Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32411705
PubMed Central
PMC7198703
DOI
10.3389/fcell.2020.00284
Knihovny.cz E-zdroje
- Klíčová slova
- biomembranes, domain registration, interleaflet coupling, membrane asymmetry, nanodomains, phase separation, plasma membranes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The plasma membrane is a complex system, consisting of two layers of lipids and proteins compartmentalized into small structures called nanodomains. Despite the asymmetric composition of both leaflets, coupling between the layers is surprisingly strong. This can be evidenced, for example, by recent experimental studies performed on phospholipid giant unilamellar vesicles showing that nanodomains formed in the outer layer are perfectly registered with those in the inner leaflet. Similarly, microscopic phase separation in one leaflet can induce phase separation in the opposing leaflet that would otherwise be homogeneous. In this review, we summarize the current theoretical and experimental knowledge that led to the current view that domains are - irrespective of their size - commonly registered across the bilayer. Mechanisms inducing registration of nanodomains suggested by theory and calculations are discussed. Furthermore, domain coupling is evidenced by experimental studies based on the sparse number of methods that can resolve registered from independent nanodomains. Finally, implications that those findings using model membrane studies might have for cellular membranes are discussed.
Zobrazit více v PubMed
Akimov S. A., Hlaponin E. A., Bashkirov P. V., Boldyrev I. A., Mikhalyov I. I., Telford W. G., et al. (2009). Ganglioside GM1 increases line tension at raft boundary in model membranes. Biochem. Suppl. Ser. A Membr. Cell Biol. 3 216–222. 10.1134/S1990747809020159 DOI
Akimov S. A., Kuzmin P. I., Zimmerberg J., Cohen F. S. (2007). Lateral tension increases the line tension between two domains in a lipid bilayer membrane. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys. 75:011919. 10.1103/PhysRevE.75.011919 PubMed DOI
Amaro M., Šachl R., Aydogan G., Mikhalyov I. I., Vácha R., Hof M. (2016). GM1 ganglioside inhibits β-amyloid oligomerization induced by sphingomyelin. Angew. Chem. Int. Ed. 55 9411–9415. 10.1002/anie.201603178 PubMed DOI PMC
Anderson R. G. W., Jacobson K. (2002). Cell biology: a role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296 1821–1825. 10.1126/science.1068886 PubMed DOI
Ayuyan A. G., Cohen F. S. (2008). Raft composition at physiological temperature and pH in the absence of detergents. Biophys. J. 94 2654–2666. 10.1529/BIOPHYSJ.107.118596 PubMed DOI PMC
Bandara A., Panahi A., Pantelopulos G. A., Nagai T., Straub J. E. (2019). Exploring the impact of proteins on the line tension of a phase-separating ternary lipid mixture. J. Chem. Phys. 150:204702. 10.1063/1.5091450 PubMed DOI PMC
Baumgart T., Hess S. T., Webb W. W. (2003). Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 821–824. 10.1038/nature02013 PubMed DOI
Bayerl T. M., Bloom M. (1990). Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance. Biophys. J. 58 357–362. 10.1016/s0006-3495(90)82382-1 PubMed DOI PMC
Benda A., Fagul’ová V., Deyneka A., Enderlein J., Hof M. (2006). Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: new perspectives in supported phospholipid bilayer research. Langmuir 22 9580–9585. 10.1021/la061573d PubMed DOI
