Unraveling the GM1 Specificity of Galectin‑1 Binding to Lipid Membranes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40556779
PubMed Central
PMC12183518
DOI
10.1021/acsbiomedchemau.5c00040
Knihovny.cz E-zdroje
- Klíčová slova
- GD1a, GM1, Kd determination, cross-linking, galectin-1, neuraminidase,
- Publikační typ
- časopisecké články MeSH
Galectin-1 (Gal-1) is a galactose-binding protein involved in various cellular functions. Gal-1's activity has been suggested to be connected to two molecular concepts, which are, however, lacking experimental proof: a) enhanced binding affinity of Gal-1 toward membranes containing monosialotetrahexosylganglioside (GM1) over disialoganglioside GD1a and b) cross-linking of GM1's by homodimers of Gal-1. We provide evidence about the specificity and the nature of the interaction of Gal-1 with model membranes containing GM1 or GD1a, employing a broad panel of fluorescence-based and label-free experimental techniques, complemented by atomistic biomolecular simulations. Our study demonstrates that Gal-1 indeed binds specifically to GM1 and not to GD1a when embedded in membranes over a wide range of concentrations (i.e., 30 nM to 20 μM). The apparent binding constant is about tens of micromoles. On the other hand, no evidence of Gal-1/GM1 cross-linking was observed. Our findings suggest that cross-linking does not result from sole interactions between GM1 and Gal-1, indicating that in a physiological context, additional triggers are needed, which shift the GM1/Gal-1 equilibria toward the membrane-bound homodimeric Gal-1.
Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P Gaifami 18 Catania 95126 Italy
Department of Physics University of Helsinki P O Box 64 Helsinki FI 00014 Finland
Zobrazit více v PubMed
Leffler, H. Mammalian Carbohydrate Recognition Systems: Galectins Structure and Functiona Synopsis; Springer: Berlin, Heidelberg, 2001; . 10.1007/978-3-540-46410-5_4. PubMed DOI
Dam T. K., Brewer F. C.. Maintenance of cell surface glycan density by lectin-glycan interactions: A homeostatic and innate immune regulatory mechanism. Glycobiology. 2010;20(9):1061–1064. doi: 10.1093/glycob/cwq084. PubMed DOI
Ilarregui J. M., Croci D. O., Bianco G. A., Toscano M. A., Salatino M., Vermeulen M. E., Geffner J. R., Rabinovich G. A.. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat. Immunol. 2009;10(9):981–991. doi: 10.1038/ni.1772. PubMed DOI
Rabinovich G. A., Croci D. O.. Regulatory Circuits Mediated by Lectin-Glycan Interactions in Autoimmunity and Cancer. Immunity. 2012;36(3):322–335. doi: 10.1016/j.immuni.2012.03.004. PubMed DOI
Thijssen V. L., Rabinovich G. A., Griffioen A. W.. Vascular galectins: Regulators of tumor progression and targets for cancer therapy. Cytokine Growth Factor Rev. 2013;24(6):547–558. doi: 10.1016/j.cytogfr.2013.07.003. PubMed DOI
Patterson, R. J. ; Haudek, K. C. ; Voss, P. G. ; Wang, J. L. . Examination of the Role of Galectins in Pre-mRNA Splicing. In Galectins: Methods and Protocols; Stowell, S. R. , Cummings, R. D. , Eds.; Humana Press Inc, 2015; Vol. 1207, pp 431–449. 10.1007/978-1-4939-1396-1_28.Methods in Molecular Biology PubMed DOI
Colin Hughes R.. Galectins as modulators of cell adhesion. Biochimie. 2001;83(7):667–676. doi: 10.1016/s0300-9084(01)01289-5. PubMed DOI
Rabinovich G. A., Ramhorst R. E., Rubinstein N., Corigliano A., Daroqui M. C., Kier-Joffé E. B., Fainboim L.. Induction of allogenic T-cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic mechanisms. Cell Death Differ. 2002;9(6):661–670. doi: 10.1038/sj.cdd.4401009. PubMed DOI
Zuñiga E., Rabinovich G. A., Iglesias M. M., Gruppi A.. Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J. Leukocyte Biol. 2001;70(1):73–79. doi: 10.1189/jlb.70.1.73. PubMed DOI
