Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions

. 2022 Dec 17 ; 12 (12) : . [epub] 20221217

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36551322

Grantová podpora
22-25953S Czech Science Foundation
860592 European Union
PRIMUS/20/SCI/015 Charles University Grant Agency

Biomembranes, important building blocks of living organisms, are often exposed to large local fluctuations of pH and ionic strength. To capture changes in the membrane organization under such harsh conditions, we investigated the mobility and hydration of zwitterionic and anionic lipid bilayers upon elevated H3O+ and Ca2+ content by the time-dependent fluorescence shift (TDFS) technique. While the zwitterionic bilayers remain inert to lower pH and increased calcium concentrations, anionic membranes are responsive. Specifically, both bilayers enriched in phosphatidylserine (PS) and phosphatidylglycerol (PG) become dehydrated and rigidified at pH 4.0 compared to at pH 7.0. However, their reaction to the gradual Ca2+ increase in the acidic environment differs. While the PG bilayers exhibit strong rehydration and mild loosening of the carbonyl region, restoring membrane properties to those observed at pH 7.0, the PS bilayers remain dehydrated with minor bilayer stiffening. Molecular dynamics (MD) simulations support the strong binding of H3O+ to both PS and PG. Compared to PS, PG exhibits a weaker binding of Ca2+ also at a low pH.

Zobrazit více v PubMed

Van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. doi: 10.1038/nrm2330. PubMed DOI PMC

Ghazvini S., Alonso R., Alhakamel N., Dhar P. pH-Induced Changes in the Surface Viscosity of Unsaturated Phospholipids Monitored Using Active Interfacial Microrheology. Langmuir. 2018;34:1159–1170. doi: 10.1021/acs.langmuir.7b02803. PubMed DOI

Suresh S., Edwardson J.M. Phase separation in lipid bilayers triggered by low pH. Biochem. Biophys. Res. Commun. 2010;399:571–574. doi: 10.1016/j.bbrc.2010.07.113. PubMed DOI

Chen R., Jaattela M., Liu B. Lysosome as a Central Hub for Rewiring PH Homeostasis in Tumors. Cancers. 2020;12:2437. doi: 10.3390/cancers12092437. PubMed DOI PMC

Conn S., Gilliham M. Comparative physiology of elemental distributions in plants. Ann. Bot. 2010;105:1081–1102. doi: 10.1093/aob/mcq027. PubMed DOI PMC

Venable R.M., Luo Y., Gawrisch K., Roux B., Pastor R.W. Simulations of Anionic Lipid Membranes: Development of Interaction-Specific Ion Parameters and Validation Using NMR Data. J. Phys. Chem. B. 2013;117:10183–10192. doi: 10.1021/jp401512z. PubMed DOI PMC

Wilks J.C., Slonczewski J.L. pH of the cytoplasm and periplasm of Escherichia coli: Rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol. 2007;189:5601–5607. doi: 10.1128/JB.00615-07. PubMed DOI PMC

McNulty R., Ulmschneider J.P., Luecke H., Ulmschneider M.B. Mechanisms of molecular transport through the urea channel of Helicobacter pylori. Nat. Commun. 2013;4:2900. doi: 10.1038/ncomms3900. PubMed DOI PMC

Fuller N., Benatti C.R., Rand R.P. Curvature and bending constants for phosphatidylserine-containing membranes. Biophys. J. 2003;85:1667–1674. doi: 10.1016/S0006-3495(03)74596-2. PubMed DOI PMC

Seddon J.M., Kaye R.D., Marsh D. Induction of the Lamellar-Inverted Hexagonal Phase-Transition in Cardiolipin by Protons and Mono-Valent Cations. Biochim. Biophys. Acta. 1983;734:347–352. doi: 10.1016/0005-2736(83)90134-7. DOI

Valentine M.L., Cardenas A.E., Elber R., Baiz C.R. Calcium-Lipid Interactions Observed with Isotope-Edited Infrared Spectroscopy. Biophys. J. 2020;118:2694–2702. doi: 10.1016/j.bpj.2020.04.013. PubMed DOI PMC

Branden M., Sanden T., Brzezinski P., Widengren J. Localized proton microcircuits at the biological membrane-water interface. Proc. Natl. Acad. Sci. USA. 2006;103:19766–19770. doi: 10.1073/pnas.0605909103. PubMed DOI PMC

Cranfield C.G., Berry T., Holt S.A., Hossain K.R., Le Brun A.P., Carne S., Al Khamici H., Coster H., Valenzuela S.M., Cornell B. Evidence of the Key Role of H3O+ in Phospholipid Membrane Morphology. Langmuir. 2016;32:10725–10734. doi: 10.1021/acs.langmuir.6b01988. PubMed DOI