Bennun S. V., Longo M. L., Faller R. (2007). Molecular-scale structure in fluid-gel patterned bilayers: stability of interfaces and transmembrane distribution. Langmuir 23 12465–12468. 10.1021/la701370t PubMed DOI
Bergan J., Dyve Lingelem A. B., Simm R., Skotland T., Sandvig K. (2012). Shiga toxins. Toxicon 60 1085–1107. 10.1016/j.toxicon.2012.07.016 PubMed DOI
Blosser M. C., Honerkamp-Smith A. R., Han T., Haataja M., Keller S. L. (2015). Transbilayer colocalization of lipid domains explained via measurement of strong coupling parameters. Biophys. J. 109 2317–2327. 10.1016/j.bpj.2015.10.031 PubMed DOI PMC
Bossa G. V., Gunderson S., Downing R., May S. (2019). Role of transmembrane proteins for phase separation and domain registration in asymmetric lipid bilayers. Biomolecules 9:303. 10.3390/biom9080303 PubMed DOI PMC
Bretscher M. S. (1972). Asymmetrical lipid bilayer structure for biological membranes. Nat. New Biol. 236 11–12. 10.1038/newbio236011a0 PubMed DOI
Capponi S., Freites J. A., Tobias D. J., White S. H. (2016). Interleaflet mixing and coupling in liquid-disordered phospholipid bilayers. Biochim. Biophys. Acta Biomembr. 1858 354–362. 10.1016/j.bbamem.2015.11.024 PubMed DOI PMC
Cebecauer M., Amaro M., Jurkiewicz P., Sarmento M. J., Šachl R., Cwiklik L., et al. (2018). Membrane lipid nanodomains. Chem. Rev. 118 11259–11297. 10.1021/acs.chemrev.8b00322 PubMed DOI
Chiantia S., London E. (2012). Acyl Chain length and saturation modulate interleaflet coupling in asymmetric bilayers: effects on dynamics and structural order. Biophys. J. 103 2311–2319. 10.1016/j.bpj.2012.10.033 PubMed DOI PMC
Chiu S. W., Jakobsson E., Subramaniam S., Scott H. L. (1999). Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. Biophys. J. 77 2462–2469. 10.1016/s0006-3495(99)77082-7 PubMed DOI PMC
Collins M. D. (2008). Interleaflet coupling mechanisms in bilayers of lipids and cholesterol. Biophys. J. 94 L32–L34. 10.1529/biophysj.107.124362 PubMed DOI PMC
Collins M. D., Keller S. L. (2008). Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc. Natl. Acad. Sci. U.S.A. 105 124–128. 10.1073/pnas.0702970105 PubMed DOI PMC
Cornell C. E., Skinkle A. D., He S., Levental I., Levental K. R., Keller S. L. (2018). Tuning length scales of small domains in cell-derived membranes and synthetic model membranes. Biophys. J. 115 690–701. 10.1016/j.bpj.2018.06.027 PubMed DOI PMC
Crane J. M., Kiessling V., Tamm L. K. (2005). Measuring lipid asymmetry in planar supported bilayers by fluorescence interference contrast microscopy. Langmuir 21 1377–1388. 10.1021/la047654w PubMed DOI
Czeslik C., Erbes J., Winter R. (1997). Lateral organization of binary-lipid membranes—Evidence for fractal-like behaviour in the gel-fluid coexistence region. Europhys. Lett. 37 577–582. 10.1209/epl/i1997-00193-6 DOI
Devaux P. F. (1991). Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30 1163–1173. 10.1021/bi00219a001 PubMed DOI
Devaux P. F., Morris R. (2004). Transmembrane asymmetry and lateral domains in biological membranes. Traffic 5 241–246. 10.1111/j.1600-0854.2004.00170.x PubMed DOI
Deverall M. A., Garg S., Lüdtke K., Jordan R., Rühe J., Naumann C. A. (2008). Transbilayer coupling of obstructed lipid diffusion in polymer-tethered phospholipid bilayers. Soft Matter 4 1899–1908. 10.1039/b800801a DOI
Dietrich C., Bagatolli L. A., Volovyk Z. N., Thompson N. L., Levi M., Jacobson K., et al. (2001). Lipid rafts reconstituted in model membranes. Biophys. J. 80 1417–1428. 10.1016/s0006-3495(01)76114-0 PubMed DOI PMC
