Dynamics and size of cross-linking-induced lipid nanodomains in model membranes

. 2012 May 02 ; 102 (9) : 2104-13.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22824274
Odkazy

PubMed 22824274
PubMed Central PMC3341556
DOI 10.1016/j.bpj.2012.03.054
PII: S0006-3495(12)00395-5
Knihovny.cz E-zdroje

Changes of membrane organization upon cross-linking of its components trigger cell signaling response to various exogenous factors. Cross-linking of raft gangliosides GM1 with cholera toxin (CTxB) was shown to cause microscopic phase separation in model membranes, and the CTxB-GM1 complexes forming a minimal lipid raft unit are the subject of ongoing cell membrane research. Yet, those subdiffraction sized rafts have never been described in terms of size and dynamics. By means of two-color z-scan fluorescence correlation spectroscopy, we show that the nanosized domains are formed in model membranes at lower sphingomyelin (Sph) content than needed for the large-scale phase separation and that the CTxB-GM1 complexes are confined in the domains poorly stabilized with Sph. Förster resonance energy transfer together with Monte Carlo modeling of the donor decay response reveal the domain radius of ~8 nm, which increases at higher Sph content. We observed two types of domains behaving differently, which suggests a dual role of the cross-linker: first, local transient condensation of the GM1 molecules compensating for a lack of Sph and second, coalescence of existing nanodomains ending in large-scale phase separation.

Zobrazit více v PubMed

Grakoui A., Bromley S.K., Dustin M.L. The immunological synapse: a molecular machine controlling T cell activation. Science. 1999;285:221–227. PubMed

Schamel W.W.A., Arechaga I., Alarcón B. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J. Exp. Med. 2005;202:493–503. PubMed PMC

Holowka D., Baird B. Fc(epsilon)RI as a paradigm for a lipid raft-dependent receptor in hematopoietic cells. Semin. Immunol. 2001;13:99–105. PubMed

Janes P.W., Ley S.C., Magee A.I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 1999;147:447–461. PubMed PMC

Stefanová I., Horejsí V., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991;254:1016–1019. PubMed

Dietrich C., Volovyk Z.N., Jacobson K. Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA. 2001;98:10642–10647. PubMed PMC

Hammond A.T., Heberle F.A., Feigenson G.W. Cross-linking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc. Natl. Acad. Sci. USA. 2005;102:6320–6325. PubMed PMC

van Zanten T.S., Gómez J., Garcia-Parajo M.F. Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proc. Natl. Acad. Sci. USA. 2010;107:15437–15442. PubMed PMC

Eggeling C., Ringemann C., Hell S.W. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature. 2009;457:1159–1162. PubMed

Lingwood D., Ries J., Simons K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl. Acad. Sci. USA. 2008;105:10005–10010. PubMed PMC

Brown D.A., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 2000;275:17221–17224. PubMed

de Almeida R.F.M., Loura L.M.S., Prieto M. Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J. Mol. Biol. 2005;346:1109–1120. PubMed

Benda A., Benes M., Hof M. How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir. 2003;19:4120–4126.

Wawrezinieck L., Rigneault H., Lenne P.F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 2005;89:4029–4042. PubMed PMC

Akashi K., Miyata H., Kinosita K., Jr. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 1996;71:3242–3250. PubMed PMC

Smith A.K., Freed J.H. Determination of tie-line fields for coexisting lipid phases: an ESR study. J. Phys. Chem. B. 2009;113:3957–3971. PubMed PMC

Farkas E.R., Webb W.W. Precise and millidegree stable temperature control for fluorescence imaging: application to phase transitions in lipid membranes. Rev. Sci. Instrum. 2010;81:093704. PubMed PMC

Chiantia S., Ries J., Schwille P. Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. Chem. Phys. Chem. 2006;7:2409–2418. PubMed

Stefl M., Kułakowska A., Hof M. Simultaneous characterization of lateral lipid and prothrombin diffusion coefficients by z-scan fluorescence correlation spectroscopy. Biophys. J. 2009;97:L01–L03. PubMed PMC

Wenger J., Conchonaud F., Lenne P.F. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys. J. 2007;92:913–919. PubMed PMC

Baumann J., Fayer M.D. Excitation transfer in disordered two-dimensional and anisotropic 3-dimensional systems - effects of spatial geometry on time-resolved observables. J. Chem. Phys. 1986;85:4087–4107.

