Distance-based paper microfluidic devices for rapid visual quantification of heavy metals in herbal supplements and cosmetics
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39534052
PubMed Central
PMC11552691
DOI
10.1039/d4ra05358c
PII: d4ra05358c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Distance-based detection (DbD) on paper-based microfluidic analytical devices (μPADs) has emerged as a promising, cost-effective, simple, and instrumentation-free assay method. Broadening the applicability of a new way of immobilization of reagent for DbD on μPADs (DμPADs) is presented, employing an ion exchange (IE) interaction of an anionic metallochromic reagent, 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol (5-Br-PAPS), on the anion-exchange filter paper. The IE DμPADs demonstrate superiority over standard cellulose filter paper in terms of the degree of reagent immobilization, detection sensitivity, and clear detection endpoints due to the strong retention of 5-Br-PAPS. The study investigated various parameters influencing DbD, including 5-Br-PAPS concentrations (0.25-1 mM), buffer types (acetic acid-Tris, MES), buffer concentrations (20-500 mM), and auxiliary complexing agents (acetic, formic, and glycolic acids). Subsequently, the performance of 17 metals (Ag+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Hg2+, La2+, Mn2+, Ni2+, Pb2+, Ti2+, Zn2+, Al3+, As3+, Fe3+, and V4+) was evaluated, with color formation observed for 12 metals. Additionally, the paper surface was examined using SEM and SEM-EDX to verify the suitability of certain areas in the detection channel for reagent immobilization and metal binding. This method demonstrates quantitation limits of metals in the low μg mL-1 range, showing great potential for the rapid screening of toxic metals commonly found in herbal supplements and cosmetics regulated by the Food and Drug Administration (FDA). Thus, it holds promise for enhancing safety and regulatory compliance in product quality assessment. Furthermore, this method offers a cost-effective, environmentally sustainable, and user-friendly approach for the rapid visual quantification of heavy metals for in-field analysis, eliminating the need for complex instrumentation.
Zobrazit více v PubMed
Briffa J. Sinagra E. Blundell R. Heliyon. 2020;6:e04691. doi: 10.1016/j.heliyon.2020.e04691. PubMed DOI PMC
Tchounwou P. B. Yedjou C. G. Patlolla A. K. Sutton D. J. Exper. Suppl. 2012;101:133–164. doi: 10.1007/978-3-7643-8340-4_6. PubMed DOI PMC
United States Pharmacopeial Convention, <233> Elemental Impurities – Procedures, in United States Pharmacopeia and National Formulary, United States Pharmacopeial Convention, Rockville, MD
U.S. EPA, Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 4.4, Cincinnati, OH, 1994, https://www.epa.gov/sites/default/files/2015-06/documents/epa-200.7.pdf