Dinic J., Ashrafzadeh P., Parmryd I. (2013). Actin filaments attachment at the plasma membrane in live cells cause the formation of ordered lipid domains. Biochim. Biophys. Acta Biomembr. 1828 1102–1111. 10.1016/j.bbamem.2012.12.004 PubMed DOI
Eggeling C., Ringemann C., Medda R., Schwarzmann G., Sandhoff K., Polyakova S., et al. (2009). Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457 1159–1162. 10.1038/nature07596 PubMed DOI
Eicher B., Marquardt D., Heberle F. A., Letofsky-Papst I., Rechberger G. N., Appavou M.-S., et al. (2018). Intrinsic curvature-mediated transbilayer coupling in asymmetric lipid vesicles. Biophys. J. 114 146–157. 10.1016/j.bpj.2017.11.009 PubMed DOI PMC
Enkavi G., Javanainen M., Kulig W., Róg T., Vattulainen I. (2019). Multiscale simulations of biological membranes: the challenge to understand biological phenomena in a living substance. Chem. Rev. 119 5607–5774. 10.1021/acs.chemrev.8b00538 PubMed DOI PMC
Esposito C., Tian A., Melamed S., Johnson C., Tee S. Y., Baumgart T. (2007). Flicker spectroscopy of thermal lipid bilayer domain boundary fluctuations. Biophys. J. 93 3169–3181. 10.1529/biophysj.107.111922 PubMed DOI PMC
Evans E., Heinrich V., Ludwig F., Rawicz W. (2003). Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85 2342–2350. 10.1016/S0006-3495(03)74658-X PubMed DOI PMC
Ewers H., Römer W., Smith A. E., Bacia K., Dmitrieff S., Chai W., et al. (2010). GM1 structure determines SV40-induced membrane invagination and infection. Nat. Cell Biol. 12 11–18. 10.1038/ncb1999 PubMed DOI
Fischer T., Jelger Risselada H., Vink R. L. C. (2012). Membrane lateral structure: the influence of immobilized particles on domain size. Phys. Chem. Chem. Phys. 14 14500–14508. 10.1039/c2cp41417a PubMed DOI
Frolov V. A. J., Chizmadzhev Y. A., Cohen F. S., Zimmerberg J. (2006). “Entropic traps” in the kinetics of phase separation in multicomponent membranes stabilize nanodomains. Biophys. J. 91 189–205. 10.1529/biophysj.105.068502 PubMed DOI PMC
Fujimoto T., Parmryd I. (2017). Interleaflet coupling, pinning, and leaflet asymmetry — major players in plasma membrane nanodomain formation. Front. Cell. Dev. Biol. 4:155. 10.3389/fcell.2016.00155 PubMed DOI PMC
Gafvelin G., Sakaguchi M., Andersson H., Von Heijne G. (1997). Topological rules for membrane protein assembly in eukaryotic cells. J. Biol. Chem. 272 6119–6127. 10.1074/jbc.272.10.6119 PubMed DOI
Galimzyanov T. R., Kuzmin P. I., Pohl P., Akimov S. A. (2017). Undulations drive domain registration from the two membrane leaflets. Biophys. J. 112 339–345. 10.1016/j.bpj.2016.12.023 PubMed DOI PMC
Galimzyanov T. R., Molotkovsky R. J., Bozdaganyan M. E., Cohen F. S., Pohl P., Akimov S. A. (2015). Elastic membrane deformations govern interleaflet coupling of lipid-ordered domains. Phys. Rev. Lett. 115:088101 10.1103/PhysRevLett.115.088101 PubMed DOI PMC
Gandhavadi M., Allende D., Vidal A., Simon S. A., McIntosh T. J. (2002). Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys. J. 82 1469–1482. 10.1016/S0006-3495(02)75501-X PubMed DOI PMC
García-Sáez A. J., Chiantia S., Schwille P. (2007). Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 282 33537–33544. 10.1074/jbc.M706162200 PubMed DOI
Garg S., Rühe J., Lüdtke K., Jordan R., Naumann C. A. (2007). Domain registration in raft-mimicking lipid mixtures studied using polymer-tethered lipid bilayers. Biophys. J. 92 1263–1270. 10.1529/biophysj.106.091082 PubMed DOI PMC
Ghosh A., Sharma A., Chizhik A. I., Isbaner S., Ruhlandt D., Tsukanov R., et al. (2019). Graphene-based metal-induced energy transfer for sub-nanometre optical localization. Nat. Photonics 13 860–865. 10.1038/s41566-019-0510-7 DOI
