Förster resonance energy transfer (FRET) between heterogeneously distributed probes: application to lipid nanodomains and pores
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23203189
PubMed Central
PMC3546683
DOI
10.3390/ijms131216141
PII: ijms131216141
Knihovny.cz E-zdroje
- MeSH
- fluorescenční barviva chemie farmakokinetika MeSH
- iontové kanály chemie metabolismus MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- membránové mikrodomény chemie metabolismus MeSH
- metoda Monte Carlo MeSH
- rezonanční přenos fluorescenční energie * MeSH
- teoretické modely MeSH
- tkáňová distribuce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorescenční barviva MeSH
- iontové kanály MeSH
- lipidové dvojvrstvy MeSH
The formation of membrane heterogeneities, e.g., lipid domains and pores, leads to a redistribution of donor (D) and acceptor (A) molecules according to their affinity to the structures formed and the remaining bilayer. If such changes sufficiently influence the Förster resonance energy transfer (FRET) efficiency, these changes can be further analyzed in terms of nanodomain/pore size. This paper is a continuation of previous work on this theme. In particular, it is demonstrated how FRET experiments should be planned and how data should be analyzed in order to achieve the best possible resolution. The limiting resolution of domains and pores are discussed simultaneously, in order to enable direct comparison. It appears that choice of suitable donor/acceptor pairs is the most crucial step in the design of experiments. For instance, it is recommended to use DA pairs, which exhibit an increased affinity to pores (i.e., partition coefficients K(D,A) > 10) for the determination of pore sizes with radii comparable to the Förster radius R(0). On the other hand, donors and acceptors exhibiting a high affinity to different phases are better suited for the determination of domain sizes. The experimental setup where donors and acceptors are excluded from the domains/pores should be avoided.
Zobrazit více v PubMed
Brown D.A. Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology. 2006;21:430–439. PubMed
Brogden K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005;3:238–250. PubMed
Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572. PubMed
Almeida P.F.F. Thermodynamics of lipid interactions in complex bilayers. Biochim. Biophys. Acta Biomembr. 2009;1788:72–85. PubMed
Garcia-Saez A.J., Chiantia S., Schwille P. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 2007;282:33537–33544. PubMed
Lundquist A., Wessman P., Rennie A.R., Edwards K. Melittin-lipid interaction: A comparative study using liposomes, micelles and bilayer disks. Biochim. Biophys. Acta Biomembr. 2008;1778:2210–2216. PubMed
Štefl M., Šachl R., Humpolíčková J., Cebecauer M., Macháň R., Johansson L.B.-Å., Hof M. Dynamics and size of crosslinking-induced lipid nanodomains in model membranes. Biophys. J. 2012;102:2104–2113. PubMed PMC
Eggeling C., Ringemann C., Medda R., Schwarzmann G., Sandhoff K., Polyakova S., Belov V.N., Hein B., von Middendorff C., Schonle A., et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature. 2009;457:U1159–U1121. PubMed
Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. Springer; Singapore: p. 2006.
Valeur B. Molecular Fluorescence Principles and Applications. Wiley-VCH Verlag GmbH; Weinheim, Germany: p. 2001.
Chiantia S., Ries J., Kahya N., Schwille P. Combined afm and two-focus sfcs study of raft-exhibiting model membranes. ChemPhysChem. 2006;7:2409–2418. PubMed
De Almeida R.F.M., Loura L.M.S., Fedorov A., Prieto M. Lipid rafts have different sizes depending on membrane composition: A time-resolved fluorescence resonance energy transfer study. J. Mol. Biol. 2005;346:1109–1120. PubMed
Šachl R., Humpolíčková J., Štefl M., Johansson L.B.-Å., Hof M. Limitations of energy tranfer in the determination of lipid nanodomain sizes. Biophys. J. 2011;101:L60–L62. PubMed PMC
Baumann J., Fayer M.D. Excitation transfer in dissordered two-dimensional and anisotropic 3-dimensional systems—effects of spatial geometry on time-resolved observables. J. Chem. Phys. 1986;85:4087–4107.
Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state nmr spectroscopy. Biochim. Biophys. Acta Biomembr. 1999;1462:157–183. PubMed
Matsuzaki K., Sugishita K., Ishibe N., Ueha M., Nakata S., Miyajima K., Epand R.M. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry. 1998;37:11856–11863. PubMed
Ludtke S.J., He K., Heller W.T., Harroun T.A., Yang L., Huang H.W. Membrane pores induced by magainin. Biochemistry. 1996;35:13723–13728. PubMed
He K., Ludtke S.J., Huang H.W., Worcester D.L. Antimicrobial peptide pores in membranes detected by neutron inplane scattering. Biochemistry. 1995;34:15614–15618. PubMed
Yang L., Harroun T.A., Weiss T.M., Ding L., Huang H.W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 2001;81:1475–1485. PubMed PMC
Schlesinger P.H., Saito M. The bax pore in liposomes, biophysics. Cell Death Differ. 2006;13:1403–1408. PubMed
Qian S., Wang W.C., Yang L., Huang H.W. Structure of transmembrane pore induced by bax-derived peptide: Evidence for lipidic pores. Proc. Natl. Acad. Sci. USA. 2008;105:17379–17383. PubMed PMC
Song L.Z., Hobaugh M.R., Shustak C., Cheley S., Bayley H., Gouaux J.E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science. 1996;274:1859–1866. PubMed
Baumgart T., Hunt G., Farkas E.R., Webb W.W., Feigenson G.W. Fluorescence probe partitioning between l-O/l-D phases in lipid membranes. Biochim. Biophys. Acta Biomembr. 2007;1768:2182–2194. PubMed PMC
Risselada H.J., Marrink S.J. The molecular face of lipid rafts in model membranes. Proc. Natl. Acad. Sci. USA. 2008;105:17367–17372. PubMed PMC
Blumen A., Manz J. Concentration and time-dependance of the energy-transfer to randomly distributed acceptors. J. Chem. Phys. 1979;71:4694–4702.
Loura L.M.S., Fernandes F., Prieto M. Membrane microheterogeneity: Forster resonance energy transfer characterization of lateral membrane domains. Eur. Biophys. J. Biophys. Lett. 2010;39:589–607. PubMed
Loura L.M.S., Fedorov A., Prieto M. Fluid-fluid membrane microheterogeneity: A fluorescence resonance energy transfer study. Biophys. J. 2001;80:776–788. PubMed PMC
Engström S., Lindberg M., Johansson L.B.-Å. Monte-carlo simulations of electronic-energy transfer in 3-dimensional systems—a comparison with analytical theories. J. Chem. Phys. 1988;89:204–213.
Johansson L.B.-Å., Engström S., Lindberg M. Electronic-energy transfer in anisotropic systems. 3. Monte-carlo simulations of energy migration in membranes. J. Chem. Phys. 1992;96:3844–3856.
Which Moiety Drives Gangliosides to Form Nanodomains?
Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?
The impact of the glycan headgroup on the nanoscopic segregation of gangliosides
Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems
Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered