Which Moiety Drives Gangliosides to Form Nanodomains?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37327454
PubMed Central
PMC10316399
DOI
10.1021/acs.jpclett.3c00761
Knihovny.cz E-zdroje
- MeSH
- G(M1) gangliosid MeSH
- gangliosidy * chemie MeSH
- glykosfingolipidy MeSH
- sfingomyeliny * MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- G(M1) gangliosid MeSH
- gangliosidy * MeSH
- glykosfingolipidy MeSH
- sfingomyeliny * MeSH
Gangliosides are important glycosphingolipids involved in a multitude of physiological functions. From a physicochemical standpoint, this is related to their ability to self-organize into nanoscopic domains, even at molar concentrations of one per 1000 lipid molecules. Despite recent experimental and theoretical efforts suggesting that a hydrogen bonding network is crucial for nanodomain stability, the specific ganglioside moiety decisive for the development of these nanodomains has not yet been identified. Here, we combine an experimental technique achieving nanometer resolution (Förster resonance energy transfer analyzed by Monte Carlo simulations) with atomistic molecular dynamic simulations to demonstrate that the sialic acid (Sia) residue(s) at the oligosaccharide headgroup dominates the hydrogen bonding network between gangliosides, driving the formation of nanodomains even in the absence of cholesterol or sphingomyelin. Consequently, the clustering pattern of asialoGM1, a Sia-depleted glycosphingolipid bearing three glyco moieties, is more similar to that of structurally distant sphingomyelin than that of the closely related gangliosides GM1 and GD1a with one and two Sia groups, respectively.
Faculty of Chemistry Jagiellonian University Gronostajowa 2 30 387 Krakow Poland
Faculty of Mathematics and Physics Charles University Ke Karlovu 2027 3 121 16 Prague Czech Republic
Faculty of Science Charles University Hlavova 8 128 40 Prague Czech Republic
Zobrazit více v PubMed
Sarmento M. J.; Ricardo J. C.; Amaro M.; Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett. 2020, 594 (22), 3668–3697. 10.1002/1873-3468.13871. PubMed DOI
Schnaar R. L.; Gerardy-Schahn R.; Hildebrandt H. Sialic acids in the brain: Gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev. 2014, 94 (2), 461–518. 10.1152/physrev.00033.2013. PubMed DOI PMC
Sonnino S.; Chiricozzi E.; Grassi S.; Mauri L.; Prioni S.; Prinetti A.. Gangliosides in Membrane Organization. In Gangliosides in Health and Disease; Schnaar R. L., Lopez P. H. H., Eds.; Progress in Molecular Biology and Translational Science, Vol. 156; Elsevier Academic Press Inc., 2018; pp 83–120. PubMed
Posse De Chaves E.; Sipione S. Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett. 2010, 584 (9), 1748–1759. 10.1016/j.febslet.2009.12.010. PubMed DOI
Schauer R. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 2009, 19 (5), 507–514. 10.1016/j.sbi.2009.06.003. PubMed DOI PMC
Šachl R.; Amaro M.; Aydogan G.; Koukalová A.; Mikhalyov I. I.; Boldyrev I. A.; Humpolíčková J.; Hof M. On multivalent receptor activity of GM1 in cholesterol containing membranes. Biochim. Biophys. Acta-Mol. Cell Res. 2015, 1853 (4), 850–857. 10.1016/j.bbamcr.2014.07.016. PubMed DOI
Sonnino S.; Prinette A.. Gangliosides as Regulators of Cell Membrane Organization and Functions. In Sphingolipids as Signaling and Regulatory Molecules; Chalfant C., DelPoeta M., Eds.; Advances in Experimental Medicine and Biology, Vol. 688; Springer-Verlag: Berlin, 2010; pp 165–184. PubMed