Gordon V. D., Deserno M., Andrew C. M. J., Egelhaaf S. U., Poon W. C. K. (2008). Adhesion promotes phase separation in mixed-lipid membranes. EPL 84:48003 10.1209/0295-5075/84/48003 DOI
Haataja M. P. (2017). Lipid domain co-localization induced by membrane undulations. Biophys. J. 112 655–662. 10.1016/j.bpj.2016.12.030 PubMed DOI PMC
Hamilton A. D. (2003). Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr. Opin. Lipidol. 14 263–271. 10.1097/01.mol.0000073507.41685.9b PubMed DOI
Harayama T., Riezman H. (2018). Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19 281–296. 10.1038/nrm.2017.138 PubMed DOI
Heberle F. A., Marquardt D., Doktorova M., Geier B., Standaert R. F., Heftberger P., et al. (2016). Subnanometer structure of an asymmetric model membrane: interleaflet coupling influences domain properties. Langmuir 32 5195–5200. 10.1021/acs.langmuir.5b04562 PubMed DOI PMC
Heberle F. A., Pabst G. (2017). Complex biomembrane mimetics on the sub-nanometer scale. Biophys. Rev. 9 353–373. 10.1007/s12551-017-0275-5 PubMed DOI PMC
Heberle F. A., Petruzielo R. S., Pan J., Drazba P., Kučerka N., Standaert R. F., et al. (2013). Bilayer thickness mismatch controls domain size in model membranes. J. Am. Chem. Soc. 135 6853–6859. 10.1021/ja3113615 PubMed DOI
Hirai M., Hirai H., Koizumi M., Kasahara K., Yuyama K., Suzuki N. (2006). Structure of raft-model membrane by using the inverse contrast variation neutron scattering method. Phys. Rev. B Condens. Matter 38 868–870. 10.1016/j.physb.2006.05.129 DOI
Horner A., Akimov S. A., Pohl P. (2013). Long and short lipid molecules experience the same interleaflet drag in lipid bilayers. Phys. Rev. Lett. 110:268101. 10.1103/PhysRevLett.110.268101 PubMed DOI PMC
Horner A., Antonenko Y. N., Pohl P. (2009). Coupled diffusion of peripherally bound peptides along the outer and inner membrane leaflets. Biophys. J. 96 2689–2695. 10.1016/j.bpj.2008.12.3931 PubMed DOI PMC
Iwabuchi K., Nakayama H., Iwahara C., Takamori K. (2010). Significance of glycosphingolipid fatty acid chain length on membrane microdomain-mediated signal transduction. FEBS Lett. 584 1642–1652. 10.1016/j.febslet.2009.10.043 PubMed DOI
Javanainen M., Martinez-Seara H., Vattulainen I. (2017). Nanoscale membrane domain formation driven by cholesterol. Sci. Rep. 7:1143. PubMed PMC
Johannes L., Römer W. (2010). Shiga toxins from cell biology to biomedical applications. Nat. Rev. Microbiol. 8 105–116. 10.1038/nrmicro2279 PubMed DOI
Kapusta P., Wahl M., Benda A., Hof M., Enderlein J. (2007). Fluorescence lifetime correlation spectroscopy. J. Fluoresc. 17 43–48. PubMed
Keller D., Larsen N. B., Møller I. M., Mouritsen O. G. (2005). Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers. Phys. Rev. Lett. 94:025701 10.1103/PhysRevLett.94.025701 PubMed DOI
Khelashvili G., Kollmitzer B., Heftberger P., Pabst G., Harries D. (2013). Calculating the bending modulus for multicomponent lipid membranes in different thermodynamic phases. J. Chem. Theory Comput. 9 3866–3871. 10.1021/ct400492e PubMed DOI PMC
Kiessling V., Crane J. M., Tamm L. K. (2006). Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophys. J. 91 3313–3326. 10.1529/biophysj.106.091421 PubMed DOI PMC
Kiessling V., Tamm L. K. (2003). Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins. Biophys. J. 84 408–418. 10.1016/s0006-3495(03)74861-9 PubMed DOI PMC
Kiessling V., Wan C., Tamm L. K. (2009). Domain coupling in asymmetric lipid bilayers. Biochim. Biophys. Acta Biomembr. 1788 64–71. 10.1016/j.bbamem.2008.09.003 PubMed DOI PMC