Melcrova A., Pokorna S., Vosahlikova M., Sykora J., Svoboda P., Hof M., Cwiklik L., Jurkiewicz P. Concurrent Compression of Phospholipid Membranes by Calcium and Cholesterol. Langmuir. 2019;35:11358–11368. doi: 10.1021/acs.langmuir.9b00477. PubMed DOI

Yamashita T., Voth G.A. Properties of Hydrated Excess Protons near Phospholipid Bilayers. J. Phys. Chem. B. 2010;114:592–603. doi: 10.1021/jp908768c. PubMed DOI

Mao Y.Y., Du Y., Cang X.H., Wang J.A., Chen Z.X., Yang H.Y., Jiang H.L. Binding Competition to the POPG Lipid Bilayer of Ca2+, Mg2+, Na+, and K+ in Different Ion Mixtures and Biological Implication. J. Phys. Chem. B. 2013;117:850–858. doi: 10.1021/jp310163z. PubMed DOI

Deplazes E., White J., Murphy C., Cranfield C.G., Garcia A.A.-O. Competing for the same space: Protons and alkali ions at the interface of phospholipid bilayers. Biophys. Rev. 2019;11:483–490. doi: 10.1007/s12551-019-00541-2. PubMed DOI PMC

Deplazes E., Poger D., Cornell B., Cranfield C.G. The effect of hydronium ions on the structure of phospholipid membranes. Phys. Chem. Chem. Phys. 2018;20:357–366. doi: 10.1039/C7CP06776C. PubMed DOI

Nguyen C.V., Nakahara H., Phan C.M. Surface Potential of the Air/Water Interface. J. Oleo Sci. 2020;69:519–528. doi: 10.5650/jos.ess20024. PubMed DOI

Melcrova A., Pokorna S., Pullanchery S., Kohagen M., Jurkiewicz P., Hof M., Jungwirth P., Cremer P.S., Cwiklik L. The complex nature of calcium cation interactions with phospholipid bilayers. Sci. Rep. 2016;6:38035. doi: 10.1038/srep38035. PubMed DOI PMC

Allolio C., Harries D. Calcium Ions Promote Membrane Fusion by Forming Negative-Curvature Inducing Clusters on Specific Anionic Lipids. ACS Nano. 2021;15:12880–12887. doi: 10.1021/acsnano.0c08614. PubMed DOI

Mason W.T., Lane N.J., Miller N.G.A., Bangham A.D. Fusion of Liposome Membranes by the Normal-Alkyl Bromides. J. Membr. Biol. 1980;55:69–79. doi: 10.1007/BF01926370. PubMed DOI

Uster P.S., Deamer D.W. Fusion competence of phosphatidylserine-containing liposomes quantitatively measured by a fluorescence resonance energy transfer assay. Arch. Biochem. Biophys. 1981;209:385–395. doi: 10.1016/0003-9861(81)90296-4. PubMed DOI

Papahadjopoulos D., Nir S., Duzgunes N. Molecular Mechanisms of Calcium-Induced Membrane-Fusion. J. Bioenerg. Biomembr. 1990;22:157–179. doi: 10.1007/BF00762944. PubMed DOI

Murzyn K., Rog T., Pasenkiewicz-Gierula M. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane: A molecular modeling study. Biophys. J. 2005;88:1091–1103. doi: 10.1529/biophysj.104.048835. PubMed DOI PMC

Urbina J.A., Moreno B., Arnold W., Taron C.H., Orlean P., Oldfield E. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: A new approach to study order and dynamics in phospholipid membrane systems. Biophys. J. 1998;75:1372–1383. doi: 10.1016/S0006-3495(98)74055-X. PubMed DOI PMC

Hubner W., Blume A. Interactions at the lipid-water interface. Chem. Phys. Lipids. 1998;96:99–123. doi: 10.1016/S0009-3084(98)00083-8. DOI

Pandit S.A., Bostick D., Berkowitz M.L. Mixed bilayer containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine: Lipid complexation, ion binding, and electrostatics. Biophys. J. 2003;85:3120–3131. doi: 10.1016/S0006-3495(03)74730-4. PubMed DOI PMC

Dickey A., Faller R. Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys. J. 2008;95:2636–2646. doi: 10.1529/biophysj.107.128074. PubMed DOI PMC

Mattai J., Hauser H., Demel R.A., Shipley G.G. Interactions of Metal-Ions with Phosphatidylserine Bilayer-Membranes—Effect of Hydrocarbon Chain Unsaturation. Biochemistry. 1989;28:2322–2330. doi: 10.1021/bi00431a051. PubMed DOI

