Biochar and Arbuscular mycorrhizal fungi mediated enhanced drought tolerance in Okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties

. 2021 Oct ; 28 (10) : 5490-5499. [epub] 20210811

Status PubMed-not-MEDLINE Jazyk angličtina Země Saúdská Arábie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34588859
Odkazy

PubMed 34588859
PubMed Central PMC8459127
DOI 10.1016/j.sjbs.2021.08.016
PII: S1319-562X(21)00691-4
Knihovny.cz E-zdroje

Drought is a major abiotic factor limiting plant growth and crop production. There is limited information on effect of interaction between biochar and Arbuscular mycorrhizal fungi (AMF) on okra growth, root morphological traits and soil enzyme activities under drought stress. We studied the influence of biochar and AMF on the growth of Okra (Abelmoschus esculentus) in pot experiments in a net house under drought condition. The results showed that the biochar treatment significantly increased plant growth (the plant height by 14.2%, root dry weight by 30.0%) and root morphological traits (projected area by 22.3% and root diameter by 22.7%) under drought stress. In drought stress, biochar treatment significantly enhanced the chlorophyll 'a' content by 32.7%, the AMF spore number by 22.8% and the microbial biomass as compared to the control. Plant growth parameters such as plant height, shoot and root dry weights significantly increased by AMF alone, by 16.6%, 21.0% and 40.0% respectively under drought condition. Other plant biometrics viz: the total root length, the root volume, the projected area and root diameter improved significantly with the application of AMF alone by 38.3%, 60.0%,16.8% and 15.9% respectively as compared with control. Compared to the control, AMF treatment alone significantly enhanced the total chlorophyll content by 36.6%, the AMF spore number by 39.0% and the microbial biomass by 29.0% under drought condition. However, the highest values of plant growth parameters (plant height, shoot dry weight, root dry weight) and root morphological traits (the total root length, root volume, projected area, root surface area) were observed in the combined treatment of biochar and AMF treatment viz: 31.9%, 34.2%, 60.0% and 68.6%, 66.6%, 45.5%, 41.8%, respectively compared to the control under drought stress. The nitrogen content, total chlorophyll content and microbial biomass increased over un-inoculated control. The soil enzymes; alkaline phosphatase, dehydrogenase and fluorescein diacetate enzyme activities significantly increased in the combined treatment by 55.8%, 68.7% and 69.5%, respectively as compared to the control under drought stress. We conclude that biochar and AMF together is potentially beneficial for cultivation of okra in drought stress conditions.

Zobrazit více v PubMed

Abd El-Aal E.M., Shahen M., Sayed S., Kesba H., Ansari M.J., El-Ashry R.M., Aioub A.A.A., Salma A.S.A., Eldeeb A.M. In vivo and In vitro management of Meloidogyne incognita (Tylenchida: Heteroderidae) using Rhizosphere Bacteria. Pseudomonas spp. and Serratia spp. compared with oxamyl. Saudi J. Biol. Sci. 2021 doi: 10.1016/j.sjbs.2021.06.078. PubMed DOI PMC

Abdel Latef A.A. Influence of arbuscular mycorrhizal fungi and copper on growth, ac- cumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.) Mycorrhiza. 2011;21:495–503. PubMed

Abdel-Salam E., Alatar A., El-Sheikh M.A. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J. Biol. Sci. 2018;25:1772–1780. PubMed PMC

Abdulrahman F.A., Nadir H.A. Effect of water stress on okra yield at vegetative stage. Agric. 2018;30(2):111–116.

Ahmad Mahtab, Rajapaksha Anushka Upamali, Lim Jung Eun, Zhang Ming, Bolan Nanthi, Mohan Dinesh, Vithanage Meththika, Lee Sang Soo, Ok Yong Sik. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19–33. PubMed

Akhtar Saqib Saleem, Li Guitong, Andersen Mathias Neumann, Liu Fulai. Biochar enhances yield and quality of tomato under reduced irrigation. AgriWaterManag. 2014;138:37–44.

Al-Ayed M.S. Growth and some metabolic changes in Cucurbita pepo under water stress and ultra–violet-B radiation. Saudi J. Bio. Sci. 1998;5:45–55.

Alizadeh O., Zare M., Nasr A.H. Evaluation effect of Mycorrhiza inoculate under drought stress condition on grain yield of sorghum (Sorghum bicolor) Adv Environ Biol. 2011;5:2361–2364.

Andrenelli M.C., Maienza A., Genesio L., Miglietta F., Pellegrini S., Vaccari F.P., Vignozzi N. Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil. Agric. Water Manag. 2016;163:190–196.

Anjum S.A., Ashraf U., Tanveer M., Khan I., Hussain S., Zohaib A., Abbas F., Saleem M.F., Wang L. Drought tolerance in three maize cultivars is related to differential osmolyte accumulation, antioxidant defense system, and oxidative damage. Front. Plant Sci. 2017;8:1–12. PubMed PMC

Artiola J.F., Rasmussen C., Freitas R. Effects of a biochar-amended alkaline soil on the growth of romaine lettuce and bermudagrass. Soil Sci. 2012;177:561–570.

Asha A.D., Nivetha N., Krishna G.K., Thakur J.K., Rathi M.S., Manjunatha B.S., Chinnusamy V., Paul S. Amelioration of short-term drought stress during different growth stages in Brassica juncea by rhizobacteria mediated maintenance of ROS homeostasis. Physiol. Plant. 2021 PubMed

Augé Robert M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 2001;11(1):3–42.

Augé, R.M., Toler, H.D., Saxton, A.M., 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. PubMed

Awari V.R., Mate S.N. Effect of drought stress on early seedling growth of chickpea (Cicer arietinum L.) genotypes. Life Sci. Int. Res. J. 2015;2:356–361.

Bamminger Chris, Poll Christian, Sixt Christina, Högy Petra, Wüst Dominik, Kandeler Ellen, Marhan Sven. Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agri. Ecosys. Environ. 2016;233:308–317.

Bashri G., Singh S., Prasad S.M., Ansari M.J., Usmani S., Alfarraj S., Alharbi S.A., Brestic M., Farooq S. Kinetin mitigates Cd-induced damages to growth, photosynthesis and PS II photochemistry of Trigonella seedlings by up-regulating ascorbate-glutathione cycle. PLoS ONE. 2021;16(6):e0249230. doi: 10.1371/journal.pone.0249230. PubMed DOI PMC

Batool A., Taj S., Rashid A., Khalid A., Qadeer S., Saleem A.R., Ghufran M.A. Potential of soil amendments (biochar and gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Front. Plant Sci. 2015;6:1–13. PubMed PMC

Baum, C., El-Tohamy, W., Gruda, N., 2015. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review.

Begum N., Ahanger M.A., Su Y., Lei Y., Mustafa N.S., Ahmad P., Zhang L. Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants. 2019;8(12):579. PubMed PMC

Benhiba L., Fouad M.O., Essahibi A., Ghoulam C., Qaddoury A. Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought. Trees Struct. Funct. 2015;29:1725–1733.

Birhane Emiru, Sterck Frank J., Fetene Masresha, Bongers Frans, Kuyper Thomas W. Arbuscular mycorrhizal fungi en- hance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia. 2012;169(4):895–904. PubMed PMC

Bista D.R., Heckathorn S.A., Jayawardena D.M., Mishra S., Boldt J.K. Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants. 2018;7(2):28. PubMed PMC

Bowles T.M., Jackson L.E., Cavagnaro T.R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Glob. Chang Biol. 2018;24:e171–e182. PubMed

Brundrett Mark C., Tedersoo Leho. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018;220(4):1108–1115. PubMed

Budi S.W., Setyaningsih L. Arbuscular mycorrhizal fungi and biochar improved early growth of neem (Melia azedarach Linn.) seedling under greenhouse conditions. Jurnal Manajemen Hutan Tropika. 2013;19(2):103–110.

Casida L.E., Klein D.A., Santoro Thomas. Soil dehydrogenase activity. Soil Sci. 1964;98(6):371–376.

Cavagnaro T.R., Jackson L.E., Six J., Ferris H., Goyal S., Asami D. Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil. 2006;282:209–225.