ISO 21392:2021-Measurement of traces of heavy metals in cosmetic finished products using ICP/MS technique, https://www.iso.org/standard/70854.html
Lin Y. Gritsenko D. Feng S. Teh Y. C. Lu X. Xu J. Biosens. Bioelectron. 2016;83:256–266. doi: 10.1016/j.bios.2016.04.061. PubMed DOI
Nuchtavorn N. Macka M. Anal. Chim. Acta. 2016;919:70–77. doi: 10.1016/j.aca.2016.03.018. PubMed DOI
Manmana Y. Chutvirasakul B. Suntornsuk L. Nuchtavorn N. Pharm. Sci. Asia. 2019;46:270–277. doi: 10.29090/psa.2019.04.018.0037. DOI
Khunkitchai N. Nuchtavorn N. Rypar T. Vlcnovska M. Nejdl L. Vaculovicova M. Macka M. Chem. Eng. J. 2022;428:132508. doi: 10.1016/j.cej.2021.132508. DOI
Gong X. Shao J. Guo S. Pan J. Fan X. J. Pharm. Anal. 2021;11:603–610. doi: 10.1016/j.jpha.2020.09.004. PubMed DOI PMC
Nuchtavorn N. Leanpolchareanchai J. Suntornsuk L. Macka M. Anal. Chim. Acta. 2020;1098:86–93. doi: 10.1016/j.aca.2019.11.031. PubMed DOI
Vodova M. Nejdl L. Pavelicova K. Zemankova K. Rrypar T. Skopalova Sterbova D. Bezdekova J. Nuchtavorn N. Macka M. Adam V. Vaculovicova M. Food Chem. 2022;380:132141. doi: 10.1016/j.foodchem.2022.132141. PubMed DOI
Shen L. L. Zhang G. R. Etzold B. J. M. ChemElectroChem. 2020;7:10–30. doi: 10.1002/celc.201901495. PubMed DOI PMC
Zhang Y. Qian L. Yu Z. Yu Y. Feng C. Niu L. Zhang J. Microchem. J. 2024;196:109652. doi: 10.1016/j.microc.2023.109652. DOI
Al-Jaf S. H. Mohammed Ameen S. S. Omer K. M. Lab Chip. 2024;24:2306–2316. doi: 10.1039/D3LC01045G. PubMed DOI
Mesquita R. B. R. Klima C. Martínez-Pérez-Cejuela H. Monforte A. R. Ferreira A. C. S. Rangel A. O. S. S. Microchem. J. 2023;188:108462. doi: 10.1016/j.microc.2023.108462. DOI
Aryal P. Brack E. Alexander T. Henry C. S. Anal. Chem. 2023;95:5820–5827. doi: 10.1021/acs.analchem.3c00378. PubMed DOI
Jin B. Li Z. Zhao G. Ji J. Chen J. Yang Y. Xu R. Anal. Chim. Acta. 2022;1192:339388. doi: 10.1016/j.aca.2021.339388. PubMed DOI
Silva R. Ahamed A. Cheong Y. H. Zhao K. Ding R. Lisak G. Anal. Chim. Acta. 2022;1197:339495. doi: 10.1016/j.aca.2022.339495. PubMed DOI
Abdollahiyan P. Hasanzadeh M. Seidi F. Pashazadeh-Panahi P. J. Environ. Chem. Eng. 2021;9:106197. doi: 10.1016/j.jece.2021.106197. DOI
Miao Q. Qi J. Li Y. Fan X. Deng D. Yan X. He H. Luo L. Analyst. 2021;146:6297–6305. doi: 10.1039/D1AN01268A. PubMed DOI
Zhu L. Lv X. Li Z. Shi H. Zhang Y. Zhang L. Yu J. Biosens. Bioelectron. 2021;192:113524. doi: 10.1016/j.bios.2021.113524. PubMed DOI
Kamnoet P. Aeungmaitrepirom W. Menger R. F. Henry C. S. Analyst. 2021;146:2229–2239. doi: 10.1039/D0AN02200D. PubMed DOI PMC
Wang M. Song Z. Jiang Y. Zhang X. Wang L. Zhao H. Cui Y. Gu F. Wang Y. Zheng G. Anal. Bioanal. Chem. 2021;413:3299–3313. doi: 10.1007/s00216-021-03269-9. PubMed DOI
Zhang Y. Li Y.-L. Cui S.-H. Wen C.-Y. Li P. Yu J.-F. Tang S.-M. Zeng J.-B. J. Anal. Test. 2021;5:11–18. doi: 10.1007/s41664-021-00157-0. DOI
