Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
25517142
PubMed Central
PMC4269770
DOI
10.1016/j.bpj.2014.10.058
PII: S0006-3495(14)01147-3
Knihovny.cz E-zdroje
- MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie metody MeSH
- kinetika MeSH
- lipidové dvojvrstvy chemie MeSH
- rezonanční přenos fluorescenční energie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fluorescenční barviva MeSH
- lipidové dvojvrstvy MeSH
Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.
Zobrazit více v PubMed
Lentz B.R. Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chem. Phys. Lipids. 1993;64:99–116. PubMed
Galla H.-J., Hartmann W. Excimer-forming lipids in membrane research. Chem. Phys. Lipids. 1980;27:199–219. PubMed
Duportail G. Raft microdomains in model membranes as revealed by fluorescence quenching. In: Hof M., Hutterer R., Fidler V., editors. Fluorescence Spectroscopy in Biology. Springer; Berlin, Germany: 2005. pp. 133–149.
Westlund P.-O. Line shape analysis of NMR powder spectra of 2H2O in lipid bilayer systems. J. Phys. Chem. B. 2000;104:6059–6064.
Gawrisch K., Gaede H.C., White S.H. Hydration of POPC bilayers studied by 1H-PFG-MAS-NOESY and neutron diffraction. Eur. Biophys. J. 2007;36:281–291. PubMed PMC
Tristram-Nagle S., Nagle J.F. Lipid bilayers: thermodynamics, structure, fluctuations, and interactions. Chem. Phys. Lipids. 2004;127:3–14. PubMed PMC
Marsh D. Polarity and permeation profiles in lipid membranes. Proc. Natl. Acad. Sci. USA. 2001;98:7777–7782. PubMed PMC
Jurkiewicz P., Sýkora J., Hof M. Solvent relaxation in phospholipid bilayers: principles and recent applications. J. Fluoresc. 2005;15:883–894. PubMed
Horng M.L., Gardecki J.A., Maroncelli M. Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited. J. Phys. Chem. 1995;99:17311–17337.
Richert R., Stickel F., Maroncelli M. Solvation dynamics and the dielectric response in a glass-forming solvent: from picoseconds to seconds. Chem. Phys. Lett. 1994;229:302–308.
Sýkora J., Kapusta P., Hof M. On what time scale does solvent relaxation in phospholipid bilayers happen? Langmuir. 2002;18:571–574.
Demchenko A.P., Mély Y., Klymchenko A.S. Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys. J. 2009;96:3461–3470. PubMed PMC
Weber G., Farris F.J. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry. 1979;18:3075–3078. PubMed
Cwiklik L., Aquino A.J., Lischka H. Absorption and fluorescence of PRODAN in phospholipid bilayers: a combined quantum mechanics and classical molecular dynamics study. J. Phys. Chem. A. 2011;115:11428–11437. PubMed
Parasassi T., De Stasio G., Gratton E. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys. J. 1990;57:1179–1186. PubMed PMC
Jurkiewicz P., Cwiklik L., Hof M. Lipid hydration and mobility: an interplay between fluorescence solvent relaxation experiments and molecular dynamics simulations. Biochimie. 2012;94:26–32. PubMed
Halle B., Nilsson L. Does the dynamic Stokes shift report on slow protein hydration dynamics? J. Phys. Chem. B. 2009;113:8210–8213. PubMed
Barucha-Kraszewska J., Kraszewski S., Hof M. Numerical studies of the membrane fluorescent dyes dynamics in ground and excited states. Biochim. Biophys. Acta. 2010;1798:1724–1734. PubMed
Jurkiewicz P., Olzyńska A., Hof M. Headgroup hydration and mobility of DOTAP/DOPC bilayers: a fluorescence solvent relaxation study. Langmuir. 2006;22:8741–8749. PubMed
Bagatolli L.A. Laurdan fluorescence properties in membranes: a journey from the fluorometer to the microscope. In: Mély Y., Duportail G., editors. Fluorescent Methods to Study Biological Membranes. Springer; Berlin, Germany: 2013. pp. 3–35.