Liu F. T., Rabinovich G. A.. Galectins as modulators of tumour progression. Nat. Rev. Cancer. 2005;5(1):29–41. doi: 10.1038/nrc1527. PubMed DOI
Rabinovich G. A., Ilarregui J. M.. Conveying glycan information into T-cell homeostatic programs: a challenging role for galectin-1 in inflammatory and tumor microenvironments. Immunol. Rev. 2009;230:144–159. doi: 10.1111/j.1600-065X.2009.00787.x. PubMed DOI
Zúñiga E., Gruppi A., Hirabayashi J., Kasai K. I., Rabinovich G. A.. Regulated expression and effect of galectin-1 on Trypanosoma cruzi-infected macrophages:: Modulation of microbicidal activity and survival. Infect. Immun. 2001;69(11):6804–6812. doi: 10.1128/IAI.69.11.6804-6812.2001. PubMed DOI PMC
Rabinovich G. A., Gruppi A.. Galectins as immunoregulators during infectious processes: from microbial invasion to the resolution of the disease. Parasite Immunol. 2005;27(4):103–114. doi: 10.1111/j.1365-3024.2005.00749.x. PubMed DOI
Ilarregui J. M., Bianco G. A., Toscano M. A., Rabinovich G. A.. The coming of age of galectins as immunomodulatory agents: impact of these carbohydrate binding proteins in T cell physiology and chronic inflammatory disorders. Ann. Rheum. Dis. 2005;64:96–103. doi: 10.1136/ard.2005.044347. PubMed DOI PMC
Rabinovich G. A., Liu F. T., Hirashima M., Anderson A.. An emerging role for galectins in tuning the immune response: Lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand. J. Immunol. 2007;66(2–3):143–158. doi: 10.1111/j.1365-3083.2007.01986.x. PubMed DOI
Cooper D. N. W.. Galectinomics: finding themes in complexity. Biochim. Biophys. Acta, Gen. Subj. 2002;1572(2–3):209–231. doi: 10.1016/S0304-4165(02)00310-0. PubMed DOI
Guardia C. M. A., Gauto D. F., Di Lella S., Rabinovich G. A., Martí M. A., Estrin D. A.. An Integrated Computational Analysis of the Structure, Dynamics, and Ligand Binding Interactions of the Human Galectin Network. J. Chem. Inf. Model. 2011;51(8):1918–1930. doi: 10.1021/ci200180h. PubMed DOI
Hirabayashi J., Kasai K.. The family of metazoan metal-independent beta-galactoside-binding lectins - structure, function and molecular evolution. Glycobiology. 1993;3(4):297–304. doi: 10.1093/glycob/3.4.297. PubMed DOI
Kopitz J., André S., von Reitzenstein C., Versluis K., Kaltner H., Pieters R. J., Wasano K., Kuwabara I., Liu F. T., Cantz M.. et al. Homodimeric galectin-7 (p53-induced gene 1) is a negative growth regulator for human neuroblastoma cells. Oncogene. 2003;22(40):6277–6288. doi: 10.1038/sj.onc.1206631. PubMed DOI
Morris S., Ahmad N., André S., Kaltner H., Gabius H. J., Brenowitz M., Brewer F.. Quaternary solution structures of galectins-1,-3, and-7. Glycobiology. 2004;14(3):293–300. doi: 10.1093/glycob/cwh029. PubMed DOI
Stowell S. R., Dias-Baruffi M., Penttilä L., Renkonen O., Nyame A. K., Cummings R. D.. Human galectin-1 recognition of poly-N-acetyllactosamine and chimeric polysaccharides. Glycobiology. 2004;14(2):157–167. doi: 10.1093/glycob/cwh018. PubMed DOI
Guo Z. W.. Ganglioside GM1 and the Central Nervous System. Int. J. Mol. Sci. 2023;24(11):9558. doi: 10.3390/ijms24119558. PubMed DOI PMC
Galleguillos D., Wang Q., Steinberg N., Zaidi A., Shrivastava G., Dhami K., Daskhan G. C., Schmidt E. N., Dworsky-Fried Z., Giuliani F.. et al. Anti-inflammatory role of GM1 and other gangliosides on microglia. J. Neuroinflamm. 2022;19(1):18. doi: 10.1186/s12974-021-02374-x. PubMed DOI PMC
Wang J. F., Lu Z. H., Gabius H. J., Rohowsky-Kochan C., Ledeen R. W., Wu G. S.. Cross-Linking of GM1 Ganglioside by Galectin-1 Mediates Regulatory T Cell Activity Involving TRPC5 Channel Activation: Possible Role in Suppressing Experimental Autoimmune Encephalomyelitis. J. Immunol. 2009;182(7):4036–4045. doi: 10.4049/jimmunol.0802981. PubMed DOI
