The impact of the glycan headgroup on the nanoscopic segregation of gangliosides

. 2021 Dec 21 ; 120 (24) : 5530-5543. [epub] 20211117

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34798138
Odkazy

PubMed 34798138
PubMed Central PMC8715245
DOI 10.1016/j.bpj.2021.11.017
PII: S0006-3495(21)00986-3
Knihovny.cz E-zdroje

Gangliosides form an important class of receptor lipids containing a large oligosaccharide headgroup whose ability to self-organize within lipid membranes results in the formation of nanoscopic platforms. Despite their biological importance, the molecular basis for the nanoscopic segregation of gangliosides is not clear. In this work, we investigated the role of the ganglioside headgroup on the nanoscale organization of gangliosides. We studied the effect of the reduction in the number of sugar units of the ganglioside oligosaccharide chain on the ability of gangliosides GM1, GM2, and GM3 to spontaneously self-organize into lipid nanodomains. To reach nanoscopic resolution and to identify molecular forces that drive ganglioside segregation, we combined an experimental technique, Förster resonance energy transfer analyzed by Monte-Carlo simulations offering high lateral and trans-bilayer resolution with molecular dynamics simulations. We show that the ganglioside headgroup plays a key role in ganglioside self-assembly despite the negative charge of the sialic acid group. The nanodomains range from 7 to 120 nm in radius and are mostly composed of the surrounding bulk lipids, with gangliosides being a minor component of the nanodomains. The interactions between gangliosides are dominated by the hydrogen bonding network between the headgroups, which facilitates ganglioside clustering. The N-acetylgalactosamine sugar moiety of GM2, however, seems to impair the stability of these clusters by disrupting hydrogen bonding of neighboring sugars, which is in agreement with a broad size distribution of GM2 nanodomains. The simulations suggest that the formation of nanodomains is likely accompanied by several conformational changes in the gangliosides, which, however, have little impact on the solvent exposure of these receptor groups. Overall, this work identifies the key physicochemical factors that drive nanoscopic segregation of gangliosides.

Zobrazit více v PubMed

Sonnino S., Prinetti A., et al. Tettamanti G. Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem. Rev. 2006;106:2111–2125. PubMed

Sarmento M.J., Ricardo J.C., et al. Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett. 2020;594:3668–3697. PubMed

van Gorkom L.C.M., Cheetham J.J., Epand R.M. Ganglioside GD1a generates domains of high curvature in phosphatidylethanolamine liposomes as determined by solid state 31P-NMR spectroscopy. Chem. Phys. Lipids. 1995;76:103–108. PubMed

Simons K., Van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988;27:6197–6202. PubMed

Cebecauer M., Amaro M., et al. Hof M. Membrane lipid nanodomains. Chem. Rev. 2018;118:11259–11297. PubMed

Caron M., Joubert-Caron R., et al. Bladier D. Study of lectin–ganglioside interactions by high-performance liquid affinity chromatography. J. Chromatogr. A. 1993;646:327–333. PubMed

Mahanthappa N.K., Cooper D.N., et al. Schwarting G.A. Rat olfactory neurons can utilize the endogenous lectin, L-14, in a novel adhesion mechanism. Development. 1994;120:1373–1384. PubMed

Kaltner H., Lips K.S., et al. Gabius H.-J.J. Quantitation and histochemical localization of galectin-1 and galectin-1-reactive glycoconjugates in fetal development of bovine organs. Histol. Histopathol. 1997;12:945–960. PubMed

Kopitz J., von Reitzenstein C., et al. Gabius H.-J. Galectin-1 is a major receptor for ganglioside GM 1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J. Biol. Chem. 1998;273:11205–11211. PubMed

Ideo H., Seko A., Yamashita K. Galectin-4 binds to sulfated glycosphingolipids and carcinoembryonic antigen in patches on the cell surface of human colon adenocarcinoma cells. J. Biol. Chem. 2005;280:4730–4737. PubMed

Ideo H., Seko A., Yamashita K. Recognition mechanism of galectin-4 for cholesterol 3-sulfate. J. Biol. Chem. 2007;282:21081–21089. PubMed

Ideo H., Seko A., et al. Yamashita K. The N-terminal carbohydrate recognition domain of galectin-8 recognizes specific glycosphingolipids with high affinity. Glycobiology. 2003;13:713–723. PubMed

Carlsson S., Öberg C.T., et al. Leffler H. Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology. 2007;17:663–676. PubMed

Suzuki Y., Matsunaga M., et al. Matsumoto M. Ganglioside GM1b as an influenza virus receptor. Vaccine. 1985;3:201–203. PubMed

Tsai B., Gilbert J.M., et al. Rapoport T.A. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 2003;22:4346–4355. PubMed PMC

Markwell M.A.K., Svennerholm L., Paulson J.C. Specific gangliosides function as host cell receptors for Sendai virus. Proc. Natl. Acad. Sci. U. S. A. 1981;78:5406–5410. PubMed PMC