Parasassi T., Conti F., Gratton E. Fluorophores in a polar medium: time dependence of emission spectra detected by multifrequency phase and modulation fluorometry. Cell. Mol. Biol. 1986;32:99–102. PubMed
Kwiatek J.M., Hinde E., Gaus K. Microscopy approaches to investigate protein dynamics and lipid organization. Mol. Membr. Biol. 2014;31:141–151. PubMed
Parasassi T., Di Stefano M., Gratton E. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe. Biophys. J. 1994;66:763–768. PubMed PMC
Hof M. Applied Fluorescence in Chemistry, Biology and Medicine. Springer; Berlin, Germany: 1999. Solvent relaxation in biomembranes; pp. 439–456.
Jurkiewicz, P. 2007. Fluorescence solvent relaxation technique in biomembranes. PhD thesis, Wrocław University of Technology, Wrocław, Poland.
Macháň R., Jurkiewicz P., Hof M. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH4. Langmuir. 2014;30:6171–6179. PubMed
Jurkiewicz P., Cwiklik L., Hof M. Structure, dynamics, and hydration of POPC/POPS bilayers suspended in NaCl, KCl, and CsCl solutions. Biochim. Biophys. Acta. 2012;1818:609–616. PubMed
Beranova L., Cwiklik L., Jungwirth P. Oxidation changes physical properties of phospholipid bilayers: fluorescence spectroscopy and molecular simulations. Langmuir. 2010;26:6140–6144. PubMed
Pokorna S., Jurkiewicz P., Hof M. Interactions of monovalent salts with cationic lipid bilayers. Faraday Discuss. 2013;160:341–358. PubMed
Först G., Cwiklik L., Hof M. Interactions of β-blockers with model lipid membranes: molecular view of the interaction of acebutolol, oxprenolol, and propranolol with phosphatidylcholine vesicles by time-dependent fluorescence shift and molecular dynamics simulations. Eur. J. Pharm. Biopharm. 2014;87:559–569. PubMed
Sanchez S.A., Tricerri M.A., Gratton E. Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc. Natl. Acad. Sci. USA. 2012;109:7314–7319. PubMed PMC
Stöckl M., Plazzo A.P., Herrmann A. Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy of fluorescent lipid analogues. J. Biol. Chem. 2008;283:30828–30837. PubMed PMC
Heberle F.A., Doktorova M., Feigenson G.W. Hybrid and nonhybrid lipids exert common effects on membrane raft size and morphology. J. Am. Chem. Soc. 2013;135:14932–14935. PubMed
Smith A.K., Freed J.H. Determination of tie-line fields for coexisting lipid phases: an ESR study. J. Phys. Chem. B. 2009;113:3957–3971. PubMed PMC
Heberle F.A., Wu J., Feigenson G.W. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys. J. 2010;99:3309–3318. PubMed PMC
Marushchak D., Gretskaya N., Johansson L.B.-A. Self-aggregation—an intrinsic property of GM1 in lipid bilayers. Mol. Membr. Biol. 2007;24:102–112. PubMed
Fery-Forgues S., Fayet J.-P., Lopez A. Drastic changes in the fluorescence properties of NBD probes with the polarity of the medium: involvement of a TICT state? J. Photochem. Photobiol. Chem. 1993;70:229–243.
Paprica P.A., Baird N.C., Petersen N.O. Theoretical and experimental analyses of optical transitions of nitrobenzoxadiazole (NBD) derivatives. J. Photochem. Photobiol. Chem. 1993;70:51–57.
Haldar S., Chattopadhyay A. Application of NBD-labeled lipids in membrane and cell biology. In: Mély Y., Duportail G., editors. Fluorescent Methods to Study Biological Membranes. Springer; Berlin, Germany: 2013. pp. 37–50.