Blaser C., Kaufmann M., Müller C., Zimmermann C., Wells V., Mallucci L., Pircher H.. β-galactoside binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur. J. Immunol. 1998;28(8):2311–2319. doi: 10.1002/(SICI)1521-4141(199808)28:08<2311::AID-IMMU2311>3.0.CO;2-G. PubMed DOI
Fuertes M. B., Molinero L. L., Toscano M. A., Ilarregui J. M., Rubinstein N., Fainboim L., Zwirner N. W., Rabinovich G. A.. Regulated expression of galectin-1 during T-cell activation involves Lck and Fyn kinases and signaling through MEK1/ERK, p38 MAP kinase and p70S6 kinase. Mol. Cell. Biochem. 2004;267(1–2):177–185. doi: 10.1023/B:MCBI.0000049376.50242.7f. PubMed DOI
Wu G. S., Lu Z. H., André S., Gabius H. J., Ledeen R. W.. Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca2+ influx. J. Neurochem. 2016;136(3):550–563. doi: 10.1111/jnc.13418. PubMed DOI PMC
Ledeen, R. W. ; Kopitz, J. ; Abad-Rodríguez, J. ; Gabius, H. J. . Glycan Chains of Gangliosides: Functional Ligands for Tissue Lectins (Siglecs/Galectins). In Gangliosides in Health and Disease; Schnaar, R. L. , Lopez, P. H. H. , Eds.; Elsevier Academic Press Inc, 2018; Vol. 156, pp 289–324.Progress in Molecular Biology and Translational Science PubMed
Kopitz J., von Reitzenstein C., Burchert M., Cantz M., Gabius H. J.. Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J. Biol. Chem. 1998;273(18):11205–11211. doi: 10.1074/jbc.273.18.11205. PubMed DOI
Hirabayashi J., Hashidate T., Arata Y., Nishi N., Nakamura T., Hirashima M., Urashima T., Oka T., Futai M., Muller W. E. G.. et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta, Gen. Subj. 2002;1572(2–3):232–254. doi: 10.1016/S0304-4165(02)00311-2. PubMed DOI
Siebert H. C., André S., Lu S. Y., Frank M., Kaltner H., van Kuik J. A., Korchagina E. Y., Bovin N., Tajkhorshid E., Kaptein R.. et al. Unique conformer selection of human growth-regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins. Biochemistry. 2003;42(50):14762–14773. doi: 10.1021/bi035477c. PubMed DOI
Bian C., Zhang Y., Sun H., Li D., Wang D.. Structural Basis for Distinct Binding Properties of the Human Galectins to Thomsen-Friedenreich Antigen. PLoS One. 2011;6(9):e25007. doi: 10.1371/journal.pone.0025007. PubMed DOI PMC
Majewski J., André S., Jones E., Chi E., Gabius H. J.. X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPE-GM1 lipid monolayer at an air/water interface. Biochemistry. 2015;80(7):943–956. doi: 10.1134/S0006297915070135. PubMed DOI
Zhang S. D., Moussodia R. O., Murzeau C., Sun H. J., Klein M. L., Vértesy S., André S., Roy R., Gabius H. J., Percec V.. Dissecting Molecular Aspects of Cell Interactions Using Glycodendrimersomes with Programmable Glycan Presentation and Engineered Human Lectins. Angew. Chem., Int. Ed. Engl. 2015;54(13):4036–4040. doi: 10.1002/anie.201410882. PubMed DOI
Kopitz J., Xiao Q., Ludwig A. K., Romero A., Michalak M., Sherman S. E., Zhou X. H., Dazen C., Vértesy S., Kaltner H.. et al. Reaction of a Programmable Glycan Presentation of Glycodendrimersomes and Cells with Engineered Human Lectins To Show the Sugar Functionality of the Cell Surface. Angew. Chem., Int. Ed. Engl. 2017;56(46):14677–14681. doi: 10.1002/anie.201708237. PubMed DOI
Gupta D., Cho M. J., Cummings R. D., Brewer C. F.. Thermodynamics of carbohydrate binding to galectin-1 from Chinese hamster ovary cells and two mutants. A comparison with four galactose-specific plant lectins. Biochemistry. 1996;35(48):15236–15243. doi: 10.1021/bi961458+. PubMed DOI
