Dynamics and size of cross-linking-induced lipid nanodomains in model membranes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22824274
PubMed Central
PMC3341556
DOI
10.1016/j.bpj.2012.03.054
PII: S0006-3495(12)00395-5
Knihovny.cz E-zdroje
- MeSH
- chemické modely * MeSH
- cholerový toxin chemie MeSH
- fluidita membrány * MeSH
- G(M1) gangliosid chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- membránové mikrodomény chemie ultrastruktura MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- reagencia zkříženě vázaná chemie MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholerový toxin MeSH
- G(M1) gangliosid MeSH
- lipidové dvojvrstvy MeSH
- reagencia zkříženě vázaná MeSH
Changes of membrane organization upon cross-linking of its components trigger cell signaling response to various exogenous factors. Cross-linking of raft gangliosides GM1 with cholera toxin (CTxB) was shown to cause microscopic phase separation in model membranes, and the CTxB-GM1 complexes forming a minimal lipid raft unit are the subject of ongoing cell membrane research. Yet, those subdiffraction sized rafts have never been described in terms of size and dynamics. By means of two-color z-scan fluorescence correlation spectroscopy, we show that the nanosized domains are formed in model membranes at lower sphingomyelin (Sph) content than needed for the large-scale phase separation and that the CTxB-GM1 complexes are confined in the domains poorly stabilized with Sph. Förster resonance energy transfer together with Monte Carlo modeling of the donor decay response reveal the domain radius of ~8 nm, which increases at higher Sph content. We observed two types of domains behaving differently, which suggests a dual role of the cross-linker: first, local transient condensation of the GM1 molecules compensating for a lack of Sph and second, coalescence of existing nanodomains ending in large-scale phase separation.
Zobrazit více v PubMed
Grakoui A., Bromley S.K., Dustin M.L. The immunological synapse: a molecular machine controlling T cell activation. Science. 1999;285:221–227. PubMed
Schamel W.W.A., Arechaga I., Alarcón B. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J. Exp. Med. 2005;202:493–503. PubMed PMC
Holowka D., Baird B. Fc(epsilon)RI as a paradigm for a lipid raft-dependent receptor in hematopoietic cells. Semin. Immunol. 2001;13:99–105. PubMed
Janes P.W., Ley S.C., Magee A.I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 1999;147:447–461. PubMed PMC
Stefanová I., Horejsí V., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991;254:1016–1019. PubMed
Dietrich C., Volovyk Z.N., Jacobson K. Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA. 2001;98:10642–10647. PubMed PMC
Hammond A.T., Heberle F.A., Feigenson G.W. Cross-linking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc. Natl. Acad. Sci. USA. 2005;102:6320–6325. PubMed PMC
van Zanten T.S., Gómez J., Garcia-Parajo M.F. Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proc. Natl. Acad. Sci. USA. 2010;107:15437–15442. PubMed PMC
Eggeling C., Ringemann C., Hell S.W. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature. 2009;457:1159–1162. PubMed
Lingwood D., Ries J., Simons K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl. Acad. Sci. USA. 2008;105:10005–10010. PubMed PMC
Brown D.A., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 2000;275:17221–17224. PubMed
de Almeida R.F.M., Loura L.M.S., Prieto M. Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J. Mol. Biol. 2005;346:1109–1120. PubMed
Benda A., Benes M., Hof M. How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir. 2003;19:4120–4126.
Wawrezinieck L., Rigneault H., Lenne P.F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 2005;89:4029–4042. PubMed PMC
Akashi K., Miyata H., Kinosita K., Jr. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 1996;71:3242–3250. PubMed PMC
Smith A.K., Freed J.H. Determination of tie-line fields for coexisting lipid phases: an ESR study. J. Phys. Chem. B. 2009;113:3957–3971. PubMed PMC
Farkas E.R., Webb W.W. Precise and millidegree stable temperature control for fluorescence imaging: application to phase transitions in lipid membranes. Rev. Sci. Instrum. 2010;81:093704. PubMed PMC
Chiantia S., Ries J., Schwille P. Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. Chem. Phys. Chem. 2006;7:2409–2418. PubMed
Stefl M., Kułakowska A., Hof M. Simultaneous characterization of lateral lipid and prothrombin diffusion coefficients by z-scan fluorescence correlation spectroscopy. Biophys. J. 2009;97:L01–L03. PubMed PMC
Wenger J., Conchonaud F., Lenne P.F. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys. J. 2007;92:913–919. PubMed PMC
Baumann J., Fayer M.D. Excitation transfer in disordered two-dimensional and anisotropic 3-dimensional systems - effects of spatial geometry on time-resolved observables. J. Chem. Phys. 1986;85:4087–4107.
Digman M.A., Caiolfa V.R., Gratton E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 2008;94:L14–L16. PubMed PMC
Sachl R., Humpolíčková J., Hof M. Limitations of electronic energy transfer in the determination of lipid nanodomain sizes. Biophys. J. 2011;101:L60–L62. PubMed PMC
Engstrom S., Lindberg M., Johansson L.B.A. Monte-Carlo simulations of electronic-energy transfer in 3-dimensional systems - a comparison with analytical theories. J. Chem. Phys. 1988;89:204–213.
Johansson L.B.A., Engstrom S., Lindberg M. Electronic energy transfer in anisotropic systems. 3. Monte Carlo simulations of energy migration in membranes. J. Chem. Phys. 1992;96:3844–3856.
Šachl R., Mikhalyov I., Johansson L.B. Distribution of BODIPY-labelled phosphatidylethanolamines in lipid bilayers exhibiting different curvatures. Phys. Chem. Chem. Phys. 2011;13:11694–11701. PubMed
Dwyer J.D., Bloomfield V.A. Subunit arrangement of cholera toxin in solution and bound to receptor-containing model membranes. Biochemistry. 1982;21:3227–3231. PubMed
Hardt S.L. Rates of diffusion controlled reactions in one, two and three dimensions. Biophys. Chem. 1979;10:239–243. PubMed
Veatch S.L., Keller S.L. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 2003;85:3074–3083. PubMed PMC
Heberle F.A., Wu J., Feigenson G.W. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys. J. 2010;99:3309–3318. PubMed PMC
van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. PubMed PMC
Humpolícková J., Gielen E., Engelborghs Y. Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys. J. 2006;91:L23–L25. PubMed PMC
Tian A., Baumgart T. Sorting of lipids and proteins in membrane curvature gradients. Biophys. J. 2009;96:2676–2688. PubMed PMC
Sorre B., Callan-Jones A., Bassereau P. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc. Natl. Acad. Sci. USA. 2009;106:5622–5626. PubMed PMC
Ewers H., Römer W., Johannes L. GM1 structure determines SV40-induced membrane invagination and infection. Nat. Cell Biol. 2010;12:11–18. PubMed
Palmer Iii A.G., Thompson N.L. Optical spatial intensity profiles for high order autocorrelation in fluorescence spectroscopy. Appl. Opt. 1989;28:1214–1220. PubMed
Bergenstahl B.A., Stenius P. Phase diagrams of dioleoylphosphatidylcholine with formamide, methylformamide, and dimethylformamide. J. Phys. Chem. 1987;91:5944–5948.
Margineanu A., Hotta J.I., Hofkens J. Visualization of membrane rafts using a perylene monoimide derivative and fluorescence lifetime imaging. Biophys. J. 2007;93:2877–2891. PubMed PMC
Which Moiety Drives Gangliosides to Form Nanodomains?
Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?
Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems
Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations
Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics
Impact of GM1 on Membrane-Mediated Aggregation/Oligomerization of β-Amyloid: Unifying View
Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered
Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state