Zhou J. Li B. Qi A. Shi Y. Qi J. Xu H. Chen L. Sens. Actuators, B. 2020;305:127462. doi: 10.1016/j.snb.2019.127462. DOI
Xiong X. Zhang J. Wang Z. Liu C. Xiao W. Han J. Shi Q. BioChip J. 2020;14:429–437. doi: 10.1007/s13206-020-4407-9. PubMed DOI PMC
Guan Y. Sun B. Microsyst. Nanoeng. 2020;6:14. doi: 10.1038/s41378-019-0123-9. PubMed DOI PMC
Devadhasan J. P. Kim J. Sens. Actuators, B. 2018;273:18–24. doi: 10.1016/j.snb.2018.06.005. DOI
Hofstetter J. C. Wydallis J. B. Neymark G. Reilly Iii T. H. Harrington J. Henry C. S. Analyst. 2018;143:3085–3090. doi: 10.1039/C8AN00632F. PubMed DOI
Cai L. Fang Y. Mo Y. Huang Y. Xu C. Zhang Z. Wang M. AIP Adv. 2017;7:085214. doi: 10.1063/1.4999784. DOI
Cate D. M. Noblitt S. D. Volckens J. Henry C. S. Lab Chip. 2015;15:2808–2818. doi: 10.1039/C5LC00364D. PubMed DOI PMC
Chutvirasakul B. Nuchtavorn N. Macka M. Suntornsuk L. Anal. Bioanal. Chem. 2020;412:3221–3230. doi: 10.1007/s00216-020-02583-y. PubMed DOI
Chutvirasakul B. Nuchtavorn N. Suntornsuk L. Zeng Y. Electrophoresis. 2020;41:311–318. doi: 10.1002/elps.201900323. PubMed DOI
Nuchtavorn N. Rypar T. Nejdl L. Vaculovicova M. Macka M. Trends Anal. Chem. 2022;150:116581. doi: 10.1016/j.trac.2022.116581. DOI
Rahbar M. Wheeler A. R. Paull B. Macka M. Anal. Chem. 2019;91:8756–8761. doi: 10.1021/acs.analchem.9b01288. PubMed DOI
Pena-Pereira F. Wojnowski W. Tobiszewski M. Anal. Chem. 2020;92:10076–10082. doi: 10.1021/acs.analchem.0c01887. PubMed DOI PMC
Millero F. J. Feistel R. Wright D. G. McDougall T. J. Deep Sea Res., Part I. 2008;55:50–72. doi: 10.1016/j.dsr.2007.10.001. DOI
Bendre A. Bhat M. P. Lee K.-H. Altalhi T. Alruqi M. A. Kurkuri M. Mater. Today Adv. 2022;13:100205. doi: 10.1016/j.mtadv.2022.100205. DOI
AOAC, Guidelines for Dietary Supplements and Botanicals, 2019
Kuang Lu Cheng K. U., Imamura T., CRC Handbook of Organic Analytical Reagents, CRC Press, 2019
Yamada K. Henares T. G. Suzuki K. Citterio D. ACS Appl. Mater. Interfaces. 2015;7:24864–24875. doi: 10.1021/acsami.5b08124. PubMed DOI
Horiguchi D. Saito M. Noda K. Kina K. y. Anal. Sci. 1985;1:461–465. doi: 10.2116/analsci.1.461. DOI
Motomizu S. Oshima M. Kuwabara M. Obata Y. Analyst. 1994;119:1787–1792. doi: 10.1039/AN9941901787. DOI
Deng G. Collins G. E. J. Chromatogr. A. 2003;989:311–316. doi: 10.1016/S0021-9673(03)00080-3. PubMed DOI
Brown P. L. and Ekberg C., Hydrolysis of Metal Ions—Theory, Wiley-VCH Verlag GmbH & Co. KGaA, 2016
Skoog D. A., West D. M., Crouch S. R. and Holler F. J., Fundamentals of Analytical Chemistry, Brooks/Cole, Cengage Learning, 2014
Raj A. Rego R. M. Ajeya K. V. Jung H.-Y. Altalhi T. Neelgund G. M. Kigga M. Kurkuri M. D. Chem. Eng. J. 2023;453:139757. doi: 10.1016/j.cej.2022.139757. DOI
Rypar T. Adam V. Vaculovicova M. Macka M. Sens. Actuators, B. 2021;341:129999. doi: 10.1016/j.snb.2021.129999. DOI