Belardi B., O’Donoghue G. P., Smith A. W., Groves J. T., Bertozzi C. R.. Investigating Cell Surface Galectin-Mediated Cross-Linking on Glycoengineered Cells. J. Am. Chem. Soc. 2012;134(23):9549–9552. doi: 10.1021/ja301694s. PubMed DOI PMC
Möckl L.. The Emerging Role of the Mammalian Glycocalyx in Functional Membrane Organization and Immune System Regulation. Front. Cell Dev. Biol. 2020;8:14. doi: 10.3389/fcell.2020.00253. PubMed DOI PMC
Macdonald R. C., Macdonald R. I., Menco B. P. M., Takeshita K., Subbarao N. K., Hu L. R.. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta. 1991;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-J. PubMed DOI
Angelova M. I., Soleau S., Meleard P., Faucon J. F., Bothorel P.. Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Trends in Colloid and Interface Science Vi. 1992;89:127–131. doi: 10.1007/BFb0116295. DOI
Stöckl M. T., Herrmann A.. Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy. Biochim. Biophys. Acta, Biomembr. 2010;1798(7):1444–1456. doi: 10.1016/j.bbamem.2009.12.015. PubMed DOI
Höök F., Vörös J., Rodahl M., Kurrat R., Böni P., Ramsden J. J., Textor M., Spencer N. D., Tengvall P., Gold J.. et al. A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf., B. 2002;24(2):155–170. doi: 10.1016/S0927-7765(01)00236-3. DOI
Keller C. A., Kasemo B.. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 1998;75(3):1397–1402. doi: 10.1016/S0006-3495(98)74057-3. PubMed DOI PMC
Sgarlata C., Zito V., Arena G.. Conditions for calibration of an isothermal titration calorimeter using chemical reactions. Anal. Bioanal. Chem. 2013;405(2–3):1085–1094. doi: 10.1007/s00216-012-6565-7. PubMed DOI
Demarse N. A., Quinn C. F., Eggett D. L., Russell D. J., Hansen L. D.. Calibration of nanowatt isothermal titration calorimeters with overflow reaction vessels. Anal. Biochem. 2011;417(2):247–255. doi: 10.1016/j.ab.2011.06.014. PubMed DOI
Wadsö I., Wadsö L.. Systematic errors in isothermal micro- and nanocalorimetry. J. Therm. Anal. Calorim. 2005;82(3):553–558. doi: 10.1007/s10973-005-0933-x. DOI
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B. L., Grubmuller H., MacKerell A. D.. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017;14(1):71–73. doi: 10.1038/nmeth.4067. PubMed DOI PMC
Hoover W. G.. Canonical dynamics - equilibrium phase-space distributions. Phys. Rev. A. 1985;31(3):1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI
Nose S.. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984;81(1):511–519. doi: 10.1063/1.447334. DOI
Parrinello M., Rahman A.. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52(12):7182–7190. doi: 10.1063/1.328693. DOI
Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E.. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Torrie G. M., Valleau J. P.. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977;23(2):187–199. doi: 10.1016/0021-9991(77)90121-8. DOI
Torrie G. M., Valleau J. P.. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 1974;28(4):578–581. doi: 10.1016/0009-2614(74)80109-0. DOI
Meng Y. L., Roux B.. Efficient Determination of Free Energy Landscapes in Multiple Dimensions from Biased Umbrella Sampling Simulations Using Linear Regression. J. Chem. Theory Comput. 2015;11(8):3523–3529. doi: 10.1021/ct501130r. PubMed DOI PMC
Rubin D. B.. The Bayesian Bootstrap. Ann. Stat. 1981;9(1):130–134. doi: 10.1214/aos/1176345338. DOI
Amaro M., Sachl R., Aydogan G., Mikhalyov I. I., Vácha R., Hof M.. GM1 Ganglioside Inhibits β-Amyloid Oligomerization Induced by Sphingomyelin. Angew. Chem., Int. Ed. 2016;55(32):9411–9415. doi: 10.1002/anie.201603178. PubMed DOI PMC
Tettamanti, G. ; Anastasia, L. . Chemistry, Tissue and Cellular Distribution, and Developmental Profiles of Neural Sphingolipids; Springer US, 2010.