Chaturvedi A.K., Surendran U., Gopinath G., Chandran K.M., Anjali N.K., Ct M.F. Elucidation of stage specific physiological sensitivity of okra to drought stress through leaf gas exchange, spectral indices, growth and yield parameters. Agric. Water Manag. 2019;1(222):92–104.

Chitarra W., Pagliarani C., Maserti B., Lumini E., Siciliano I., Cascone P., Schubert A., Gambino G., Balestrini R., Guerrieri E. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 2016;171:1009–1023. PubMed PMC

Chowdhury J.A., Karim M.A., Khaliq Q.A., Ahmed A.U., Khan M.S.A. Effect of drought stress on gas exchange characteristics of four soybean genotypes. Bangladesh J. Agr. Res. 2016;41:195–205.

Christophe S., Jean-Christophe A., Annabelle L., Alain O., Marion P., Anne-Sophie V. In: Abiotic Stress in Plants—Mechanisms and Adaptations. Shanker A., Venkateswarlu B., editors. InTech; Rijeka, Crotia: 2011. Plant N fluxes and modulation by nitrogen, heat and water stresses: A review based on comparison of legumes and non-legume plants; pp. 79–118.

Cramer M.D., Hawkins H.J., Verboom G.A. The importance of nutritional regulation of plant water flux. Oecologia. 2009;161:15–24. PubMed

Dar Z.A., Dar S.A., Khan J.A., Lone A.A., Langyan S., Lone B.A., Kanth R.H., Iqbal A., Rane J., Wani S.H., Alfarraj S., Alharbi S.A., Brestic M., Ansari M.J. Identification for surrogate drought tolerance in maize inbred lines utilizing high-throughput phenomics approach. PLoS ONE. 2021;16(7):e0254318. doi: 10.1371/journal.pone.0254318. PubMed DOI PMC

Dare M.O., Abaidoo R., Fagbola O., Asideu R. Diversity of AMF in soils of yam (Diosocera spp) cropping systems in four agroecologies of Nigeria. Achieves of Agronomy and Soil Science. 2013;59(4):521–531.

de MeloCarvalho M.T., Madari B.E., Bastiaans L., van Oort P.A.J., Heinemann A.B., da Silva M.A.S., Maia A.H.N., Meinke H. Biochar improves fertility of a clay soil in the Brazilian Savannah: short term effects and impact on rice yield. J. Agri. Rural Devel. Trop. Subtrop. 2013;114(2):101–107. http://nbn-resolving.de/urn: nbn:de:hebis:34-2013081343330

Egamberdieva D., Jabborova D. Improvement of cotton production in arid saline soils by beneficial microbes. InCrop Yields: Production, Management Practices and Impact of. Clim. Change. 2013:109–122.

Egamberdieva D., Jabborova D., Berg G. Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil. 2016;405(1):35–45.

Egamberdieva D., Jabborova D. In: Vegetation of Central Asia and Environs. Egamberdieva D., Öztürk M., editors. Springer Nature Switzerland AG; 2018. Medicinal plants of Uzbekistan and their traditional uses; pp. 211–237.

Egamberdieva D., Wirth S., Jabborova D., Räsänen L.A., Liao H. Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J. Plant Interact. 2017;12(1):100–107.

Elkhalifa A.E., Alshammari E., Adnan M., Alcantara J.C., Awadelkareem A.M., Eltoum N.E., Mehmood K., Panda B.P., Ashraf S.A. Okra (Abelmoschus Esculentus) as a Potential Dietary Medicine with Nutraceutical Importance for Sustainable Health Applications. Molecules. 2021;26(3):696. PubMed PMC

Essahibi A., Benhiba L., Babram M.A., Ghoulam C., Qaddoury A. Influence of arbuscular mycorrhizal fungi on the functional mechanisms associated with drought tolerance in carob (Ceratonia siliqua L.) Trees Struct. Funct. 2018;32:87–97.

Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 2009;29:185–212.

Fiaz K., Danish S., Younis U., Malik S.A., Raza Shah M.H., Niaz S. Drought impact on Pb/Cd toxicity remediated by biochar in Brassica campestris. J Soil Sci Plant Nutri. 2014;14:845–854.

Fierer N., Schimel J.P. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 2002;34:777–787.