Low J.A., Magnuson B., et al. Imperiale M.J. Identification of gangliosides GD1b and GT1b as receptors for BK virus. J. Virol. 2006;80:1361–1366. PubMed PMC

Campanero-Rhodes M.A., Smith A., et al. Feizi T. N-Glycolyl GM1 ganglioside as a receptor for simian virus 40. J. Virol. 2007;81:12846–12858. PubMed PMC

Nilsson E.C., Storm R.J., et al. Arnberg N. The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis. Nat. Med. 2011;17:105–109. PubMed

Han L., Tan M., et al. Klassen J.S. Gangliosides are ligands for human noroviruses. J. Am. Chem. Soc. 2014;136:12631–12637. PubMed PMC

Kim D., Son K., et al. Cho K. Porcine sapelovirus uses α2,3-linked sialic acid on GD1a ganglioside as a receptor. J. Virol. 2016;90:4067–4077. PubMed PMC

Hammache D., Piéroni G., et al. Fantini J. Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J. Biol. Chem. 1998;273:7967–7971. PubMed

Fukuta S., Magnani J.L., et al. Ginsburg V. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect. Immun. 1988;56:1748–1753. PubMed PMC

Berntsson R.P.-A., Peng L., et al. Stenmark P. Structure of dual receptor binding to botulinum neurotoxin B. Nat. Commun. 2013;4:2058. PubMed PMC

Ohkawa Y., Miyazaki S., et al. Furukawa K.K. Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J. Biol. Chem. 2010;285:27213–27223. PubMed PMC

Takamura A., Higaki K., et al. Nanba E. Enhanced autophagy and mitochondrial aberrations in murine GM1-gangliosidosis. Biochem. Biophys. Res. Commun. 2008;367:616–622. PubMed

Wei J., Fujita M., et al. Hashimoto M. Protective role of endogenous gangliosides for lysosomal pathology in a cellular model of synucleinopathies. Am. J. Pathol. 2009;174:1891–1909. PubMed PMC

Wu G., Xie X., et al. Ledeen R.W. Sodium-calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc. Natl. Acad. Sci. 2009;106:10829–10834. PubMed PMC

Lopez P.H., Schnaar R.L. Gangliosides in cell recognition and membrane protein regulation. Curr. Opin. Struct. Biol. 2009;19:549–557. PubMed PMC

Ledeen R.W., Wu G., et al. Gabius H.-J. Beyond glycoproteins as galectin counterreceptors: effector T cell growth control of tumors via ganglioside GM1. Ann. N. Y. Acad. Sci. 2012;1253:206–221. PubMed

Sandhoff R., Schulze H., Sandhoff K. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Ganglioside metabolism in health and disease; pp. 1–62. PubMed

Martinez Z., Zhu M., et al. Fink A.L. GM1 specifically interacts with α-synuclein and inhibits fibrillation. Biochemistry. 2007;46:1868–1877. PubMed

Ledeen R.W., Wu G. Progress in Molecular Biology and Translational Science. 2018. Gangliosides, α-synuclein, and Parkinson’s disease; pp. 435–454. PubMed

Mlinac K., Bognar S. Role of gangliosides in brain aging and neurodegeneration. Transl. Neurosci. 2010;1:300–307.

Matsuzaki K., Kato K., Yanagisawa K. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Ganglioside-mediated assembly of amyloid β-protein: roles in Alzheimer’s disease; pp. 413–434. PubMed

Ariga T., McDonald M.P., Yu R.K. Thematic review series: sphingolipids. Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—a review. J. Lipid Res. 2008;49:1157–1175. PubMed PMC

Zha Q., Ruan Y., et al. Zhang D. GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol. Psychiatry. 2004;9:946–952. PubMed

Goodfellow J.A., Willison H.J. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Gangliosides and autoimmune peripheral nerve diseases; pp. 355–382. PubMed

Hakomori S. In: The Molecular Immunology of Complex Carbohydrates-2. Advances in Experimental Medicine and Biology. Boston, MA. Wu A.M., editor. 2001. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines; pp. 369–402. PubMed

Groux-Degroote S., Rodríguez-Walker M., et al. Delannoy P. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Gangliosides in cancer cell signaling; pp. 197–227. PubMed

Tagami S., Inokuchi J., et al. Igarashi Y. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 2002;277:3085–3092. PubMed

Dam D.H.M., Paller A.S. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Gangliosides in diabetic wound healing; pp. 229–239. PubMed PMC

Zuverink M., Barbieri J.T. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Protein toxins that utilize gangliosides as host receptors; pp. 325–354. PubMed PMC

Aureli M., Mauri L., et al. Sonnino S. GM1 ganglioside: past studies and future potential. Mol. Neurobiol. 2016;53:1824–1842. PubMed