Salminen A.; Kaarniranta K. Siglec receptors and hiding plaques in Alzheimer’s disease. J. Mol. Med. 2009, 87 (7), 697–701. 10.1007/s00109-009-0472-1. PubMed DOI
Ariga T. Pathogenic Role of Ganglioside Metabolism in Neurodegenerative Diseases. J. Neurosci. Res. 2014, 92 (10), 1227–1242. 10.1002/jnr.23411. PubMed DOI
Cutillo G.; Saariaho A. H.; Meri S. Physiology of gangliosides and the role of antiganglioside antibodies in human diseases. Cell. Mol. Immunol. 2020, 17 (4), 313–322. 10.1038/s41423-020-0388-9. PubMed DOI PMC
Sipione S.; Monyror J.; Galleguillos D.; Steinberg N.; Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front. Neurosci. 2020, 14, 24.10.3389/fnins.2020.572965. PubMed DOI PMC
Cebecauer M.; Amaro M.; Jurkiewicz P.; Sarmento M. J.; Šachl R.; Cwiklik L.; Hof M. Membrane Lipid Nanodomains. Chem. Rev. 2018, 118 (23), 11259–11297. 10.1021/acs.chemrev.8b00322. PubMed DOI
Spillane K. M.; Ortega-Arroyo J.; De Wit G.; Eggeling C.; Ewers H.; Wallace M. I.; Kukura P. High-Speed Single-Particle Tracking of GM1 in Model Membranes Reveals Anomalous Diffusion due to Interleaflet Coupling and Molecular Pinning. Nano Lett. 2014, 14 (9), 5390–5397. 10.1021/nl502536u. PubMed DOI PMC
Sezgin E.; Schneider F.; Galiani S.; Urbančič I.; Waithe D.; Lagerholm B. C.; Eggeling C. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS. Nat. Protoc. 2019, 14 (4), 1054–1083. 10.1038/s41596-019-0127-9. PubMed DOI
Amaro M.; Šachl R.; Aydogan G.; Mikhalyov I. I.; Vachá R.; Hof M. GM1 Ganglioside Inhibits β-Amyloid Oligomerization Induced by Sphingomyelin. Angew. Chem., Int. Ed. 2016, 55, 9411–9415. 10.1002/anie.201603178. PubMed DOI PMC
Shi J.; Yang t.; Kataoka S.; Zhang Y.; Diaz J. A.; Cremer S. P. GM 1 Clustering Inhibits Cholera Toxin Binding in Supported Phospholipid Membranes. J. Am. Chem. Soc. 2007, 129 (18), 5954–5961. 10.1021/ja069375w. PubMed DOI PMC
Sezgin E.; Levental I.; Mayor S.; Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 2017, 18 (6), 361–374. 10.1038/nrm.2017.16. PubMed DOI PMC
Sibold J.; Kettelhoit K.; Vuong L.; Liu F.; Werz D. B.; Steinem C. Synthesis of Gb 3 Glycosphingolipids with Labeled Head Groups: Distribution in Phase-Separated Giant Unilamellar Vesicles. Angew. Chem., Int. Ed. 2019, 58 (49), 17805–17813. 10.1002/anie.201910148. PubMed DOI PMC
Wang C.; Yu Y. M.; Regen S. L. Lipid Raft Formation: Key Role of Polyunsaturated Phospholipids. Angew. Chem.-Int. Ed. 2017, 56 (6), 1639–1642. 10.1002/anie.201611367. PubMed DOI
Simons K.; Ikonen E. Functional rafts in cell membranes. Nature 1997, 387 (6633), 569–572. 10.1038/42408. PubMed DOI
Sarmento M. J.; Owen M. C.; Ricardo J. C.; Chmelová B.; Davidović D.; Mikhalyov I.; Gretskaya N.; Hof M.; Amaro M.; Vácha R.; et al. The impact of the glycan headgroup on the nanoscopic segregation of gangliosides. Biophys. J. 2021, 120 (24), 5530–5543. 10.1016/j.bpj.2021.11.017. PubMed DOI PMC
Schneider F.; Waithe D.; Clausen M. P.; Galiani S.; Koller T.; Ozhan G.; Eggeling C.; Sezgin E. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Mol. Biol. Cell 2017, 28 (11), 1507–1518. 10.1091/mbc.e16-07-0536. PubMed DOI PMC
Suzuki K. G. N.; Ando H.; Komura N.; Fujiwara T. K.; Kiso M.; Kusumi A. Development of new ganglioside probes and unraveling of raft domain structure by single-molecule imaging. Biochim. Biophys. Acta-Gen. Subj. 2017, 1861 (10), 2494–2506. 10.1016/j.bbagen.2017.07.012. PubMed DOI