Davidovic D., Kukulka M., Sarmento M., Mikhalyov I., Gretskaya N., Chmelová B., Ricardo J., Hof M., Cwiklik L., Sachl R.. Which Moiety Drives Gangliosides to Form Nanodomains? J. Phys. Chem. Lett. 2023;14:5791–5797. doi: 10.1021/acs.jpclett.3c00761. PubMed DOI PMC
Sarmento M., Owen M., Ricardo J., Chmelová B., Davidovic D., Mikhalyov I., Gretskaya N., Hof M., Amaro M., Vácha R.. et al. The impact of the glycan headgroup on the nanoscopic segregation of gangliosides. Biophys. J. 2021;120:5530–5543. doi: 10.1016/j.bpj.2021.11.017. PubMed DOI PMC
Yin L., Wang W., Wang S., Zhang F., Zhang S., Tao N.. How does fluorescent labeling affect the binding kinetics of proteins with intact cells? Biosens. Bioelectron. 2015;66:412–416. doi: 10.1016/j.bios.2014.11.036. PubMed DOI PMC
Legrand D., Mazurier J., Maes P., Rochard E., Montreuil J., Spik G.. Inhibition of the specific binding of human lactotransferrin to human peripheral-blood phytohemagglutinin-stimulated lymphocytes by fluorescein labeling and location of the binding-site. Biochem. J. 1991;276:733–738. doi: 10.1042/bj2760733. PubMed DOI PMC
Maes V., Hultsch C., Kohl S., Bergmann R., Hanke T., Tourwé D.. Fluorescein-labeled stable neurotensin derivatives. J. Pept. Sci. 2006;12(8):505–508. doi: 10.1002/psc.757. PubMed DOI
Dixon M. C.. Quartz Crystal Microbalance with Dissipation Monitoring: Enabling Real-Time Characterization of Biological Materials and Their Interactions. J. Biomol. Technol. 2008;19(3):151–158. PubMed PMC
Su Q., Vogt S., Nöll G.. Langmuir Analysis of the Binding Affinity and Kinetics for Surface Tethered Duplex DNA and a Ligand-Apoprotein Complex. Langmuir. 2018;34(49):14738–14748. doi: 10.1021/acs.langmuir.7b04347. PubMed DOI
Jecklin M. C., Schauer S., Dumelin C. E., Zenobi R.. Label-free determination of protein–ligand binding constants using mass spectrometry and validation using surface plasmon resonance and isothermal titration calorimetry. J. Mol. Recognit. 2009;22(4):319–329. doi: 10.1002/jmr.951. PubMed DOI
Myszka D. G.. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr. Opin. Biotechnol. 1997;8(1):50–57. doi: 10.1016/S0958-1669(97)80157-7. PubMed DOI
Cho W. W., Bittova L., Stahelin R. V.. Membrane binding assays for peripheral proteins. Anal. Biochem. 2001;296(2):153–161. doi: 10.1006/abio.2001.5225. PubMed DOI
Arena G., Gans P., Sgarlata C.. HypCal, a general-purpose computer program for the determination of standard reaction enthalpy and binding constant values by means of calorimetry. Anal. Bioanal. Chem. 2016;408(23):6413–6422. doi: 10.1007/s00216-016-9759-6. PubMed DOI
Bertuzzi S., Gimeno A., Núñez-Franco R., Bernardo-Seisdedos G., Delgado S., Jiménez-Osés G., Millet O., Jiménez-Barbero J., Ardá A.. Unravelling the Time Scale of Conformational Plasticity and Allostery in Glycan Recognition by Human Galectin-1. Chem.Eur. J. 2020;26(67):15643–15653. doi: 10.1002/chem.202003212. PubMed DOI PMC
Ahmad N., Gabius H. J., Sabesan S., Oscarson S., Brewer C. F.. Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3. Glycobiology. 2004;14(9):817–825. doi: 10.1093/glycob/cwh095. PubMed DOI