Ge T.D., Sun N.B., Bai L.P., Tong C.L., Sui F.G. Effects of drought stress on phosphorus and potassium uptake dynamics in summer maize (Zea mays) throughout the growth cycle. Acta Physiol. Plant. 2012;34:2179–2186.

Geng S.M., Yan D.H., Zhang T.X., Weng B.S., Zhang Z.B., Qin T.L. Effects of drought stress on agriculture soil. Nat. Hazards. 2015;75:1997–2011.

Gholamhoseini M., Ghalavand A., Dolatabadian A., Jamshidi E., Khodaei-Joghan A. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric. Water Manag. 2013;117:106–114.

Githinji Leonard. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014;60(4):457–470.

Golldack D., Li C., Mohan H., Probst N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 2014;5:151. PubMed PMC

Gong M., Tang M., Chen H., Zhang Q., Feng X. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New For. 2013;44:399–408.

Haider M.U., Hussain M., Farooq M., Ul-Allah S., Ansari M.J., Alwahibi M.S., Farooq S., Ali S. Zinc biofortification potential of diverse mungbean [Vigna radiata (L.) Wilczek] genotypes under field conditions. PLoS ONE. 2021;16(6):e0253085. doi: 10.1371/journal.pone.0253085. PubMed DOI PMC

Haider Ghulam, Koyro Hans-Werner, Azam Farooqe, Steffens Diedrich, Müller Christoph, Kammann Claudia. Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil. 2015;395(1-2):141–157.

Harun N.S., Jaafar N.M., Sakimin S.Z. The effects of rice husk biochar rate on arbuscular mycorrhizal fungi and growth of soursop (Annona muricata L.) seedlings. Sustainability. 2021;13(4):1817.

Hashem A., Kumar A., Al-Dbass A.M., Alqarawi A.A., Al-Arjani A.B.F., Singh G., Farooq M., Abd-Allah E.F. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J. Biol. Sci. 2019;26:614–624. PubMed PMC

Hazrati S., Tahmasebi-Sarvestani Z., Modarres-Sanavy S.A.M., Mokhtassi-Bidgoli A., Nicola S. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiol. Biochem. 2016;106:141–148. PubMed

Heckathorn S.A., DeLucia E.H., Zielinski R.E. The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses. Physiol. Plant. 1997;101:173–182.

Heckathorn S.A., Giri A., Mishra S., Bista D. In: Climate Change and Plant Abiotic Stress Tolerance. Tuteja N., Gill S.S., editors. Wiley-VCH Verlag Gmb H & Co. KGaA; Weinheim, Germany: 2014. Heat Stress and Roots; pp. 109–136.

Heflish A.A., Hanfy A.E., Ansari M.J., Dessoky E.S., Attia A.O., Elshaer M.M., Gaber M.K., Kordy A., Doma A.S., Abdelkhalek A., Behiry S.I. Green Biosynthesized Silver Nanoparticles using Acalypha wilkesiana Extract control root-knot nematode. Journal of King Saud University –. Science. 2021;33(6):101516. doi: 10.1016/j.jksus.2021.101516. DOI

Hussain M., Farooq S., Hasan W., Ul-allah S., Tanveer M. Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agric. Water Manag. J. 2018;201:152–166.

Hussain S., Khan F., Cao W., Wu L., Geng M. Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front. Plant Sci. 2016;7:439. doi: 10.3389/fpls.2016.00439. PubMed DOI PMC

Ijaz M., Nawaz A., Ul-Allah S., Sher A., Sattar A., Sarwar M., Hussain I., Ur Rehman A., Wahid M.A., Ansari M.J., Hessini K., Farooq S. Optimizing sowing date for peanut genotypes in arid and semi-arid subtropical regions. PLoS ONE. 2021;16(6):e0252393. doi: 10.1371/journal.pone.0252393. PubMed DOI PMC

Jabborova D., Davranov K., Egamberdieva D. In: Medically Important Plant Biomes: Source of Secondary Metabolites. Egamberdieva D., Tiezzi A., editors. Springer Nature Singapore Pte Ltd; 2019. Antibacterial, antifungal, and antiviral properties of medicinal plants; pp. 51–65.

