOI PMC
Allolio C., Harries D. Calcium Ions Promote Membrane Fusion by Forming Negative-Curvature Inducing Clusters on Specific Anionic Lipids. ACS Nano. 2021;15:12880–12887. doi: 10.1021/acsnano.0c08614. PubMed DOI
Mason W.T., Lane N.J., Miller N.G.A., Bangham A.D. Fusion of Liposome Membranes by the Normal-Alkyl Bromides. J. Membr. Biol. 1980;55:69–79. doi: 10.1007/BF01926370. PubMed DOI
Uster P.S., Deamer D.W. Fusion competence of phosphatidylserine-containing liposomes quantitatively measured by a fluorescence resonance energy transfer assay. Arch. Biochem. Biophys. 1981;209:385–395. doi: 10.1016/0003-9861(81)90296-4. PubMed DOI
Papahadjopoulos D., Nir S., Duzgunes N. Molecular Mechanisms of Calcium-Induced Membrane-Fusion. J. Bioenerg. Biomembr. 1990;22:157–179. doi: 10.1007/BF00762944. PubMed DOI
Murzyn K., Rog T., Pasenkiewicz-Gierula M. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane: A molecular modeling study. Biophys. J. 2005;88:1091–1103. doi: 10.1529/biophysj.104.048835. PubMed DOI PMC
Urbina J.A., Moreno B., Arnold W., Taron C.H., Orlean P., Oldfield E. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: A new approach to study order and dynamics in phospholipid membrane systems. Biophys. J. 1998;75:1372–1383. doi: 10.1016/S0006-3495(98)74055-X. PubMed DOI PMC
Hubner W., Blume A. Interactions at the lipid-water interface. Chem. Phys. Lipids. 1998;96:99–123. doi: 10.1016/S0009-3084(98)00083-8. DOI
Pandit S.A., Bostick D., Berkowitz M.L. Mixed bilayer containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine: Lipid complexation, ion binding, and electrostatics. Biophys. J. 2003;85:3120–3131. doi: 10.1016/S0006-3495(03)74730-4. PubMed DOI PMC
Dickey A., Faller R. Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys. J. 2008;95:2636–2646. doi: 10.1529/biophysj.107.128074. PubMed DOI PMC
Mattai J., Hauser H., Demel R.A., Shipley G.G. Interactions of Metal-Ions with Phosphatidylserine Bilayer-Membranes—Effect of Hydrocarbon Chain Unsaturation. Biochemistry. 1989;28:2322–2330. doi: 10.1021/bi00431a051. PubMed DOI
Pasenkiewicz-Gierula M., Takaoka Y., Miyagawa H., Kitamura K., Kusumi A. Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics simulation study. Biophys. J. 1999;76:1228–1240. doi: 10.1016/S0006-3495(99)77286-3. PubMed DOI PMC
Smith M.C., Crist R.M., Clogston J.D., McNeil S.E. Zeta potential: A case study of cationic, anionic, and neutral liposomes. Anal. Bioanal. Chem. 2017;409:5779–5787. doi: 10.1007/s00216-017-0527-z. PubMed DOI
Scollo F., Evci H., Amaro M., Jurkiewicz P., Sykora J., Hof M. What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on? Front. Chem. 2021;9:738350. doi: 10.3389/fchem.2021.738350. PubMed DOI PMC
Hupfeld S., Holsaeter A.M., Skar M., Frantzen C.B., Brandl M. Liposome size analysis by dynamic/static light scattering upon size exclusion-/field flow-fractionation. J. Nanosci. Nanotechnol. 2006;6:3025–3031. doi: 10.1166/jnn.2006.454. PubMed DOI
Parasassi T., Loiero M., Raimondi M., Ravagnan G., Gratton E. Effect of Cholesterol on Phospholipid Phase Domains as Detected by Laurdan Generalized Polarization. Biophys. J. 1993;64:A72. PubMed PMC
Horng M.L., Gardecki J.A., Papazyan A., Maroncelli M. Subpicosecond Measurements of Polar Solvation Dynamics—Coumarin-153 Revisited. J. Phys. Chem. 1995;99:17311–17337. doi: 10.1021/j100048a004. DOI