Pasenkiewicz-Gierula M., Takaoka Y., Miyagawa H., Kitamura K., Kusumi A. Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics simulation study. Biophys. J. 1999;76:1228–1240. doi: 10.1016/S0006-3495(99)77286-3. PubMed DOI PMC

Smith M.C., Crist R.M., Clogston J.D., McNeil S.E. Zeta potential: A case study of cationic, anionic, and neutral liposomes. Anal. Bioanal. Chem. 2017;409:5779–5787. doi: 10.1007/s00216-017-0527-z. PubMed DOI

Scollo F., Evci H., Amaro M., Jurkiewicz P., Sykora J., Hof M. What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on? Front. Chem. 2021;9:738350. doi: 10.3389/fchem.2021.738350. PubMed DOI PMC

Hupfeld S., Holsaeter A.M., Skar M., Frantzen C.B., Brandl M. Liposome size analysis by dynamic/static light scattering upon size exclusion-/field flow-fractionation. J. Nanosci. Nanotechnol. 2006;6:3025–3031. doi: 10.1166/jnn.2006.454. PubMed DOI

Parasassi T., Loiero M., Raimondi M., Ravagnan G., Gratton E. Effect of Cholesterol on Phospholipid Phase Domains as Detected by Laurdan Generalized Polarization. Biophys. J. 1993;64:A72. PubMed PMC

Horng M.L., Gardecki J.A., Papazyan A., Maroncelli M. Subpicosecond Measurements of Polar Solvation Dynamics—Coumarin-153 Revisited. J. Phys. Chem. 1995;99:17311–17337. doi: 10.1021/j100048a004. DOI

Jurkiewicz P., Sykora J., Olzynska A., Humplickova J., Hof M. Solvent relaxation in phospholipid bilayers: Principles and recent applications. J. Fluoresc. 2005;15:883–894. doi: 10.1007/s10895-005-0013-4. PubMed DOI

Fee R.S., Maroncelli M. Estimating the Time-Zero Spectrum in Time-Resolved Emission Measurements of Solvation Dynamics. Chem. Phys. 1994;183:235–247. doi: 10.1016/0301-0104(94)00019-0. DOI

Klauda J.B., Venable R.M., Freites J.A., O’Connor J.W., Tobias D.J., Mondragon-Ramirez C., Vorobyov I., MacKerell A.D., Pastor R.W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Parrinello M., Rahman A. Polymorphic Transitions in Single-Crystals—A New Molecular-Dynamics Method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Nose S. A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. J. Chem. Phys. 1984;81:511–519. doi: 10.1063/1.447334. DOI

Darden T., York D., Pedersen L. Particle Mesh Ewald—An N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Lee J., Patel D.S., Stahle J., Park S.J., Kern N.R., Kim S., Lee J., Cheng X., Valvano M.A., Holst O., et al. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J. Chem. Theory Comput. 2019;15:775–786. doi: 10.1021/acs.jctc.8b01066. PubMed DOI

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Bonthuis D.J., Mamatkulov S.I., Netz R.R. Optimization of classical nonpolarizable force fields for OH- and H3O+ J. Chem. Phys. 2016;144:104503. doi: 10.1063/1.4942771. PubMed DOI

Mamatkulov S.I., Allolio C., Netz R.R., Bonthuis D.J. Frontispiece: Orientation-Induced Adsorption of Hydrated Protons at the Air–Water Interface. Angew. Chem. Int. Ed. 2017;56:15846–15851. doi: 10.1002/anie.201707391. PubMed DOI

Marsh D. Handbook of Lipid Bilayers. 2nd ed. CRC Press; Boca Raton, FL, USA: 2013.

Klein J.W., Ware B.R., Barclay G., Petty H.R. Phospholipid Dependence of Calcium-Ion Effects on Electrophoretic Mobilities of Liposomes. Chem. Phys. Lipids. 1987;43:13–23. doi: 10.1016/0009-3084(87)90013-2. PubMed DOI

Kubickova A., Krizek T., Coufal P., Vazdar M., Wernersson E., Heyda J., Jungwirth P. Overcharging in Biological Systems: Reversal of Electrophoretic Mobility of Aqueous Polyaspartate by Multivalent Cations. Phys. Rev. Lett. 2012;108:186101. doi: 10.1103/PhysRevLett.108.186101. PubMed DOI

Ribeiro M.M.B., Domingues M.M., Freire J.M., Santos N.C., Castanho M.A.R.B. Translocating the blood-brain barrier using electrostatics. Front. Cell. Neurosci. 2012;6:44. doi: 10.3389/fncel.2012.00044. PubMed DOI PMC

Mclaughlin S., Mulrine N., Gresalfi T., Vaio G., Mclaughlin A. Adsorption of Divalent-Cations to Bilayer-Membranes Containing Phosphatidylserine. J. Gen. Physiol. 1981;77:445–473. doi: 10.1085/jgp.77.4.445. PubMed DOI PMC