Jabborova D., Wirth S., Kannepalli A., Narimanov A., Desouky S., Davranov K., Sayyed R.Z., Enshasy H., Abd Malek R., Syed A., Bahkali A.H. Co-inoculation of rhizobacteria and biochar application improves growth and nutrients in soybean and enriches soil nutrients and enzymes. Agronomy. 2020;10:1142. doi: 10.3390/agronomy10081142. DOI

Jabborova D., Annapurna K., Fayzullaeva M., Sulaymonov K., Kadirova D., Jabbarov Z., Sayyed R.Z. Isolation and characterization of endophytic bacteria from ginger (Zingiber officinale Rosc.) Ann. Phytomed. 2020;9:116–121.

Jabborova D., Enakiev Y., Sulaymanov K., Kadirova D., Ali A., Annapurna K. Plant growth-promoting bacteria Bacillus subtilis promote growth and physiological parameters of Zingiber officinale Roscoe. Plant Sci. Today. 2021;8:66–71.

Jabborova D., Sayyed R.Z., Azimov A., Jabbarov Z., Matchanov A., Enakiev Y., Baazeem A., Sabagh A.E., Danish S., Datta R. Impact of mineral fertilizers on mineral nutrients in the ginger rhizome and on soil enzymes activities and soil properties. Saudi Journal of Biological Sciences. 2021 PubMed PMC

Jabborova D., Choudhary R., Karunakaran R., Ercisli S., Ahlawat J., Sulaymanov K., Azimov A., Jabbarov Z. The Chemical Element Composition of Turmeric Grown in Soil-Climate Conditions of Tashkent Region, Uzbekistan. Plants. 2021;10(7):1426. PubMed PMC

Jabborova D., Annapurna K., Paul S., Kumar S., Ibrahim M., Elkelish A.A. Beneficial features of biochar and AMF for improving spinach plant growth, root morphological traits, physiological properties and soil enzymatic activities. J. Fungi. 2021;2021(7):571. doi: 10.3390/jof7070571. PubMed DOI PMC

Jabborova D.P., Narimanov A.A., Enakiev Y.I., Davranov K.D. Effect of Bacillus subtilis 1 strain on the growth and development of wheat (Triticum aestivum L.) under saline condition. Bulgar. J. Agric. Sci. 2020;26(4):744–747.

Kammann Claudia Irene, Linsel Sebastian, Gößling Johannes W., Koyro Hans-Werner. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil. 2011;345(1-2):195–210.

Kaya M.D., Okçu G., Atak M., Çıkılı Y., Kolsarıcı Ö. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.) Eur. J. Agron. 2006;24(4):291–295.

Khalofah A., Khan M.I., Arif M., Hussain A., Ullah R., Irfan M., Mahpara S., Shah R.U., Ansari M.J., Kintl A., Brtnicky M., Danish S., Datta R. Deep placement of nitrogen fertilizer improves yield, nitrogen use efficiency and economic returns of transplanted fine rice. PLoS ONE. 2021;16(2):e0247529. doi: 10.1371/journal.pone.0247529. [International, referred & indexed Journal. ISSN- 1932-6203, NAAS Rating-8.77, JrnID-P004, UGC-CARE Listed as Group A Journal] PubMed DOI PMC

Kobraee S., Shamsi K., Rasekhi B. Soybean production under water deficit conditions. Sch. Res. Libr. 2011;2:423–434.

Kubar M.S., Shar A.H., Kubar K.A., Rind N.A., Ullah H., Kalhoro S.A., Wang C., Feng M., Gujar A., Sun H., Yang W., El Enshasy H., Brestic M., Zivcak M., Ondrisik P., Aljuaid B.S., El-Shehawi A.M., Ansari M.J. Optimizing nitrogen supply promotes biomass, physiological characteristics and yield components of soybean (Glycine max L. Merr.) Saudi J. Biol. Sci. 2021 doi: 10.1016/j.sjbs.2021.06.073. PubMed DOI PMC

Kusvuran S. Influence of drought stress on growth, ion accumulation and antioxidative enzymes in okra genotypes. Int. J. Agric. Biol. 2012;14(3)

Lehmann J., Gaunt J., Rondon M. Bio-char sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strateg. Global Change. 2006;11(2):403–427.

