The impact of the glycan headgroup on the nanoscopic segregation of gangliosides
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34798138
PubMed Central
PMC8715245
DOI
10.1016/j.bpj.2021.11.017
PII: S0006-3495(21)00986-3
Knihovny.cz E-zdroje
- MeSH
- G(M1) gangliosid * MeSH
- gangliosidy * MeSH
- oligosacharidy MeSH
- rezonanční přenos fluorescenční energie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- G(M1) gangliosid * MeSH
- gangliosidy * MeSH
- oligosacharidy MeSH
Gangliosides form an important class of receptor lipids containing a large oligosaccharide headgroup whose ability to self-organize within lipid membranes results in the formation of nanoscopic platforms. Despite their biological importance, the molecular basis for the nanoscopic segregation of gangliosides is not clear. In this work, we investigated the role of the ganglioside headgroup on the nanoscale organization of gangliosides. We studied the effect of the reduction in the number of sugar units of the ganglioside oligosaccharide chain on the ability of gangliosides GM1, GM2, and GM3 to spontaneously self-organize into lipid nanodomains. To reach nanoscopic resolution and to identify molecular forces that drive ganglioside segregation, we combined an experimental technique, Förster resonance energy transfer analyzed by Monte-Carlo simulations offering high lateral and trans-bilayer resolution with molecular dynamics simulations. We show that the ganglioside headgroup plays a key role in ganglioside self-assembly despite the negative charge of the sialic acid group. The nanodomains range from 7 to 120 nm in radius and are mostly composed of the surrounding bulk lipids, with gangliosides being a minor component of the nanodomains. The interactions between gangliosides are dominated by the hydrogen bonding network between the headgroups, which facilitates ganglioside clustering. The N-acetylgalactosamine sugar moiety of GM2, however, seems to impair the stability of these clusters by disrupting hydrogen bonding of neighboring sugars, which is in agreement with a broad size distribution of GM2 nanodomains. The simulations suggest that the formation of nanodomains is likely accompanied by several conformational changes in the gangliosides, which, however, have little impact on the solvent exposure of these receptor groups. Overall, this work identifies the key physicochemical factors that drive nanoscopic segregation of gangliosides.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
J Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Sonnino S., Prinetti A., et al. Tettamanti G. Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem. Rev. 2006;106:2111–2125. PubMed
Sarmento M.J., Ricardo J.C., et al. Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett. 2020;594:3668–3697. PubMed
van Gorkom L.C.M., Cheetham J.J., Epand R.M. Ganglioside GD1a generates domains of high curvature in phosphatidylethanolamine liposomes as determined by solid state 31P-NMR spectroscopy. Chem. Phys. Lipids. 1995;76:103–108. PubMed
Simons K., Van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988;27:6197–6202. PubMed
Cebecauer M., Amaro M., et al. Hof M. Membrane lipid nanodomains. Chem. Rev. 2018;118:11259–11297. PubMed
Caron M., Joubert-Caron R., et al. Bladier D. Study of lectin–ganglioside interactions by high-performance liquid affinity chromatography. J. Chromatogr. A. 1993;646:327–333. PubMed
Mahanthappa N.K., Cooper D.N., et al. Schwarting G.A. Rat olfactory neurons can utilize the endogenous lectin, L-14, in a novel adhesion mechanism. Development. 1994;120:1373–1384. PubMed
Kaltner H., Lips K.S., et al. Gabius H.-J.J. Quantitation and histochemical localization of galectin-1 and galectin-1-reactive glycoconjugates in fetal development of bovine organs. Histol. Histopathol. 1997;12:945–960. PubMed
Kopitz J., von Reitzenstein C., et al. Gabius H.-J. Galectin-1 is a major receptor for ganglioside GM 1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J. Biol. Chem. 1998;273:11205–11211. PubMed