Jurkiewicz P., Sykora J., Olzynska A., Humplickova J., Hof M. Solvent relaxation in phospholipid bilayers: Principles and recent applications. J. Fluoresc. 2005;15:883–894. doi: 10.1007/s10895-005-0013-4. PubMed DOI
Fee R.S., Maroncelli M. Estimating the Time-Zero Spectrum in Time-Resolved Emission Measurements of Solvation Dynamics. Chem. Phys. 1994;183:235–247. doi: 10.1016/0301-0104(94)00019-0. DOI
Klauda J.B., Venable R.M., Freites J.A., O’Connor J.W., Tobias D.J., Mondragon-Ramirez C., Vorobyov I., MacKerell A.D., Pastor R.W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Parrinello M., Rahman A. Polymorphic Transitions in Single-Crystals—A New Molecular-Dynamics Method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Nose S. A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. J. Chem. Phys. 1984;81:511–519. doi: 10.1063/1.447334. DOI
Darden T., York D., Pedersen L. Particle Mesh Ewald—An N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI
Lee J., Patel D.S., Stahle J., Park S.J., Kern N.R., Kim S., Lee J., Cheng X., Valvano M.A., Holst O., et al. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J. Chem. Theory Comput. 2019;15:775–786. doi: 10.1021/acs.jctc.8b01066. PubMed DOI
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Bonthuis D.J., Mamatkulov S.I., Netz R.R. Optimization of classical nonpolarizable force fields for OH- and H3O+ J. Chem. Phys. 2016;144:104503. doi: 10.1063/1.4942771. PubMed DOI
Mamatkulov S.I., Allolio C., Netz R.R., Bonthuis D.J. Frontispiece: Orientation-Induced Adsorption of Hydrated Protons at the Air–Water Interface. Angew. Chem. Int. Ed. 2017;56:15846–15851. doi: 10.1002/anie.201707391. PubMed DOI
Marsh D. Handbook of Lipid Bilayers. 2nd ed. CRC Press; Boca Raton, FL, USA: 2013.
Klein J.W., Ware B.R., Barclay G., Petty H.R. Phospholipid Dependence of Calcium-Ion Effects on Electrophoretic Mobilities of Liposomes. Chem. Phys. Lipids. 1987;43:13–23. doi: 10.1016/0009-3084(87)90013-2. PubMed DOI
Kubickova A., Krizek T., Coufal P., Vazdar M., Wernersson E., Heyda J., Jungwirth P. Overcharging in Biological Systems: Reversal of Electrophoretic Mobility of Aqueous Polyaspartate by Multivalent Cations. Phys. Rev. Lett. 2012;108:186101. doi: 10.1103/PhysRevLett.108.186101. PubMed DOI
Ribeiro M.M.B., Domingues M.M., Freire J.M., Santos N.C., Castanho M.A.R.B. Translocating the blood-brain barrier using electrostatics. Front. Cell. Neurosci. 2012;6:44. doi: 10.3389/fncel.2012.00044. PubMed DOI PMC
Mclaughlin S., Mulrine N., Gresalfi T., Vaio G., Mclaughlin A. Adsorption of Divalent-Cations to Bilayer-Membranes Containing Phosphatidylserine. J. Gen. Physiol. 1981;77:445–473. doi: 10.1085/jgp.77.4.445. PubMed DOI PMC
Brockman H. Dipole potential of lipid membranes. Chem. Phys. Lipids. 1994;73:57–79. doi: 10.1016/0009-3084(94)90174-0. PubMed DOI
Smaby J.M., Brockman H.L. Surface dipole-moments of lipids at the argon-water interface—Similarities among glycerol-ester-based lipids. Biophys. J. 1990;58:195–204. doi: 10.1016/S0006-3495(90)82365-1. PubMed DOI PMC
Disalvo A., Frias M.A. Surface Characterization of Lipid Biomimetic Systems. Membranes. 2021;11:821. doi: 10.3390/membranes11110821. PubMed DOI PMC