Jelesarov I., Bosshard H. R.. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 1999;12(1):3–18. doi: 10.1002/(SICI)1099-1352(199901/02)12:1<3::AID-JMR441>3.0.CO;2-6. PubMed DOI
Bourne Y., Bolgiano B., Liao D., Strecker G., Cantau P., Herzberg O., Feizi T., Cambillau C.. Cross-linking of mammalian lectin (galectin-1) by complex biantennary saccharides. Nat. Struct. Biol. 1994;1:863–870. doi: 10.1038/nsb1294-863. PubMed DOI
Johannes L., Jacob R., Leffler H.. Galectins at a glance. J. Cell Sci. 2018;131(9):9. doi: 10.1242/jcs.208884. PubMed DOI
Salomonsson E., Larumbe A., Tejler J., Tullberg E., Rydberg H., Sundin A., Khabut A., Frejd T., Lobsanov Y. D., Rini J. M.. et al. Monovalent Interactions of Galectin-1. Biochemistry. 2010;49(44):9518–9532. doi: 10.1021/bi1009584. PubMed DOI
Cho M., Cummings R. D.. Characterization of monomeric forms of galectin-1 generated by site-directed mutagenesis. Biochemistry. 1996;35(40):13081–13088. doi: 10.1021/bi961181d. PubMed DOI
Cho M. J., Cummings R. D.. Galectin-1, a beta-galactoside-binding lectin in chinese-hamster ovary cells 0.2. Localization and biosynthesis. J. Biol. Chem. 1995;270(10):5207–5212. doi: 10.1074/jbc.270.10.5207. PubMed DOI
Cho M. J., Cummings R. D.. Galectin-1, a beta-galactoside-binding lectin in chinese-hamster ovary cells 0.1. Physical and chemical characterization. J. Biol. Chem. 1995;270(10):5198–5206. doi: 10.1074/jbc.270.10.5198. PubMed DOI
Lindstedt R., Apodaca G., Barondes S. H., Mostov K. E., Leffler H.. Apical secretion of a cytosolic protein by madin-darby canine kidney-cells - evidence for polarized release of an endogenous lectin by a nonclassical secretory pathway. J. Biol. Chem. 1993;268(16):11750–11757. doi: 10.1016/S0021-9258(19)50263-0. PubMed DOI
Stowell S. R., Cho M. J., Feasley C. L., Arthur C. M., Song X. Z., Colucci J. K., Karmakar S., Mehta P., Dias-Baruffi M., McEver R. P.. et al. Ligand Reduces Galectin-1 Sensitivity to Oxidative Inactivation by Enhancing Dimer Formation. J. Biol. Chem. 2009;284(8):4989–4999. doi: 10.1074/jbc.M808925200. PubMed DOI PMC
Nesmelova I. V., Ermakova E., Daragan V. A., Pang M., Menéndez M., Lagartera L., Solís D., Baum L. G., Mayo K. H.. Lactose Binding to Galectin-1 Modulates Structural Dynamics, Increases Conformational Entropy, and Occurs with Apparent Negative Cooperativity. J. Mol. Biol. 2010;397(5):1209–1230. doi: 10.1016/j.jmb.2010.02.033. PubMed DOI
Di Lella S., Martí M. A., Croci D. O., Guardia C. M. A., Díaz-Ricci J. C., Rabinovich G. A., Caramelo J. J., Estrin D. A.. Linking the Structure and Thermal Stability of β-Galactoside-Binding Protein Galectin-1 to Ligand Binding and Dimerization Equilibria. Biochemistry. 2010;49(35):7652–7658. doi: 10.1021/bi100356g. PubMed DOI
He J. L., Baum L. G.. Presentation of galectin-1 by extracellular matrix triggers T cell death. J. Biol. Chem. 2004;279(6):4705–4712. doi: 10.1074/jbc.M311183200. PubMed DOI
Matsuo I., Kimura-Yoshida C.. Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis. Philos. Trans. R. Soc., B. 2014;369(1657):20130545. doi: 10.1098/rstb.2013.0545. PubMed DOI PMC