Which Moiety Drives Gangliosides to Form Nanodomains?

. 2023 Jun 29 ; 14 (25) : 5791-5797. [epub] 20230616

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37327454

Gangliosides are important glycosphingolipids involved in a multitude of physiological functions. From a physicochemical standpoint, this is related to their ability to self-organize into nanoscopic domains, even at molar concentrations of one per 1000 lipid molecules. Despite recent experimental and theoretical efforts suggesting that a hydrogen bonding network is crucial for nanodomain stability, the specific ganglioside moiety decisive for the development of these nanodomains has not yet been identified. Here, we combine an experimental technique achieving nanometer resolution (Förster resonance energy transfer analyzed by Monte Carlo simulations) with atomistic molecular dynamic simulations to demonstrate that the sialic acid (Sia) residue(s) at the oligosaccharide headgroup dominates the hydrogen bonding network between gangliosides, driving the formation of nanodomains even in the absence of cholesterol or sphingomyelin. Consequently, the clustering pattern of asialoGM1, a Sia-depleted glycosphingolipid bearing three glyco moieties, is more similar to that of structurally distant sphingomyelin than that of the closely related gangliosides GM1 and GD1a with one and two Sia groups, respectively.

Zobrazit více v PubMed

Sarmento M. J.; Ricardo J. C.; Amaro M.; Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett. 2020, 594 (22), 3668–3697. 10.1002/1873-3468.13871. PubMed DOI

Schnaar R. L.; Gerardy-Schahn R.; Hildebrandt H. Sialic acids in the brain: Gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev. 2014, 94 (2), 461–518. 10.1152/physrev.00033.2013. PubMed DOI PMC

Sonnino S.; Chiricozzi E.; Grassi S.; Mauri L.; Prioni S.; Prinetti A.. Gangliosides in Membrane Organization. In Gangliosides in Health and Disease; Schnaar R. L., Lopez P. H. H., Eds.; Progress in Molecular Biology and Translational Science, Vol. 156; Elsevier Academic Press Inc., 2018; pp 83–120. PubMed

Posse De Chaves E.; Sipione S. Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett. 2010, 584 (9), 1748–1759. 10.1016/j.febslet.2009.12.010. PubMed DOI

Schauer R. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 2009, 19 (5), 507–514. 10.1016/j.sbi.2009.06.003. PubMed DOI PMC

Šachl R.; Amaro M.; Aydogan G.; Koukalová A.; Mikhalyov I. I.; Boldyrev I. A.; Humpolíčková J.; Hof M. On multivalent receptor activity of GM1 in cholesterol containing membranes. Biochim. Biophys. Acta-Mol. Cell Res. 2015, 1853 (4), 850–857. 10.1016/j.bbamcr.2014.07.016. PubMed DOI

Sonnino S.; Prinette A.. Gangliosides as Regulators of Cell Membrane Organization and Functions. In Sphingolipids as Signaling and Regulatory Molecules; Chalfant C., DelPoeta M., Eds.; Advances in Experimental Medicine and Biology, Vol. 688; Springer-Verlag: Berlin, 2010; pp 165–184. PubMed

Salminen A.; Kaarniranta K. Siglec receptors and hiding plaques in Alzheimer’s disease. J. Mol. Med. 2009, 87 (7), 697–701. 10.1007/s00109-009-0472-1. PubMed DOI

Ariga T. Pathogenic Role of Ganglioside Metabolism in Neurodegenerative Diseases. J. Neurosci. Res. 2014, 92 (10), 1227–1242. 10.1002/jnr.23411. PubMed DOI

Cutillo G.; Saariaho A. H.; Meri S. Physiology of gangliosides and the role of antiganglioside antibodies in human diseases. Cell. Mol. Immunol. 2020, 17 (4), 313–322. 10.1038/s41423-020-0388-9. PubMed DOI PMC

Sipione S.; Monyror J.; Galleguillos D.; Steinberg N.; Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front. Neurosci. 2020, 14, 24.10.3389/fnins.2020.572965. PubMed DOI PMC