Brockman H. Dipole potential of lipid membranes. Chem. Phys. Lipids. 1994;73:57–79. doi: 10.1016/0009-3084(94)90174-0. PubMed DOI

Smaby J.M., Brockman H.L. Surface dipole-moments of lipids at the argon-water interface—Similarities among glycerol-ester-based lipids. Biophys. J. 1990;58:195–204. doi: 10.1016/S0006-3495(90)82365-1. PubMed DOI PMC

Disalvo A., Frias M.A. Surface Characterization of Lipid Biomimetic Systems. Membranes. 2021;11:821. doi: 10.3390/membranes11110821. PubMed DOI PMC

Artukhov V.Y., Zharkova O.M., Morozova J.P. Features of absorption and fluorescence spectra of prodan. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007;68:36–42. doi: 10.1016/j.saa.2006.10.048. PubMed DOI

Parasassi T., Destasio G., Ravagnan G., Rusch R.M., Gratton E. Quantitation of Lipid Phases in Phospholipid-Vesicles by the Generalized Polarization of Laurdan Fluorescence. Biophys. J. 1991;60:179–189. doi: 10.1016/S0006-3495(91)82041-0. PubMed DOI PMC

Bagatolli L.A. LAURDAN Fluorescence Properties in Membranes: A Journey from the Fluorometer to the Microscope. In: Mély Y., Duportail G., editors. Fluorescent Methods to Study Biological Membranes. Volume 13. Springer; Berlin/Heidelberg, Germany: 2012. (Springer Series on Fluorescence). DOI

Sanchez S.A., Tricerri M.A., Gratton E. Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc. Natl. Acad. Sci. USA. 2012;109:7314–7319. doi: 10.1073/pnas.1118288109. PubMed DOI PMC

Sezgin E., Sadowski T., Simons K. Measuring Lipid Packing of Model and Cellular Membranes with Environment Sensitive Probes. Langmuir. 2014;30:8160–8166. doi: 10.1021/la501226v. PubMed DOI

Vallejo A.A., Velazquez J.B., Fernandez M.S. Lateral organization of mixed, two-phosphatidylcholine liposomes as investigated by GPS, the slope of Laurdan generalized polarization spectra. Arch. Biochem. Biophys. 2007;466:145–154. doi: 10.1016/j.abb.2007.06.031. PubMed DOI

Amaro M., Sachl R., Jurkiewicz P., Coutinho A., Prieto M., Hof M. Time-Resolved Fluorescence in Lipid Bilayers: Selected Applications and Advantages over Steady State. Biophys. J. 2014;107:2751–2760. doi: 10.1016/j.bpj.2014.10.058. PubMed DOI PMC

Tempra C., Ollila O.H.S., Javanainen M. Accurate Simulations of Lipid Monolayers Require a Water Model with Correct Surface Tension. J. Chem. Theory Comput. 2022;18:1862–1869. doi: 10.1021/acs.jctc.1c00951. PubMed DOI PMC

Kucerka N., Nieh M.P., Katsaras J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta Biomembr. 2011;1808:2761–2771. doi: 10.1016/j.bbamem.2011.07.022. PubMed DOI

Melcr J., Ferreira T.M., Jungwirth P., Ollila O.H.S. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization. J. Chem. Theory Comput. 2020;16:738–748. doi: 10.1021/acs.jctc.9b00824. PubMed DOI

Subedi K.P., Paudel O., Sham J.S. Detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells. Am. J. Physiol. Cell Physiol. 2014;306:C659–C669. doi: 10.1152/ajpcell.00341.2013. PubMed DOI PMC

Zhang C., Hicks G.R., Raikhel N.V. Molecular Composition of Plant Vacuoles: Important but Less Understood Regulations and Roles of Tonoplast Lipids. Plants. 2015;4:320–333. doi: 10.3390/plants4020320. PubMed DOI PMC

Casares D., Escriba P.V., Rossello C.A. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int. J. Mol. Sci. 2019;20:2167. doi: 10.3390/ijms20092167. PubMed DOI PMC

Miller S.I., Salama N.R. The gram-negative bacterial periplasm: Size matters. PLoS Biol. 2018;16:e2004935. doi: 10.1371/journal.pbio.2004935. PubMed DOI PMC

Perez-Isidoro R., Ruiz-Suarez J.C. Calcium and protons affect the interaction of neurotransmitters and anesthetics with anionic lipid membranes. Biochim. Biophys. Acta Biomembr. 2016;1858:2215–2222. doi: 10.1016/j.bbamem.2016.06.017. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...