Štefl M.; Šachl R.; Humpolíčková J.; Cebecauer M.; Macháň R.; Kolářová M.; Johansson L. B. A.; Hof M. Dynamics and Size of Cross-Linking-Induced Lipid Nanodomains in Model Membranes. Biophys. J. 2012, 102 (9), 2104–2113. 10.1016/j.bpj.2012.03.054. PubMed DOI PMC
Frey S. L.; Lee K. Y. C. Number of Sialic Acid Residues in Ganglioside Headgroup Affects Interactions with Neighboring Lipids. Biophys. J. 2013, 105 (6), 1421–1431. 10.1016/j.bpj.2013.07.051. PubMed DOI PMC
Bordi F.; De Luca F.; Cametti C.; Naglieri A.; Misasi R.; Sorice M. Interactions of mono- and di-sialogangliosides with phospholipids in mixed monolayers at air-water interface. Colloid Surf. B-Biointerfaces 1999, 13 (3), 135–142. 10.1016/S0927-7765(99)00009-0. DOI
Jordan L. R.; Blauch M. E.; Baxter A. M.; Cawley J. L.; Wittenberg N. J. Influence of brain gangliosides on the formation and properties of supported lipid bilayers. Colloids Surf., B 2019, 183, 110442.10.1016/j.colsurfb.2019.110442. PubMed DOI
Khatun U. L.; Gayen A.; Mukhopadhyay C. Gangliosides containing different numbers of sialic acids affect the morphology and structural organization of isotropic phospholipid bicelles. Chem. Phys. Lipids 2013, 170, 8–18. 10.1016/j.chemphyslip.2013.02.009. PubMed DOI
Mori K.; Mahmood M. I.; Neya S.; Matsuzaki K.; Hoshino T. Formation of GM1 Ganglioside Clusters on the Lipid Membrane Containing Sphingomyeline and Cholesterol. J. Phys. Chem. B 2012, 116 (17), 5111–5121. 10.1021/jp207881k. PubMed DOI
Owen M. C.; Karner A.; Šachl R.; Preiner J.; Amaro M.; Vácha R. Force Field Comparison of GM1 in a DOPC Bilayer Validated with AFM and FRET Experiments. J. Phys. Chem. B 2019, 123 (35), 7504–7517. 10.1021/acs.jpcb.9b05095. PubMed DOI
Cantu L.; Corti M.; Acquotti D.; Sonnino S. Aggregation properties of gangliosides - influence of the primary and secondary structure of the headgroup. J. Phys. IV 1993, 3 (C1), 57–64. 10.1051/jp4:1993106. DOI
Cantú L.; Del Favero E.; Brocca P.; Corti M. Multilevel structuring of ganglioside-containing aggregates: From simple micelles to complex biomimetic membranes. Adv. Colloid Interface Sci. 2014, 205, 177–186. 10.1016/j.cis.2013.10.016. PubMed DOI
Arumugam S.; Schmieder S.; Pezeshkian W.; Becken U.; Wunder C.; Chinnapen D.; Ipsen J. H.; Kenworthy A. K.; Lencer W.; Mayor S.; Johannes L. Ceramide structure dictates glycosphingolipid nanodomain assembly and function. Nat. Commun. 2021, 12 (1), 3675.10.1038/s41467-021-23961-9. PubMed DOI PMC
Ohmi Y.; Tajima O.; Ohkawa Y.; Yamauchi Y.; Sugiura Y.; Furukawa K.; Furukawa K. Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J. Neurochem. 2011, 116 (5), 926–935. 10.1111/j.1471-4159.2010.07067.x. PubMed DOI
Rahmann H. Brain gangliosides and memory formation. Behav. Brain Res. 1995, 66 (1–2), 105–116. 10.1016/0166-4328(94)00131-X. PubMed DOI
Vinklárek I. S.; Vel’as L.; Riegerová P.; Skála K.; Mikhalyov I.; Gretskaya N.; Hof M.; Šachl R. Experimental Evidence of the Existence of Interleaflet Coupled Nanodomains: An MC-FRET Study. J. Phys. Chem. Lett. 2019, 10 (9), 2024–2030. 10.1021/acs.jpclett.9b00390. PubMed DOI
Chmelová B.; Davidović D.; Šachl R. Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?. Biophys. J. 2023, 122, 2053–2067. 10.1016/j.bpj.2022.11.014. PubMed DOI PMC
Koukalová A.; Amaro M.; Aydogan G.; Gröbner G.; Williamson P. T. F.; Mikhalyov I.; Hof M.; Šachl R. Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered. Sci. Rep. 2017, 7, 12.10.1038/s41598-017-05539-y. PubMed DOI PMC