Artukhov V.Y., Zharkova O.M., Morozova J.P. Features of absorption and fluorescence spectra of prodan. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007;68:36–42. doi: 10.1016/j.saa.2006.10.048. PubMed DOI
Parasassi T., Destasio G., Ravagnan G., Rusch R.M., Gratton E. Quantitation of Lipid Phases in Phospholipid-Vesicles by the Generalized Polarization of Laurdan Fluorescence. Biophys. J. 1991;60:179–189. doi: 10.1016/S0006-3495(91)82041-0. PubMed DOI PMC
Bagatolli L.A. LAURDAN Fluorescence Properties in Membranes: A Journey from the Fluorometer to the Microscope. In: Mély Y., Duportail G., editors. Fluorescent Methods to Study Biological Membranes. Volume 13. Springer; Berlin/Heidelberg, Germany: 2012. (Springer Series on Fluorescence). DOI
Sanchez S.A., Tricerri M.A., Gratton E. Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc. Natl. Acad. Sci. USA. 2012;109:7314–7319. doi: 10.1073/pnas.1118288109. PubMed DOI PMC
Sezgin E., Sadowski T., Simons K. Measuring Lipid Packing of Model and Cellular Membranes with Environment Sensitive Probes. Langmuir. 2014;30:8160–8166. doi: 10.1021/la501226v. PubMed DOI
Vallejo A.A., Velazquez J.B., Fernandez M.S. Lateral organization of mixed, two-phosphatidylcholine liposomes as investigated by GPS, the slope of Laurdan generalized polarization spectra. Arch. Biochem. Biophys. 2007;466:145–154. doi: 10.1016/j.abb.2007.06.031. PubMed DOI
Amaro M., Sachl R., Jurkiewicz P., Coutinho A., Prieto M., Hof M. Time-Resolved Fluorescence in Lipid Bilayers: Selected Applications and Advantages over Steady State. Biophys. J. 2014;107:2751–2760. doi: 10.1016/j.bpj.2014.10.058. PubMed DOI PMC
Tempra C., Ollila O.H.S., Javanainen M. Accurate Simulations of Lipid Monolayers Require a Water Model with Correct Surface Tension. J. Chem. Theory Comput. 2022;18:1862–1869. doi: 10.1021/acs.jctc.1c00951. PubMed DOI PMC
Kucerka N., Nieh M.P., Katsaras J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta Biomembr. 2011;1808:2761–2771. doi: 10.1016/j.bbamem.2011.07.022. PubMed DOI
Melcr J., Ferreira T.M., Jungwirth P., Ollila O.H.S. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization. J. Chem. Theory Comput. 2020;16:738–748. doi: 10.1021/acs.jctc.9b00824. PubMed DOI
Subedi K.P., Paudel O., Sham J.S. Detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells. Am. J. Physiol. Cell Physiol. 2014;306:C659–C669. doi: 10.1152/ajpcell.00341.2013. PubMed DOI PMC
Zhang C., Hicks G.R., Raikhel N.V. Molecular Composition of Plant Vacuoles: Important but Less Understood Regulations and Roles of Tonoplast Lipids. Plants. 2015;4:320–333. doi: 10.3390/plants4020320. PubMed DOI PMC
Casares D., Escriba P.V., Rossello C.A. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int. J. Mol. Sci. 2019;20:2167. doi: 10.3390/ijms20092167. PubMed DOI PMC
Miller S.I., Salama N.R. The gram-negative bacterial periplasm: Size matters. PLoS Biol. 2018;16:e2004935. doi: 10.1371/journal.pbio.2004935. PubMed DOI PMC
Perez-Isidoro R., Ruiz-Suarez J.C. Calcium and protons affect the interaction of neurotransmitters and anesthetics with anionic lipid membranes. Biochim. Biophys. Acta Biomembr. 2016;1858:2215–2222. doi: 10.1016/j.bbamem.2016.06.017. PubMed DOI