Li M., Cai L. Biochar and Arbuscular Mycorrhizal Fungi Play Different Roles in Enabling Maize to Uptake Phosphorus. Sustainability. 2021;13:3244.

Li D., Liu H., Qiao Y., Wang Y., Cai Z., Dong B., Shi C., Liu Y., Li X., Liu M. Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max. L.) under drought stress. Agric. Water Manag. 2013;129:105–112.

Li X.Z., Sarah P. Enzyme activities along a climatic transect in the Judean Desert. Catena. 2003;53:349–363.

Li P., Zhang Y., Wu X., Liu Y. Drought stress impact on leaf proteome variations of faba bean (Vicia faba L.) in the Qinghai-Tibet Plateau of China. 3. Biotech. 2018;8:110. PubMed PMC

Lim T.J., Spokas K.A., Feyereisen G., Novak J.M. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere. 2016;142:136–144. PubMed

Lyu S., Du G., Liu Z., Zhao L., Lyu D. Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiol Plant. 2016;38:1–10.

Maes W.H., Achten W.M., Reubens B., Raes D., Samson R., Muys B. Plant–water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. J. Arid Environ. 2009;73:877–884.

Mak M., Babla M., Xu S., Carrigan A.O., Liu X., Gong Y., Holford P., Chen Z. Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environ. Exp. Bot. 2014;98:1–12.

Maleki A., Naderi A., Naseri R., Fathi A., Bahamin S., Maleki R. Physiological performance of soybean cultivars under drought stress. Bull. Environ. Pharmacol. Life Sci. 2013;2:38–44.

Mamarasulov B., Davranov K., Jabborova D. Phytochemical, pharmacological, and biological properties of Ajuga turkestanica (Rgl.) Brig (Lamiaceae) Annals of Phytomedicine. 2020;9:44–57.

Mariotte P., Robroek B.J.M., Jassey V.E.J., Buttler A. Subordinate plants mitigate drought effects on soil ecosystem processes by stimulating fungi. Funct. Ecol. 2015;29:1578–1586.

McGlashan N., Shah N., Caldecott B., Workman M. High-level techno-economic assessment of negative emissions technologies. Process Saf. Environ. Prot. 2012;90(6):501–510.

Mueller A., Eltigani A., George E. The abundance of arbuscular mycorrhizal fungal species in symbiosis with okra plants is affected by induced drought conditions in a calcareous substrate. Rhizosphere. 2019;1(10)

Mulcahy D.N., Mulcahy D.L., Dietz D. Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. J. Arid Environ. 2013;88:222–225.

Nunes J.L.D., de Souza P.V.D., Marodin G.A.B., Fachinello J.C. Effect of arbuscular mycorrhizal fungi and indole butyric acid interaction on vegetative growth of ‘Aldrighi’ peach rootstock seedlings. Cienc. Agrotecnol. 2010;34:80–86.

Ok Yong Sik, Chang Scott X., Gao Bin, Chung Hyun-Joong. SMART biochar technology-a shifting paradigm towards advanced materials and healthcare research. Environ Technol Innov. 2015;4:206–209.

Olmo Manuel, Alburquerque José Antonio, Barrón Vidal, del Campillo María Carmen, Gallardo Antonio, Fuentes Mariano, Villar Rafael. Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biol Fert Soil. 2014;50(8):1177–1187.

Osakabe Y., Osakabe K., Shinozaki K., Tran L.P. Response of plants to water stress. Front. Plant Sci. 2014;5:1–19. PubMed PMC

Pedranzani H., Rodríguezrivera M., Gutiérrez M., Porcel R., Hause B., Ruizlozano J.M. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza. 2016;26:141–152. PubMed

Pereira J., Chaves M.M., Caldeira M.C., Correia A.V. In: Plant Growth and Climate Change. Morison J.I.L., Morecroft M.D., editors. Blackwell Publishing Ltd.; Oxford, UK: 2006. Water availability and productivity; pp. 118–145.