Cebecauer M.; Amaro M.; Jurkiewicz P.; Sarmento M. J.; Šachl R.; Cwiklik L.; Hof M. Membrane Lipid Nanodomains. Chem. Rev. 2018, 118 (23), 11259–11297. 10.1021/acs.chemrev.8b00322. PubMed DOI

Spillane K. M.; Ortega-Arroyo J.; De Wit G.; Eggeling C.; Ewers H.; Wallace M. I.; Kukura P. High-Speed Single-Particle Tracking of GM1 in Model Membranes Reveals Anomalous Diffusion due to Interleaflet Coupling and Molecular Pinning. Nano Lett. 2014, 14 (9), 5390–5397. 10.1021/nl502536u. PubMed DOI PMC

Sezgin E.; Schneider F.; Galiani S.; Urbančič I.; Waithe D.; Lagerholm B. C.; Eggeling C. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS. Nat. Protoc. 2019, 14 (4), 1054–1083. 10.1038/s41596-019-0127-9. PubMed DOI

Amaro M.; Šachl R.; Aydogan G.; Mikhalyov I. I.; Vachá R.; Hof M. GM1 Ganglioside Inhibits β-Amyloid Oligomerization Induced by Sphingomyelin. Angew. Chem., Int. Ed. 2016, 55, 9411–9415. 10.1002/anie.201603178. PubMed DOI PMC

Shi J.; Yang t.; Kataoka S.; Zhang Y.; Diaz J. A.; Cremer S. P. GM 1 Clustering Inhibits Cholera Toxin Binding in Supported Phospholipid Membranes. J. Am. Chem. Soc. 2007, 129 (18), 5954–5961. 10.1021/ja069375w. PubMed DOI PMC

Sezgin E.; Levental I.; Mayor S.; Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 2017, 18 (6), 361–374. 10.1038/nrm.2017.16. PubMed DOI PMC

Sibold J.; Kettelhoit K.; Vuong L.; Liu F.; Werz D. B.; Steinem C. Synthesis of Gb 3 Glycosphingolipids with Labeled Head Groups: Distribution in Phase-Separated Giant Unilamellar Vesicles. Angew. Chem., Int. Ed. 2019, 58 (49), 17805–17813. 10.1002/anie.201910148. PubMed DOI PMC

Wang C.; Yu Y. M.; Regen S. L. Lipid Raft Formation: Key Role of Polyunsaturated Phospholipids. Angew. Chem.-Int. Ed. 2017, 56 (6), 1639–1642. 10.1002/anie.201611367. PubMed DOI

Simons K.; Ikonen E. Functional rafts in cell membranes. Nature 1997, 387 (6633), 569–572. 10.1038/42408. PubMed DOI

Sarmento M. J.; Owen M. C.; Ricardo J. C.; Chmelová B.; Davidović D.; Mikhalyov I.; Gretskaya N.; Hof M.; Amaro M.; Vácha R.; et al. The impact of the glycan headgroup on the nanoscopic segregation of gangliosides. Biophys. J. 2021, 120 (24), 5530–5543. 10.1016/j.bpj.2021.11.017. PubMed DOI PMC

Schneider F.; Waithe D.; Clausen M. P.; Galiani S.; Koller T.; Ozhan G.; Eggeling C.; Sezgin E. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Mol. Biol. Cell 2017, 28 (11), 1507–1518. 10.1091/mbc.e16-07-0536. PubMed DOI PMC

Suzuki K. G. N.; Ando H.; Komura N.; Fujiwara T. K.; Kiso M.; Kusumi A. Development of new ganglioside probes and unraveling of raft domain structure by single-molecule imaging. Biochim. Biophys. Acta-Gen. Subj. 2017, 1861 (10), 2494–2506. 10.1016/j.bbagen.2017.07.012. PubMed DOI

Štefl M.; Šachl R.; Humpolíčková J.; Cebecauer M.; Macháň R.; Kolářová M.; Johansson L. B. A.; Hof M. Dynamics and Size of Cross-Linking-Induced Lipid Nanodomains in Model Membranes. Biophys. J. 2012, 102 (9), 2104–2113. 10.1016/j.bpj.2012.03.054. PubMed DOI PMC