Klokk T. I., Kavaliauskiene S., Sandvig K. (2016). Cross-linking of glycosphingolipids at the plasma membrane: consequences for intracellular signaling and traffic. Cell. Mol. Life Sci. 73 1301–1316. 10.1007/s00018-015-2049-1 PubMed DOI PMC
Kollmitzer B., Heftberger P., Podgornik R., Nagle J. F., Pabst G. (2015). Bending rigidities and interdomain forces in membranes with coexisting lipid domains. Biophys. J. 108 2833–2842. 10.1016/j.bpj.2015.05.003 PubMed DOI PMC
Korlach J., Schwille P., Webb W. W., Feigenson G. W. (1999). Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 96 8461–8466. 10.1073/pnas.96.15.8461 PubMed DOI PMC
Koukalová A., Amaro M., Aydogan G., Gröbner G., Williamson P. T. F., Mikhalyov I., et al. (2017). Lipid driven nanodomains in giant lipid vesicles are fluid and disordered. Sci. Rep. 7:5460. 10.1038/s41598-017-05539-y PubMed DOI PMC
Krivanek R., Jeworrek C., Czeslik C., Winter R. (2008). Composition fluctuations in phospholipid-sterol vesicles - A small-angle neutron scattering study. Z. Phys. Chem. 222 1679–1692. 10.1524/zpch.2008.5433 DOI
Ledeen R. W., Kopitz J., Abad-Rodríguez J., Gabius H. J. (2018). Glycan chains of gangliosides: functional ligands for tissue lectins (siglecs/galectins). Prog. Mol. Biol. Transl. Sci. 156 289–324. 10.1016/bs.pmbts.2017.12.004 PubMed DOI
Lin Q., London E. (2014). The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O). J. Biol. Chem. 289 5467–5478. 10.1074/jbc.M113.533943 PubMed DOI PMC
Lin W. C., Blanchette C. D., Ratto T. V., Longo M. L. (2006). Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study. Biophys. J. 90 228–237. 10.1529/biophysj.105.067066 PubMed DOI PMC
Lingwood C. A. (2011). Glycosphingolipid functions. Cold Spring Harb. Perspect. Biol. 3:a004788 10.1101/cshperspect.a004788 PubMed DOI PMC
Llorente A., Skotland T., Sylvänne T., Kauhanen D., Róg T., Orłowski A., et al. (2013). Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1831 1302–1309. 10.1016/j.bbalip.2013.04.011 PubMed DOI
Lorent J., Ganesan L., Rivera-Longsworth G., Sezgin E., Levental K., Lyman E., et al. (2019). The molecular and structural asymmetry of the plasma membrane. bioRxiv [Preprint] 10.1101/698837 DOI
Lu D., Vavasour I., Morrow M. R. (1995). Smoothed acyl chain orientational order parameter profiles in dimyristoylphosphatidylcholine-distearoylphosphatidylcholine mixtures: a 2H-NMR study. Biophys. J. 68 574–583. 10.1016/s0006-3495(95)80219-5 PubMed DOI PMC
Marquardt D., Heberle F. A., Nickels J. D., Pabst G., Katsaras J. (2015). On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons. Soft Matter 11 9055–9072. 10.1039/c5sm01807b PubMed DOI PMC
Marsh D. (2008). Protein modulation of lipids, and vice-versa, in membranes. Biochim. Biophys. Acta 1778 1545–1575. 10.1016/j.bbamem.2008.01.015 PubMed DOI
Masui T., Imai M., Urakami N. (2006). Microdomain formation in model biomembranes. Phys. B Condens. Matter 385–386 821–823. 10.1016/j.physb.2006.06.099 DOI
Masui T., Urakami N., Imai M. (2008). Nano-meter-sized domain formation in lipid membranes observed by small angle neutron scattering. Eur. Phys. J. E 27 379–389. 10.1140/epje/i2008-10400-x PubMed DOI
May S. (2009). Trans-monolayer coupling of fluid domains in lipid bilayers. Soft Matter 5 3148–3156. 10.1039/b901647c DOI
Mouritsen O. G., Bagatolli L. A. (2015). Lipid domains in model membranes: a brief historical perspective. Essays Biochem. 57 1–19. 10.1042/bse0570001 PubMed DOI