Ideo H., Seko A., Yamashita K. Galectin-4 binds to sulfated glycosphingolipids and carcinoembryonic antigen in patches on the cell surface of human colon adenocarcinoma cells. J. Biol. Chem. 2005;280:4730–4737. PubMed
Ideo H., Seko A., Yamashita K. Recognition mechanism of galectin-4 for cholesterol 3-sulfate. J. Biol. Chem. 2007;282:21081–21089. PubMed
Ideo H., Seko A., et al. Yamashita K. The N-terminal carbohydrate recognition domain of galectin-8 recognizes specific glycosphingolipids with high affinity. Glycobiology. 2003;13:713–723. PubMed
Carlsson S., Öberg C.T., et al. Leffler H. Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology. 2007;17:663–676. PubMed
Suzuki Y., Matsunaga M., et al. Matsumoto M. Ganglioside GM1b as an influenza virus receptor. Vaccine. 1985;3:201–203. PubMed
Tsai B., Gilbert J.M., et al. Rapoport T.A. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 2003;22:4346–4355. PubMed PMC
Markwell M.A.K., Svennerholm L., Paulson J.C. Specific gangliosides function as host cell receptors for Sendai virus. Proc. Natl. Acad. Sci. U. S. A. 1981;78:5406–5410. PubMed PMC
Low J.A., Magnuson B., et al. Imperiale M.J. Identification of gangliosides GD1b and GT1b as receptors for BK virus. J. Virol. 2006;80:1361–1366. PubMed PMC
Campanero-Rhodes M.A., Smith A., et al. Feizi T. N-Glycolyl GM1 ganglioside as a receptor for simian virus 40. J. Virol. 2007;81:12846–12858. PubMed PMC
Nilsson E.C., Storm R.J., et al. Arnberg N. The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis. Nat. Med. 2011;17:105–109. PubMed
Han L., Tan M., et al. Klassen J.S. Gangliosides are ligands for human noroviruses. J. Am. Chem. Soc. 2014;136:12631–12637. PubMed PMC
Kim D., Son K., et al. Cho K. Porcine sapelovirus uses α2,3-linked sialic acid on GD1a ganglioside as a receptor. J. Virol. 2016;90:4067–4077. PubMed PMC
Hammache D., Piéroni G., et al. Fantini J. Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J. Biol. Chem. 1998;273:7967–7971. PubMed
Fukuta S., Magnani J.L., et al. Ginsburg V. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect. Immun. 1988;56:1748–1753. PubMed PMC
Berntsson R.P.-A., Peng L., et al. Stenmark P. Structure of dual receptor binding to botulinum neurotoxin B. Nat. Commun. 2013;4:2058. PubMed PMC
Ohkawa Y., Miyazaki S., et al. Furukawa K.K. Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J. Biol. Chem. 2010;285:27213–27223. PubMed PMC
Takamura A., Higaki K., et al. Nanba E. Enhanced autophagy and mitochondrial aberrations in murine GM1-gangliosidosis. Biochem. Biophys. Res. Commun. 2008;367:616–622. PubMed
Wei J., Fujita M., et al. Hashimoto M. Protective role of endogenous gangliosides for lysosomal pathology in a cellular model of synucleinopathies. Am. J. Pathol. 2009;174:1891–1909. PubMed PMC
Wu G., Xie X., et al. Ledeen R.W. Sodium-calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc. Natl. Acad. Sci. 2009;106:10829–10834. PubMed PMC
Lopez P.H., Schnaar R.L. Gangliosides in cell recognition and membrane protein regulation. Curr. Opin. Struct. Biol. 2009;19:549–557. PubMed PMC
Ledeen R.W., Wu G., et al. Gabius H.-J. Beyond glycoproteins as galectin counterreceptors: effector T cell growth control of tumors via ganglioside GM1. Ann. N. Y. Acad. Sci. 2012;1253:206–221. PubMed
Sandhoff R., Schulze H., Sandhoff K. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Ganglioside metabolism in health and disease; pp. 1–62. PubMed
Martinez Z., Zhu M., et al. Fink A.L. GM1 specifically interacts with α-synuclein and inhibits fibrillation. Biochemistry. 2007;46:1868–1877. PubMed
Ledeen R.W., Wu G. Progress in Molecular Biology and Translational Science. 2018. Gangliosides, α-synuclein, and Parkinson’s disease; pp. 435–454. PubMed
Mlinac K., Bognar S. Role of gangliosides in brain aging and neurodegeneration. Transl. Neurosci. 2010;1:300–307.