Frey S. L.; Lee K. Y. C. Number of Sialic Acid Residues in Ganglioside Headgroup Affects Interactions with Neighboring Lipids. Biophys. J. 2013, 105 (6), 1421–1431. 10.1016/j.bpj.2013.07.051. PubMed DOI PMC

Bordi F.; De Luca F.; Cametti C.; Naglieri A.; Misasi R.; Sorice M. Interactions of mono- and di-sialogangliosides with phospholipids in mixed monolayers at air-water interface. Colloid Surf. B-Biointerfaces 1999, 13 (3), 135–142. 10.1016/S0927-7765(99)00009-0. DOI

Jordan L. R.; Blauch M. E.; Baxter A. M.; Cawley J. L.; Wittenberg N. J. Influence of brain gangliosides on the formation and properties of supported lipid bilayers. Colloids Surf., B 2019, 183, 110442.10.1016/j.colsurfb.2019.110442. PubMed DOI

Khatun U. L.; Gayen A.; Mukhopadhyay C. Gangliosides containing different numbers of sialic acids affect the morphology and structural organization of isotropic phospholipid bicelles. Chem. Phys. Lipids 2013, 170, 8–18. 10.1016/j.chemphyslip.2013.02.009. PubMed DOI

Mori K.; Mahmood M. I.; Neya S.; Matsuzaki K.; Hoshino T. Formation of GM1 Ganglioside Clusters on the Lipid Membrane Containing Sphingomyeline and Cholesterol. J. Phys. Chem. B 2012, 116 (17), 5111–5121. 10.1021/jp207881k. PubMed DOI

Owen M. C.; Karner A.; Šachl R.; Preiner J.; Amaro M.; Vácha R. Force Field Comparison of GM1 in a DOPC Bilayer Validated with AFM and FRET Experiments. J. Phys. Chem. B 2019, 123 (35), 7504–7517. 10.1021/acs.jpcb.9b05095. PubMed DOI

Cantu L.; Corti M.; Acquotti D.; Sonnino S. Aggregation properties of gangliosides - influence of the primary and secondary structure of the headgroup. J. Phys. IV 1993, 3 (C1), 57–64. 10.1051/jp4:1993106. DOI

Cantú L.; Del Favero E.; Brocca P.; Corti M. Multilevel structuring of ganglioside-containing aggregates: From simple micelles to complex biomimetic membranes. Adv. Colloid Interface Sci. 2014, 205, 177–186. 10.1016/j.cis.2013.10.016. PubMed DOI

Arumugam S.; Schmieder S.; Pezeshkian W.; Becken U.; Wunder C.; Chinnapen D.; Ipsen J. H.; Kenworthy A. K.; Lencer W.; Mayor S.; Johannes L. Ceramide structure dictates glycosphingolipid nanodomain assembly and function. Nat. Commun. 2021, 12 (1), 3675.10.1038/s41467-021-23961-9. PubMed DOI PMC

Ohmi Y.; Tajima O.; Ohkawa Y.; Yamauchi Y.; Sugiura Y.; Furukawa K.; Furukawa K. Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J. Neurochem. 2011, 116 (5), 926–935. 10.1111/j.1471-4159.2010.07067.x. PubMed DOI

Rahmann H. Brain gangliosides and memory formation. Behav. Brain Res. 1995, 66 (1–2), 105–116. 10.1016/0166-4328(94)00131-X. PubMed DOI

Vinklárek I. S.; Vel’as L.; Riegerová P.; Skála K.; Mikhalyov I.; Gretskaya N.; Hof M.; Šachl R. Experimental Evidence of the Existence of Interleaflet Coupled Nanodomains: An MC-FRET Study. J. Phys. Chem. Lett. 2019, 10 (9), 2024–2030. 10.1021/acs.jpclett.9b00390. PubMed DOI

Chmelová B.; Davidović D.; Šachl R. Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?. Biophys. J. 2023, 122, 2053–2067. 10.1016/j.bpj.2022.11.014. PubMed DOI PMC

Koukalová A.; Amaro M.; Aydogan G.; Gröbner G.; Williamson P. T. F.; Mikhalyov I.; Hof M.; Šachl R. Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered. Sci. Rep. 2017, 7, 12.10.1038/s41598-017-05539-y. PubMed DOI PMC