Julien S., Bobowski M., et al. Delannoy P. How do gangliosides regulate RTKs signaling? Cells. 2013;2:751–767. PubMed PMC

Schnaar R.L., Lopez P.H.H. Gangliosides in health and disease. Prog. Mol. Biol. Transl. Sci. 2018;156:1–462. PubMed

Šachl R., Amaro M., et al. Hof M. On multivalent receptor activity of GM1 in cholesterol containing membranes. Biochim. Biophys. Acta. 2015;1853:850–857. PubMed

Shi J., Yang T., et al. Cremer P.S. GM 1 clustering inhibits cholera toxin binding in supported phospholipid membranes. J. Am. Chem. Soc. 2007;129:5954–5961. PubMed PMC

Koukalová A., Amaro M., et al. Šachl R. Lipid driven nanodomains in giant lipid vesicles are fluid and disordered. Sci. Rep. 2017;7:5460. PubMed PMC

Vinklárek I.S., Vel’as L., et al. Šachl R. Experimental evidence of the existence of interleaflet coupled nanodomains: an MC-FRET study. J. Phys. Chem. Lett. 2019;10:2024–2030. PubMed

Šachl R., Johansson L.B.-Å.B.-Å., Hof M. Förster resonance energy transfer (FRET) between heterogeneously distributed probes: application to lipid nanodomains and pores. Int. J. Mol. Sci. 2012;13:16141–16156. PubMed PMC

Šachl R., Humpolíčková J., et al. Hof M. Limitations of electronic energy transfer in the determination of lipid nanodomain sizes. Biophys. J. 2011;101:L60–L62. PubMed PMC

Abraham M.J., van der Spoel D., et al. Hess B., GROMACS development team GROMACS user manual version 5.1. www.gromacs.org

Tessier M.B., DeMarco M.L., et al. Woods R.J. Extension of the GLYCAM06 biomolecular force field to lipids, lipid bilayers and glycolipids. Mol. Simul. 2008;34:349–364. PubMed PMC

Jämbeck J.P.M., Lyubartsev A.P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B. 2012;116:3164–3179. PubMed PMC

Šachl R., Mikhalyov I.I., et al. Johansson L.B.-Å.B.-Å. A comparative study on ganglioside micelles using electronic energy transfer, fluorescence correlation spectroscopy and light scattering techniques. Phys. Chem. Chem. Phys. 2009;11:4335–4343. PubMed

Sonnino S., Cantù L., et al. Venerando B. Aggregative properties of gangliosides in solution. Chem. Phys. Lipids. 1994;71:21–45. PubMed

Sonnino S., Cantu’ L., et al. Tettamanti G. Aggregation properties of GM3 ganglioside (II3Neu5AcLacCer) in aqueous solutions. Chem. Phys. Lipids. 1990;52:231–241. PubMed

Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 2008;9:125–138. PubMed

Puff N., Watanabe C., et al. Staneva G. Lo/Ld phase coexistence modulation induced by GM1. Biochim. Biophys. Acta - Biomembr. 2014;1838:2105–2114. PubMed

Liu Y., Barnoud J., Marrink S.J. Gangliosides destabilize lipid phase separation in multicomponent membranes. Biophys. J. 2019;117:1215–1223. PubMed PMC

Sarmento M.J., Hof M., Šachl R. Interleaflet coupling of lipid nanodomains—insights from in vitro systems. Front. Cell Dev. Biol. 2020;8:284. PubMed PMC

Blosser M.C., Honerkamp-Smith A.R., et al. Keller S.L. Transbilayer colocalization of lipid domains explained via measurement of strong coupling parameters. Biophys. J. 2015;109:2317–2327. PubMed PMC

Garg S., Rühe J., et al. Naumann C.A. Domain registration in raft-mimicking lipid mixtures studied using polymer-tethered lipid bilayers. Biophys. J. 2007;92:1263–1270. PubMed PMC

Kiessling V., Wan C., Tamm L.K. Domain coupling in asymmetric lipid bilayers. Biochim. Biophys. Acta - Biomembr. 2009;1788:64–71. PubMed PMC

Sezgin E., Can F.B., et al. Eggeling C. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J. Lipid Res. 2016;57:299–309. PubMed PMC

Bornhöfft K.F., Goldammer T., et al. Galuska S.P. Siglecs: a journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Dev. Comp. Immunol. 2018;86:219–231. PubMed

Ledeen R.W., Kopitz J., et al. Gabius H.-J.J. Progress in Molecular Biology and Translational Science. Academic Press; 2018. Glycan chains of gangliosides: functional ligands for tissue lectins (Siglecs/Galectins) pp. 289–324. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Which Moiety Drives Gangliosides to Form Nanodomains?

. 2023 Jun 29 ; 14 (25) : 5791-5797. [epub] 20230616

Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?

. 2023 Jun 06 ; 122 (11) : 2053-2067. [epub] 20221115

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...