Šachl R.; Johansson L. B. A.; Hof M. Forster Resonance Energy Transfer (FRET) between Heterogeneously Distributed Probes: Application to Lipid Nanodomains and Pores. Int. J. Mol. Sci. 2012, 13 (12), 16141–16156. 10.3390/ijms131216141. PubMed DOI PMC
Šachl R.; Humpolíčková J.; Štefl M.; Johansson L. B. A.; Hof M. Limitations of Electronic Energy Transfer in the Determination of Lipid Nanodomain Sizes. Biophys. J. 2011, 101 (11), L60–L62. 10.1016/j.bpj.2011.11.001. PubMed DOI PMC
Masserini M.; Freire E. Thermotropic characterization of phosphatidylcholine vesicles containing ganglioside Gm1 with homogeneous ceramide chain length. Biochemistry 1986, 25 (5), 1043–1049. 10.1021/bi00353a014. PubMed DOI
Masserini M.; Palestini P.; Venerando B.; Fiorilli A.; Acquotti D.; Tettamanti G. Interactions of proteins with ganglioside-enriched microdomains on the membrane: the lateral phase separation of molecular species of GD1a ganglioside, having homogeneous long-chain base composition, is recognized by Vibrio cholerae sialidase. Biochemistry 1988, 27 (20), 7973–7978. 10.1021/bi00420a057. PubMed DOI
Masserini M.; Palestini P.; Freire E. Influence of glycolipid oligosaccharide and long-chain base composition on the thermotropic properties of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides. Biochemistry 1989, 28 (12), 5029–5034. 10.1021/bi00438a019. PubMed DOI
Pascher I. Molecular arrangements in sphingolipids Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochimica et Biophysica Acta (BBA) - Biomembranes 1976, 455 (2), 433–451. 10.1016/0005-2736(76)90316-3. PubMed DOI
Gu R.-X.; Ingólfsson H. I.; De Vries A. H.; Marrink S. J.; Tieleman D. P. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations. J. Phys. Chem. B 2017, 121 (15), 3262–3275. 10.1021/acs.jpcb.6b07142. PubMed DOI PMC
Van Meer G.; Voelker D. R.; Feigenson G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9 (2), 112–124. 10.1038/nrm2330. PubMed DOI PMC
Sampaio J. L.; Gerl M. J.; Klose C.; Ejsing C. S.; Beug H.; Simons K.; Shevchenko A. Membrane lipidome of an epithelial cell line. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (5), 1903–1907. 10.1073/pnas.1019267108. PubMed DOI PMC
Han X.; Gross R. W. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc. Natl. Acad. Sci. U. S. A. 1994, 91 (22), 10635–10639. 10.1073/pnas.91.22.10635. PubMed DOI PMC
Symons J. L.; Cho K.-J.; Chang J. T.; Du G.; Waxham M. N.; Hancock J. F.; Levental I.; Levental K. R. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter 2021, 17 (2), 288–297. 10.1039/D0SM00404A. PubMed DOI PMC
Buwaneka P.; Ralko A.; Liu S.-L.; Cho W. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J. Lipid Res. 2021, 62, 100084.10.1016/j.jlr.2021.100084. PubMed DOI PMC
Prinetti A.; Loberto N.; Chigorno V.; Sonnino S. Glycosphingolipid behaviour in complex membranes. Biochim. Biophys. Acta-Biomembr. 2009, 1788 (1), 184–193. 10.1016/j.bbamem.2008.09.001. PubMed DOI
Wang J.; Chen Y.-L.; Li Y.-K.; Chen D.-K.; He J.-F.; Yao N. Functions of Sphingolipids in Pathogenesis During Host-Patogen Interactions. Front. Microbiol. 2021, 12, 701041.10.3389/fmicb.2021.701041. PubMed DOI PMC
Perez-Zsolt D.; Martinez-Picado J.; Izquierdo-Useros N. When Dendritic Cells Go Viral: The Role of Siglec-1 in Host Defense and Dissemination of Enveloped Viruses. Viruses 2020, 12 (1), 8.10.3390/v12010008. PubMed DOI PMC