Matsuzaki K., Kato K., Yanagisawa K. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Ganglioside-mediated assembly of amyloid β-protein: roles in Alzheimer’s disease; pp. 413–434. PubMed
Ariga T., McDonald M.P., Yu R.K. Thematic review series: sphingolipids. Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—a review. J. Lipid Res. 2008;49:1157–1175. PubMed PMC
Zha Q., Ruan Y., et al. Zhang D. GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol. Psychiatry. 2004;9:946–952. PubMed
Goodfellow J.A., Willison H.J. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Gangliosides and autoimmune peripheral nerve diseases; pp. 355–382. PubMed
Hakomori S. In: The Molecular Immunology of Complex Carbohydrates-2. Advances in Experimental Medicine and Biology. Boston, MA. Wu A.M., editor. 2001. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines; pp. 369–402. PubMed
Groux-Degroote S., Rodríguez-Walker M., et al. Delannoy P. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Gangliosides in cancer cell signaling; pp. 197–227. PubMed
Tagami S., Inokuchi J., et al. Igarashi Y. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 2002;277:3085–3092. PubMed
Dam D.H.M., Paller A.S. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Gangliosides in diabetic wound healing; pp. 229–239. PubMed PMC
Zuverink M., Barbieri J.T. Progress in Molecular Biology and Translational Science. Elsevier Inc.; 2018. Protein toxins that utilize gangliosides as host receptors; pp. 325–354. PubMed PMC
Aureli M., Mauri L., et al. Sonnino S. GM1 ganglioside: past studies and future potential. Mol. Neurobiol. 2016;53:1824–1842. PubMed
Julien S., Bobowski M., et al. Delannoy P. How do gangliosides regulate RTKs signaling? Cells. 2013;2:751–767. PubMed PMC
Schnaar R.L., Lopez P.H.H. Gangliosides in health and disease. Prog. Mol. Biol. Transl. Sci. 2018;156:1–462. PubMed
Šachl R., Amaro M., et al. Hof M. On multivalent receptor activity of GM1 in cholesterol containing membranes. Biochim. Biophys. Acta. 2015;1853:850–857. PubMed
Shi J., Yang T., et al. Cremer P.S. GM 1 clustering inhibits cholera toxin binding in supported phospholipid membranes. J. Am. Chem. Soc. 2007;129:5954–5961. PubMed PMC
Koukalová A., Amaro M., et al. Šachl R. Lipid driven nanodomains in giant lipid vesicles are fluid and disordered. Sci. Rep. 2017;7:5460. PubMed PMC
Vinklárek I.S., Vel’as L., et al. Šachl R. Experimental evidence of the existence of interleaflet coupled nanodomains: an MC-FRET study. J. Phys. Chem. Lett. 2019;10:2024–2030. PubMed
Šachl R., Johansson L.B.-Å.B.-Å., Hof M. Förster resonance energy transfer (FRET) between heterogeneously distributed probes: application to lipid nanodomains and pores. Int. J. Mol. Sci. 2012;13:16141–16156. PubMed PMC
Šachl R., Humpolíčková J., et al. Hof M. Limitations of electronic energy transfer in the determination of lipid nanodomain sizes. Biophys. J. 2011;101:L60–L62. PubMed PMC
Abraham M.J., van der Spoel D., et al. Hess B., GROMACS development team GROMACS user manual version 5.1. www.gromacs.org
Tessier M.B., DeMarco M.L., et al. Woods R.J. Extension of the GLYCAM06 biomolecular force field to lipids, lipid bilayers and glycolipids. Mol. Simul. 2008;34:349–364. PubMed PMC
Jämbeck J.P.M., Lyubartsev A.P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B. 2012;116:3164–3179. PubMed PMC
Šachl R., Mikhalyov I.I., et al. Johansson L.B.-Å.B.-Å. A comparative study on ganglioside micelles using electronic energy transfer, fluorescence correlation spectroscopy and light scattering techniques. Phys. Chem. Chem. Phys. 2009;11:4335–4343. PubMed
Sonnino S., Cantù L., et al. Venerando B. Aggregative properties of gangliosides in solution. Chem. Phys. Lipids. 1994;71:21–45. PubMed
Sonnino S., Cantu’ L., et al. Tettamanti G. Aggregation properties of GM3 ganglioside (II3Neu5AcLacCer) in aqueous solutions. Chem. Phys. Lipids. 1990;52:231–241. PubMed
Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 2008;9:125–138. PubMed
Puff N., Watanabe C., et al. Staneva G. Lo/Ld phase coexistence modulation induced by GM1. Biochim. Biophys. Acta - Biomembr. 2014;1838:2105–2114. PubMed
Liu Y., Barnoud J., Marrink S.J. Gangliosides destabilize lipid phase separation in multicomponent membranes. Biophys. J. 2019;117:1215–1223. PubMed PMC
Sarmento M.J., Hof M., Šachl R. Interleaflet coupling of lipid nanodomains—insights from in vitro systems. Front. Cell Dev. Biol. 2020;8:284. PubMed PMC
Blosser M.C., Honerkamp-Smith A.R., et al. Keller S.L. Transbilayer colocalization of lipid domains explained via measurement of strong coupling parameters. Biophys. J. 2015;109:2317–2327. PubMed PMC
Garg S., Rühe J., et al. Naumann C.A. Domain registration in raft-mimicking lipid mixtures studied using polymer-tethered lipid bilayers. Biophys. J. 2007;92:1263–1270. PubMed PMC
Kiessling V., Wan C., Tamm L.K. Domain coupling in asymmetric lipid bilayers. Biochim. Biophys. Acta - Biomembr. 2009;1788:64–71. PubMed PMC
Sezgin E., Can F.B., et al. Eggeling C. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J. Lipid Res. 2016;57:299–309. PubMed PMC
Bornhöfft K.F., Goldammer T., et al. Galuska S.P. Siglecs: a journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Dev. Comp. Immunol. 2018;86:219–231. PubMed
Ledeen R.W., Kopitz J., et al. Gabius H.-J.J. Progress in Molecular Biology and Translational Science. Academic Press; 2018. Glycan chains of gangliosides: functional ligands for tissue lectins (Siglecs/Galectins) pp. 289–324. PubMed
Which Moiety Drives Gangliosides to Form Nanodomains?
Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?