Nickels J. D., Cheng X., Mostofian B., Stanley C., Lindner B., Heberle F. A., et al. (2015a). Mechanical properties of nanoscopic lipid domains. J. Am. Chem. Soc. 137 15772–15780. 10.1021/jacs.5b08894 PubMed DOI
Nickels J. D., Smith J. C., Cheng X. (2015b). Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes. Chem. Phys. Lipids 192 87–99. 10.1016/j.chemphyslip.2015.07.012 PubMed DOI
Nicolau D. V., Burrage K., Parton R. G., Hancock J. F. (2006). Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the Plasma Membrane. Mol. Cell. Biol. 26 313–323. 10.1128/mcb.26.1.313-323.2006 PubMed DOI PMC
Nicolini C., Thiyagarajan P., Winter R. (2004). Small-scale composition fluctuations and microdomain formation in lipid raft models as revealed by small-angle neutron scattering. Phys. Chem. Chem. Phys. 6 5531–5534. 10.1039/b408928f DOI
Otosu T., Yamaguchi S. (2019). Reduction of glass-surface charge density slows the lipid diffusion in the proximal leaflet of a supported lipid bilayer. J. Chem. Phys. 151:025102 10.1063/1.5103221 PubMed DOI
Owen D. M., Williamson D. J., Magenau A., Gaus K. (2012). Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 3:1256 10.1038/ncomms2273 PubMed DOI
Pabst G., Kučerka N., Nieh M. P., Rheinstädter M. C., Katsaras J. (2010). Applications of neutron and X-ray scattering to the study of biologically relevant model membranes. Chem. Phys. Lipids 163 460–479. 10.1016/j.chemphyslip.2010.03.010 PubMed DOI
Pan J., Heberle F. A., Petruzielo R. S., Katsaras J. (2013). Using small-angle neutron scattering to detect nanoscopic lipid domains. Chem. Phys. Lipids 170–171 19–32. 10.1016/j.chemphyslip.2013.02.012 PubMed DOI
Pencer J., Anghel V. N. P., Kučerka N., Katsaras J. (2006). Scattering from laterally heterogeneous vesicles. I. Model-independent analysis. J. Appl. Crystallogr. 39 791–796. 10.1107/S0021889806035163 DOI
Pencer J., Anghel V. N. P., Kučerka N., Katsaras J. (2007a). Scattering from laterally heterogeneous vesicles. III. Reconciling past and present work. J. Appl. Crystallogr. 40 771–772. 10.1107/S0021889807024624 DOI
Pencer J., Mills T. T., Kucerka N., Nieh M. P., Katsaras J. (2007b). Small-angle neutron scattering to detect rafts and lipid domains. Methods Mol. Biol. 398 231–244. 10.1007/978-1-59745-513-8_16 PubMed DOI
Pencer J., Mills T., Anghel V., Krueger S., Epand R. M., Katsaras J. (2005). Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering. Eur. Phys. J. E 18 447–458. 10.1140/epje/e2005-00046-5 PubMed DOI
Perlmutter J. D., Sachs J. N. (2011). Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations. J. Am. Chem. Soc. 133 6563–6577. 10.1021/ja106626r PubMed DOI
Przybylo M., Sykora J., Humpolickova J., Benda A., Zan A., Hof M. (2006). Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir 22 9096–9099. 10.1021/la061934p PubMed DOI
Raghupathy R., Anupama Ambika, Anilkumar Polley A., Singh P. P., Yadav M., Johnson C., et al. (2016). Transbilayer lipid interactions mediate nanoclustering of lipid- anchored proteins. Cell 161 581–594. 10.1016/j.cell.2015.03.048.Transbilayer PubMed DOI PMC
Rinia H. A., Snel M. M. E., Van Der Eerden J. P. J. M., De Kruijff B. (2001). Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501 92–96. 10.1016/s0014-5793(01)02636-9 PubMed DOI
Risselada H. J., Marrink S. J. (2008). The molecular face of lipid rafts in model membranes. Proc. Natl. Acad. Sci. U.S.A. 105 17367–17372. 10.1073/pnas.0807527105 PubMed DOI PMC