Pushpavalli R., Zaman-allah M., Turner N.C., Baddam R., Rao M.V., Vadez V. Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Funct. Plant Biol. 2015;42:162–174. PubMed

Qin M., Zhang Q., Pan J., Jiang S., Liu Y., Bahadur A., Peng Z., Yang Y., Feng H. Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass. Eur. J. Soil Sci. 2020;71(1):84–92.

Quiroga G., Erice G., Aroca R., Chaumont F., Ruiz-Lozano J.M. Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front. Plant Sci. 2017;8:1–15. PubMed PMC

Ranawake A., Dahanayaka N., Amarasingha U., Rodrigo W., Rodrigo U. Effect of Water Stress on Growth and Yield of Mung Bean (Vigna radiata L) Trop. Agric. Res. Extens. 2012;14(4) doi: 10.4038/tare.v14i4.4851. DOI

Raza M.A.S., Saleem M.F., Anjum S.A., Khaliq T., Wahid M.A. Foliar application of potassium under water deficit conditions improved the growth and yield of wheat (Triticum aestivum L.) J. Animal Plant Sci. 2012;22:431–437.

Razi S.S., Sen S.P. Amelioration of water stress effects on wetland rice by urea-N plant growth regulations and foliar spray of a diazotrophic Bacteruim klebsiella sp. Original paper. Biol Fertil Soils. 1996

Rizwan M., Ali S., Qayyum M.F., Ibrahim M., Rehman M.Z., Abbas T., Ok Y.S. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ. Sci. Pollut. Res. 2016;23:2230–2248. PubMed

Rouphael Y., Cardarelli M., Schwarz D., Franken P., Colla G. In: Plant Responses to Drought Stress. Aroca R., editor. Springer; Berlin, Germany: 2012. Effects of drought on nutrient uptake and assimilation in vegetable crops; pp. 171–195.

Ruiz-Lozano J.M., Aroca R. In: Arbuscular mycorrhizas: physiology and function. Koltai H., Kapulnik Y., editors. Springer; Netherlands: 2010. Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants; pp. 239–256.

Saccardy K., Pineau B., Roche O., Cornic G. Photo chemical efficiency of photosystem and xanthophyll cycle components in Zea mays leaves exposed to water stress and high light. Photosy. Res. 1998;56:57–66.

Samarah N.H., Haddad N., Alqudah A.M. Yield potential evaluation in chickpea genotypes under late terminal drought in relation to the length of reproductive stage. Ital. J. Agron. 2009;3:111–117.

Sanaullah M., Blagodatskaya E., Chabbi A., Rumpel C., Kuzyakov Y. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Appl. Soil Ecol. 2011;48(1):38–44.

Sanchez-Blanco J., Fernandez T., Morales A., Morte A., Alarcon J.J. Variation in water stress, gas exchange, and growth in Rasmanrins officinalis plants infected with Glamus deserticola under drought conditions.J. Plant Physiol. 2006;161:675–682. PubMed

Sardans J., Peñuelas J. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol. Biochem. 2005;37(3):455–461.

Sardans J., Peñuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol. 2012;160:1741–1761. PubMed PMC

Sawhney V., Singh D.P. Effect of chemical desiccation at the post-anthesis stage on some physiological and biochemical changes in the flag leaf of contrasting wheat genotypes. Field Crops Res. 2002;77:1–6.

Schwanz P., Picon C., Vivin P., Dreyer E., Guehl J., Polle A. Responses of antioxidative systems to drought stress in pendunculate oak and maritime pine as modulated by elevated CO2. Plant Physiol. 1996;110:393–402. PubMed PMC

Shehzad M., Zhou Z., Ditta A., Khan M., Cai X., Xu Y., Maqbool A., Khalofah A., Shaban M., Naeem M., Ansari M.J., Wang K., Liu F., Farooq S. Identification and characterization of genes related to salt stress tolerance within segregation distortion regions of genetic map in F2 Population of upland cotton. PLoS ONE. 2021;16(3):e0247593. doi: 10.1371/journal.pone.0247593. PubMed DOI PMC

Sheteiwy M.S., Ali D.F., Xiong Y.C., Brestic M., Skalicky M., Hamoud Y.A., Ulhassan Z., Shaghaleh H., AbdElgawad H., Farooq M., Sharma A. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol. 2021;21(1):1–21. PubMed PMC