Chattopadhyay A., London E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry. 1987;26:39–45. PubMed
Huster D., Müller P., Herrmann A. Dynamics of membrane penetration of the fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group attached to an acyl chain of phosphatidylcholine. Biophys. J. 2001;80:822–831. PubMed PMC
Loura L.M.S., Ramalho J.P.P. Location and dynamics of acyl chain NBD-labeled phosphatidylcholine (NBD-PC) in DPPC bilayers. A molecular dynamics and time-resolved fluorescence anisotropy study. Biochim. Biophys. Acta. 2007;1768:467–478. PubMed
Stöckl M.T., Herrmann A. Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy. Biochim. Biophys. Acta. 2010;1798:1444–1456. PubMed
Kaiser H.-J., Lingwood D., Simons K. Order of lipid phases in model and plasma membranes. Proc. Natl. Acad. Sci. USA. 2009;106:16645–16650. PubMed PMC
Sezgin E., Levental I., Schwille P. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta. 2012;1818:1777–1784. PubMed
Patel H., Tscheka C., Heerklotz H. All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochim. Biophys. Acta. 2011;1808:2000–2008. PubMed
Imura Y., Choda N., Matsuzaki K. Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys. J. 2008;95:5757–5765. PubMed PMC
Pokorny A., Yandek L.E., Almeida P.F.F. Temperature and composition dependence of the interaction of δ-lysin with ternary mixtures of sphingomyelin/cholesterol/POPC. Biophys. J. 2006;91:2184–2197. PubMed PMC
Heerklotz H., Seelig J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur. Biophys. J. 2007;36:305–314. PubMed
Gregory S.M., Pokorny A., Almeida P.F.F. Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophys. J. 2009;96:116–131. PubMed PMC
Clayton A.H.A. The polarized AB plot for the frequency-domain analysis and representation of fluorophore rotation and resonance energy homotransfer. J. Microsc. 2008;232:306–312. PubMed
van Rooijen B.D., Claessens M.M.A.E., Subramaniam V. Membrane permeabilization by oligomeric α-synuclein: in search of the mechanism. PLoS ONE. 2010;5:e14292. PubMed PMC
Tamba Y., Yamazaki M. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability. Biochemistry. 2005;44:15823–15833. PubMed
Fuertes G., García-Sáez A.J., Salgado J. Pores formed by Baxα5 relax to a smaller size and keep at equilibrium. Biophys. J. 2010;99:2917–2925. PubMed PMC
Kristensen K., Henriksen J.R., Andresen T.L. Quantification of leakage from large unilamellar lipid vesicles by fluorescence correlation spectroscopy. Biochim. Biophys. Acta. 2014;1838:2994–3002. PubMed
Ladokhin A.S., Wimley W.C., White S.H. Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. Biophys. J. 1995;69:1964–1971. PubMed PMC
Schwarz G., Robert C.H. Pore formation kinetics in membranes, determined from the release of marker molecules out of liposomes or cells. Biophys. J. 1990;58:577–583. PubMed PMC
Schwarz G. Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochim. Biophys. Acta. 1995;1239:51–57. PubMed
Arbuzova A., Schwarz G. Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis. Biochim. Biophys. Acta. 1999;1420:139–152. PubMed
Gregory S.M., Cavenaugh A., Almeida P.F.F. A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys. J. 2008;94:1667–1680. PubMed PMC
Patel H., Tscheka C., Heerklotz H. Characterizing vesicle leakage by fluorescence lifetime measurements. Soft Matter. 2009;5:2849–2851.
Lakowicz J.R. 3rd Ed. Springer Science+Business Media; New York: 2006. Principles of Fluorescence Spectroscopy.
Baumann J., Fayer M.D. Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: effects of spatial geometry on time-resolved observables. J. Chem. Phys. 1986;85:4087.