Róg T., Orłowski A., Llorente A., Skotland T., Sylvänne T., Kauhanen D., et al. (2016). Interdigitation of long-chain sphingomyelin induces coupling of membrane leaflets in a cholesterol dependent manner. Biochim. Biophys. Acta Biomembr. 1858 281–288. 10.1016/j.bbamem.2015.12.003 PubMed DOI
Russo D., Parashuraman S., D’Angelo G. (2016). Glycosphingolipid–protein interaction in signal transduction. Int. J. Mol. Sci. 17:1732 10.3390/ijms17101732 PubMed DOI PMC
Šachl R., Amaro M., Aydogan G., Koukalová A., Mikhalyov I. I., Boldyrev I. A., et al. (2015). On multivalent receptor activity of GM1 in cholesterol containing membranes. Biochim. Biophys. Acta Mol. Cell Res. 1853 850–857. 10.1016/j.bbamcr.2014.07.016 PubMed DOI
Šachl R., Bergstrand J., Widengren J., Hof M. (2016). Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains. J. Phys. D Appl. Phys. 49:114002 10.1088/0022-3727/49/11/114002 DOI
Šachl R., Humpolíčková J., Štefl M., Johansson L. B. -Å., Hof M. (2011). Limitations of electronic energy transfer in the determination of lipid nanodomain sizes. Biophys. J. 101 L60–L62. PubMed PMC
Šachl R., Johansson L. B. -Å., Hof M. (2012). Förster resonance energy transfer (FRET) between heterogeneously distributed probes: application to lipid nanodomains and pores. Int. J. Mol. Sci. 13 16141–16156. 10.3390/ijms131216141 PubMed DOI PMC
Seeger H. M., Di Cerbo A., Alessandrini A., Facci P. (2010). Supported lipid bilayers on mica and silicon oxide: comparison of the main phase transition behavior. J. Phys. Chem. B 114 8926–8933. 10.1021/jp1026477 PubMed DOI
Seeger H. M., Marino G., Alessandrini A., Facci P. (2009). Effect of physical parameters on the main phase transition of supported lipid bilayers. Biophys. J. 97 1067–1076. 10.1016/j.bpj.2009.03.068 PubMed DOI PMC
Skotland T., Sandvig K. (2019). The role of PS 18:0/18:1 in membrane function. Nat. Commun. 10:2752. PubMed PMC
Sonnleitner A., Schütz G. J., Schmidt T. (1999). Free Brownian motion of individual lipid molecules in biomembranes. Biophys. J. 77 2638–2642. 10.1016/s0006-3495(99)77097-9 PubMed DOI PMC
Spillane K. M., Ortega-Arroyo J., De Wit G., Eggeling C., Ewers H., Wallace M. I., et al. (2014). High-speed single-particle tracking of gm1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett. 14 5390–5397. 10.1021/nl502536u PubMed DOI PMC
Štefl M., Šachl R., Humpolíčková J., Cebecauer M., Macháò R., Koláøová M., et al. (2012). Dynamics and size of cross-linking-induced lipid nanodomains in model membranes. Biophys. J. 102 2104–2113. 10.1016/j.bpj.2012.03.054 PubMed DOI PMC
Stevens M. J. (2005). Complementary matching in domain formation within lipid bilayers. J. Am. Chem. Soc. 127 15330–15331. 10.1021/ja043611q PubMed DOI
Stottrup B. L., Veatch S. L., Keller S. L. (2004). Nonequilibrium behavior in supported lipid membranes containing cholesterol. Biophys. J. 86 2942–2950. 10.1016/s0006-3495(04)74345-3 PubMed DOI PMC
Sun H., Chen L., Gao L., Fang W. (2015). Nanodomain formation of ganglioside GM1 in lipid membrane: effects of cholera toxin-mediated cross-linking. Langmuir 31 9105–9114. 10.1021/acs.langmuir.5b01866 PubMed DOI
Szleifer I., Ben-Shaul A., Gelbart W. M. (1990). Chain packing statistics and thermodynamics of amphiphile monolayers. J. Phys. Chem. 94 5081–5089. 10.1021/j100375a060 DOI
Thallmair S., Ingólfsson H. I., Marrink S. J. (2018). Cholesterol flip-flop impacts domain registration in plasma membrane models. J. Phys. Chem. Lett. 9 5527–5533. 10.1021/acs.jpclett.8b01877 PubMed DOI PMC
Tien H. T. (1974). Bilayer Lipid Membranes (BLM): Theory and Practice. New York, NY: M. Dekker.