Digman M.A., Caiolfa V.R., Gratton E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 2008;94:L14–L16. PubMed PMC

Sachl R., Humpolíčková J., Hof M. Limitations of electronic energy transfer in the determination of lipid nanodomain sizes. Biophys. J. 2011;101:L60–L62. PubMed PMC

Engstrom S., Lindberg M., Johansson L.B.A. Monte-Carlo simulations of electronic-energy transfer in 3-dimensional systems - a comparison with analytical theories. J. Chem. Phys. 1988;89:204–213.

Johansson L.B.A., Engstrom S., Lindberg M. Electronic energy transfer in anisotropic systems. 3. Monte Carlo simulations of energy migration in membranes. J. Chem. Phys. 1992;96:3844–3856.

Šachl R., Mikhalyov I., Johansson L.B. Distribution of BODIPY-labelled phosphatidylethanolamines in lipid bilayers exhibiting different curvatures. Phys. Chem. Chem. Phys. 2011;13:11694–11701. PubMed

Dwyer J.D., Bloomfield V.A. Subunit arrangement of cholera toxin in solution and bound to receptor-containing model membranes. Biochemistry. 1982;21:3227–3231. PubMed

Hardt S.L. Rates of diffusion controlled reactions in one, two and three dimensions. Biophys. Chem. 1979;10:239–243. PubMed

Veatch S.L., Keller S.L. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 2003;85:3074–3083. PubMed PMC

Heberle F.A., Wu J., Feigenson G.W. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys. J. 2010;99:3309–3318. PubMed PMC

van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. PubMed PMC

Humpolícková J., Gielen E., Engelborghs Y. Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys. J. 2006;91:L23–L25. PubMed PMC

Tian A., Baumgart T. Sorting of lipids and proteins in membrane curvature gradients. Biophys. J. 2009;96:2676–2688. PubMed PMC

Sorre B., Callan-Jones A., Bassereau P. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc. Natl. Acad. Sci. USA. 2009;106:5622–5626. PubMed PMC

Ewers H., Römer W., Johannes L. GM1 structure determines SV40-induced membrane invagination and infection. Nat. Cell Biol. 2010;12:11–18. PubMed

Palmer Iii A.G., Thompson N.L. Optical spatial intensity profiles for high order autocorrelation in fluorescence spectroscopy. Appl. Opt. 1989;28:1214–1220. PubMed

Bergenstahl B.A., Stenius P. Phase diagrams of dioleoylphosphatidylcholine with formamide, methylformamide, and dimethylformamide. J. Phys. Chem. 1987;91:5944–5948.

Margineanu A., Hotta J.I., Hofkens J. Visualization of membrane rafts using a perylene monoimide derivative and fluorescence lifetime imaging. Biophys. J. 2007;93:2877–2891. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Which Moiety Drives Gangliosides to Form Nanodomains?

. 2023 Jun 29 ; 14 (25) : 5791-5797. [epub] 20230616

Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?

. 2023 Jun 06 ; 122 (11) : 2053-2067. [epub] 20221115

Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems

. 2020 ; 8 () : 284. [epub] 20200428

Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations

. 2020 Apr 21 ; 118 (8) : 1861-1875. [epub] 20200329

Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics

. 2018 Dec 21 ; 10 () : 87-97. [epub] 20181120

Impact of GM1 on Membrane-Mediated Aggregation/Oligomerization of β-Amyloid: Unifying View

. 2017 Sep 19 ; 113 (6) : 1194-1199. [epub] 20170411

Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered

. 2017 Jul 14 ; 7 (1) : 5460. [epub] 20170714

Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state

. 2014 Dec 16 ; 107 (12) : 2751-2760.

Förster resonance energy transfer (FRET) between heterogeneously distributed probes: application to lipid nanodomains and pores

. 2012 Nov 30 ; 13 (12) : 16141-56. [epub] 20121130

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...