Soltys-Kalina Dorota, Plich Jarosław, Strzelczyk-Żyta Danuta, Śliwka Jadwiga, Marczewski Waldemar. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breeding science. 2016;66(2):328–331. PubMed PMC

Starck Z., Niemyska B., Bogdan J., Tawalbeh R.N.A. Response of tomato plants to chilling stress in association with nutrient or phosphorus starvation. Plant Soil. 2000;226:99–106. doi: 10.1023/A:1026497104077. DOI

Subramanian K.S., Charest C. Acquisition of N by axternal hyphae of an arbuscular mycor- rhizal fungus and its impact on physiological responses in maize under drought-stressed and well watered conditions. Mycorrhiza. 1999;9:69–75.

Tabatabai M.A., Bremner J.M. Use of p-nitrophenol phosphate for the assay of soil phosphatase activity.Soil Biol. Biochem. 1969;1:301–307. doi: 10.1186/1756-0500-7-221. DOI

Usman Adel Rabie A., Al-Wabel Mohammad I., Ok Yong S., Al-Harbi Abdulaziz, Wahb-Allah Mahmoud, El-Naggar Ahmed Hamdy, Ahmad Mahtab, Al-Faraj Abdulelah, Al-Omran Abdulrasoul. Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere. 2016;26(1):27–38.

Vaccari F.P, Maienza A., Miglietta F., Baronti S., Di Lonardo S., Giagnoni L., Lagomarsino A., Pozzi A., Pusceddu E., Ranieri R., Valboa G., Genesio L. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agri Ecosys Environ. 2015;207:163–170.

Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987;19(6):703–707.

Wang W., Chen Q., Hussain S., Mei J., Dong H., Peng S., Huang J., Cui K., Nie L. Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci. Rep. 2016;6(1) doi: 10.1038/srep19637. PubMed DOI PMC

Wang C., Li X., Zhou J., Wang G., Dong Y. Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun. Soil Sci. Plant Anal. 2008;39:499–509.

Waraich E.A., Rashid A., Ashraf M.Y. Role of mineral nutrition in alleviation of drought stress in plants. Aust. J. Crop Sci. 2011;5(764–777):20.

Xiao Qian, Zhu Li-xia, Shen Yu-fang, Li Shi-qing. Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Res. 2016;196:284–293.

Yaseen S., Amjad S.F., Mansoora N., Kausar S., Shahid H., Alamri S.A.M., Alrumman S.A., Eid E.M., Ansari M.J., Danish S., Datta R. Supplemental Effects of Biochar and Foliar Application of Ascorbic Acid on Physio-Biochemical Attributes of Barley (Hordeum vulgare L.) under Cadmium-Contaminated Soil. Sustainability. 2021;13(16):9126. doi: 10.3390/su13169128. DOI

Zhang Y.J., Xie Z.K., Wang Y.J., Su P.X., An L.P., Gao H. Effect of water stress on leaf photosynthesis, chlorophyll content, and growth of oriental lily. Russ. J. Plant Physiol. 2011;58:844–850.

Zhao, R., Guo, W., Bi, N., Guo, J., Wang, L., Zhao, J., et al., 2015. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L). grown in two types of coal mine spoils under drought stress.

Zhao R., Guo W., Bi N., Guo J., Wang L., Zhao J., Zhang J. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl. Soil Ecol. 2015;88:41–49.

Zhao Tong-Jin, Sun Shan, Liu Yang, Liu Jing-Mei, Liu Qiang, Yan Yong-Bin, Zhou Hai-Meng. Regulating the drought- responsive element (DRE)- mediated signaling pathway by synergic functions of transactive and transinactive DRE binding factors in Brassica napus. The Journal of Biological Chemistry. 2006;281(16):10752–10759. PubMed

Zhou S., Duursma R.A., Medlyn B.E., Kelly J.W., Prentice I.C. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric. For. Meteorol. 2013;182:204–214.

Zhou S., Medlyn B., Sabate S., Sperlich D., Prentice I.C. Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates. Tree Physiol. 2014;34:1035–1046. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...