Vácha R., Siu S. W. I., Petrov M., Böckmann R. A., Barucha-Kraszewska J., Jurkiewicz P., et al. (2009). Effects of alkali cations and halide anions on the DOPC lipid membrane. J. Phys. Chem. A 113 7235–7243. 10.1021/jp809974e PubMed DOI
Valeur B. (2001). Molecular Fluorescence: Principles and Applications, ed. GmbH Weinheim W.-V. V. (Hoboken, NJ: Wiley; ). 10.1002/3527600248 DOI
Vinklárek I. S., Vel’as L., Riegerová P., Skála K., Mikhalyov I., Gretskaya N., et al. (2019). Experimental evidence of the existence of interleaflet coupled nanodomains: an MC-FRET study. J. Phys. Chem. Lett. 10 2024–2030. 10.1021/acs.jpclett.9b00390 PubMed DOI
Vogtt K., Jeworrek C., Garamus V. M., Winter R. (2010). Microdomains in lipid vesicles: structure and distribution assessed by small-angle neutron scattering. J. Phys. Chem. B 114 5643–5648. 10.1021/jp101167n PubMed DOI
von Heijne G., Gavel Y. (1988). Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174 671–678. 10.1111/j.1432-1033.1988.tb14150.x PubMed DOI
Wan C., Kiessling V., Tamm L. K. (2008). Coupling of cholesterol-rich lipid phases in asymmetric bilayers. Biochemistry 47 2190–2198. 10.1021/bi7021552 PubMed DOI
Wang J., Lu Z.-H., Gabius H.-J., Rohowsky-Kochan C., Ledeen R. W., Wu G. (2009). Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J. Immunol. 182 4036–4045. 10.4049/jimmunol.0802981 PubMed DOI
Wang Q., London E. (2018). Lipid structure and composition control consequences of interleaflet coupling in asymmetric vesicles. Biophys. J. 115 664–678. 10.1016/j.bpj.2018.07.011 PubMed DOI PMC
Weiner M. D., Feigenson G. W. (2018). Presence and role of midplane cholesterol in lipid bilayers containing registered or antiregistered phase domains. J. Phys. Chem. B 122 8193–8200. 10.1021/acs.jpcb.8b03949 PubMed DOI
Wernick N. L. B., Chinnapen D. J. F., Cho J. A., Lencer W. I. (2010). Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins 2 310–325. 10.3390/toxins2030310 PubMed DOI PMC
Williamson J. J., Olmsted P. D. (2015a). Nucleation of symmetric domains in the coupled leaflets of a bilayer. Soft Matter 11 8948–8959. 10.1039/c5sm01328c PubMed DOI
Williamson J. J., Olmsted P. D. (2015b). Registered and antiregistered phase separation of mixed amphiphilic bilayers. Biophys. J. 108 1963–1976. 10.1016/j.bpj.2015.03.016 PubMed DOI PMC
Xu Z. C., Cafiso D. S. (1986). Phospholipid packing and conformation in small vesicles revealed by two-dimensional 1H nuclear magnetic resonance cross-relaxation spectroscopy. Biophys. J. 49 779–783. 10.1016/s0006-3495(86)83705-5 PubMed DOI PMC
Yethiraj A., Weisshaar J. C. (2007). Why are lipid rafts not observed in vivo? Biophys. J. 93 3113–3119. 10.1529/biophysj.106.101931 PubMed DOI PMC
Zachowski A. (1993). Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J. 294 1–14. 10.1042/bj2940001 PubMed DOI PMC
Zhang S., Lin X. (2019). Lipid acyl chain cis double bond position modulates membrane domain registration/anti-registration. J. Am. Chem. Soc. 141 15884–15890. 10.1021/jacs.9b06977 PubMed DOI
Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?
The impact of the glycan headgroup on the nanoscopic segregation of gangliosides