Šachl R.; Johansson L. B. A.; Hof M. Forster Resonance Energy Transfer (FRET) between Heterogeneously Distributed Probes: Application to Lipid Nanodomains and Pores. Int. J. Mol. Sci. 2012, 13 (12), 16141–16156. 10.3390/ijms131216141. PubMed DOI PMC

Šachl R.; Humpolíčková J.; Štefl M.; Johansson L. B. A.; Hof M. Limitations of Electronic Energy Transfer in the Determination of Lipid Nanodomain Sizes. Biophys. J. 2011, 101 (11), L60–L62. 10.1016/j.bpj.2011.11.001. PubMed DOI PMC

Masserini M.; Freire E. Thermotropic characterization of phosphatidylcholine vesicles containing ganglioside Gm1 with homogeneous ceramide chain length. Biochemistry 1986, 25 (5), 1043–1049. 10.1021/bi00353a014. PubMed DOI

Masserini M.; Palestini P.; Venerando B.; Fiorilli A.; Acquotti D.; Tettamanti G. Interactions of proteins with ganglioside-enriched microdomains on the membrane: the lateral phase separation of molecular species of GD1a ganglioside, having homogeneous long-chain base composition, is recognized by Vibrio cholerae sialidase. Biochemistry 1988, 27 (20), 7973–7978. 10.1021/bi00420a057. PubMed DOI

Masserini M.; Palestini P.; Freire E. Influence of glycolipid oligosaccharide and long-chain base composition on the thermotropic properties of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides. Biochemistry 1989, 28 (12), 5029–5034. 10.1021/bi00438a019. PubMed DOI

Pascher I. Molecular arrangements in sphingolipids Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochimica et Biophysica Acta (BBA) - Biomembranes 1976, 455 (2), 433–451. 10.1016/0005-2736(76)90316-3. PubMed DOI

Gu R.-X.; Ingólfsson H. I.; De Vries A. H.; Marrink S. J.; Tieleman D. P. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations. J. Phys. Chem. B 2017, 121 (15), 3262–3275. 10.1021/acs.jpcb.6b07142. PubMed DOI PMC

Van Meer G.; Voelker D. R.; Feigenson G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9 (2), 112–124. 10.1038/nrm2330. PubMed DOI PMC

Sampaio J. L.; Gerl M. J.; Klose C.; Ejsing C. S.; Beug H.; Simons K.; Shevchenko A. Membrane lipidome of an epithelial cell line. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (5), 1903–1907. 10.1073/pnas.1019267108. PubMed DOI PMC

Han X.; Gross R. W. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc. Natl. Acad. Sci. U. S. A. 1994, 91 (22), 10635–10639. 10.1073/pnas.91.22.10635. PubMed DOI PMC

Symons J. L.; Cho K.-J.; Chang J. T.; Du G.; Waxham M. N.; Hancock J. F.; Levental I.; Levental K. R. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter 2021, 17 (2), 288–297. 10.1039/D0SM00404A. PubMed DOI PMC

Buwaneka P.; Ralko A.; Liu S.-L.; Cho W. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J. Lipid Res. 2021, 62, 100084.10.1016/j.jlr.2021.100084. PubMed DOI PMC

Prinetti A.; Loberto N.; Chigorno V.; Sonnino S. Glycosphingolipid behaviour in complex membranes. Biochim. Biophys. Acta-Biomembr. 2009, 1788 (1), 184–193. 10.1016/j.bbamem.2008.09.001. PubMed DOI

Wang J.; Chen Y.-L.; Li Y.-K.; Chen D.-K.; He J.-F.; Yao N. Functions of Sphingolipids in Pathogenesis During Host-Patogen Interactions. Front. Microbiol. 2021, 12, 701041.10.3389/fmicb.2021.701041. PubMed DOI PMC

Perez-Zsolt D.; Martinez-Picado J.; Izquierdo-Useros N. When Dendritic Cells Go Viral: The Role of Siglec-1 in Host Defense and Dissemination of Enveloped Viruses. Viruses 2020, 12 (1), 8.10.3390/v12010008. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...