Shi J., Yang T., Cremer P.S. GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes. J. Am. Chem. Soc. 2007;129:5954–5961. PubMed PMC
Göttfert F., Wurm C.A., Hell S.W. Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys. J. 2013;105:L01–L03. PubMed PMC
Sachl R., Humpolíčková J., Hof M. Limitations of electronic energy transfer in the determination of lipid nanodomain sizes. Biophys. J. 2011;101:L60–L62. PubMed PMC
de Almeida R.F.M., Loura L.M.S., Prieto M. Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J. Mol. Biol. 2005;346:1109–1120. PubMed
Loura L.M.S., Prieto M. Resonance energy transfer in heterogeneous planar and bilayer systems: theory and simulation. J. Phys. Chem. B. 2000;104:6911–6919.
Loura L.M.S., Fedorov A., Prieto M. Fluid-fluid membrane microheterogeneity: a fluorescence resonance energy transfer study. Biophys. J. 2001;80:776–788. PubMed PMC
Engström S., Lindberg M., Johansson L.B.-A. Monte Carlo simulations of electronic energy transfer in three-dimensional systems: a comparison with analytical theories. J. Chem. Phys. 1988;89:204.
Štefl M., Šachl R., Hof M. Dynamics and size of cross-linking-induced lipid nanodomains in model membranes. Biophys. J. 2012;102:2104–2113. PubMed PMC
Sachl R., Amaro M., Hof M. On multivalent receptor activity of GM1 in cholesterol containing membranes. Biochim. Biophys. Acta. 2014 [Epub ahead of print] PubMed
Castro B.M., de Almeida R.F.M., Prieto M. The photophysics of a rhodamine head-labeled phospholipid in the identification and characterization of membrane lipid phases. Chem. Phys. Lipids. 2012;165:311–319. PubMed
Medhage B., Mukhtar E., Molotkovsky J.G. Electronic energy transfer in anisotropic systems. Part 5. Rhodamine-lipid derivatives in model membranes. J. Chem. Soc., Faraday Trans. 1992;88:2845.
Bader A.N., Hoetzl S., Gerritsen H.C. Homo-FRET imaging as a tool to quantify protein and lipid clustering. ChemPhysChem. 2011;12:475–483. PubMed
Runnels L.W., Scarlata S.F. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys. J. 1995;69:1569–1583. PubMed PMC
Berberan-Santos M.N., Valeur B. Fluorescence depolarization by electronic energy transfer in donor–acceptor pairs of like and unlike chromophores. J. Chem. Phys. 1991;95:8048–8055.
Yeow E.K.L., Clayton A.H. Enumeration of oligomerization states of membrane proteins in living cells by homo-FRET spectroscopy and microscopy: theory and application. Biophys. J. 2007;92:3098–3104. PubMed PMC
Melo A.M., Fedorov A., Coutinho A. Exploring homo-FRET to quantify the oligomer stoichiometry of membrane-bound proteins involved in a cooperative partition equilibrium. Phys. Chem. Chem. Phys. 2014;16:18105–18117. PubMed
Sachl R., Boldyrev I., Johansson L.B.-A. Localization of BODIPY-labeled phosphatidylcholines in lipid bilayers. Phys. Chem. Chem. Phys. 2010;12:6027–6034. PubMed
Loura L.M.S., Coutinho A., Prieto M. Structural effects of a basic peptide on the organization of dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylserine membranes: a fluorescent resonance energy transfer study. J. Phys. Chem. B. 2006;110:8130–8141. PubMed
Coutinho A., Loura L.M.S., Prieto M. Pinched multilamellar structure of aggregates of lysozyme and phosphatidylserine-containing membranes revealed by FRET. Biophys. J. 2008;95:4726–4736. PubMed PMC
"Head-to-Toe" Lipid Properties Govern the Binding and Cargo Transfer of High-Density Lipoprotein
Can calmodulin bind to lipids of the cytosolic leaflet of plasma membranes?
Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions
What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on?
Laurdan and Di-4-ANEPPDHQ probe different properties of the membrane
GM1 Ganglioside Inhibits β-Amyloid Oligomerization Induced by Sphingomyelin