Synthesis of Polycyclic Hetero-Fused 7-Deazapurine Heterocycles and Nucleosides through C-H Dibenzothiophenation and Negishi Coupling
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36245092
PubMed Central
PMC9619403
DOI
10.1021/jacs.2c07517
Knihovny.cz E-zdroje
- MeSH
- deoxyribonukleosidy MeSH
- nádorové buněčné linie MeSH
- nukleosidy * MeSH
- oligonukleotidy MeSH
- oxidy MeSH
- purinové nukleosidy MeSH
- pyrimidiny MeSH
- ribonukleosidy * MeSH
- zinek MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 7-deazapurine MeSH Prohlížeč
- deoxyribonukleosidy MeSH
- nukleosidy * MeSH
- oligonukleotidy MeSH
- oxidy MeSH
- purinové nukleosidy MeSH
- pyrimidiny MeSH
- ribonukleosidy * MeSH
- zinek MeSH
A new approach for synthesizing polycyclic heterofused 7-deazapurine heterocycles and the corresponding nucleosides was developed based on C-H functionalization of diverse (hetero)aromatics with dibenzothiophene-S-oxide followed by the Negishi cross-cooupling with bis(4,6-dichloropyrimidin-5-yl)zinc. This cross-coupling afforded a series of (het)aryl-pyrimidines that were converted to fused deazapurine heterocycles through azidation and thermal cyclization. The fused heterocycles were glycosylated to the corresponding 2'-deoxy- and ribonucleosides, and a series of derivatives were prepared by nucleophilic substitutions at position 4. Four series of new polycyclic thieno-fused 7-deazapurine nucleosides were synthesized using this strategy. Most of the deoxyribonucleosides showed good cytotoxic activity, especially for the CCRF-CEM cell line. Phenyl- and thienyl-substituted thieno-fused 7-deazapurine nucleosides were fluorescent, and the former one was converted to 2'-deoxyribonucleoside triphosphate for enzymatic synthesis of labeled oligonucleotides.
Zobrazit více v PubMed
Parker W. B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 2009, 109, 2880–2893. 10.1021/cr900028p. PubMed DOI PMC
Szakács G.; Paterson J. K.; Ludwig J. A.; Booth-Genthe C.; Gottesman M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discovery 2006, 5, 219–234. 10.1038/nrd1984. PubMed DOI
Jordheim L. P.; Durantel D.; Zoulim F.; Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discovery 2013, 12, 447–464. 10.1038/nrd4010. PubMed DOI
De Clercq E.; Li G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev. 2016, 29, 695–747. 10.1128/CMR.00102-15. PubMed DOI PMC
Eyer L.; Nencka R.; de Clercq E.; Seley-Radtke K.; Růžek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir. Chem. Chemother. 2018, 26, 2040206618761299.10.1177/2040206618761299. PubMed DOI PMC
Jordan P. C.; Stevens S. K.; Deval J. Nucleosides for the treatment of respiratory RNA virus infections. Antivir Chem. Chemother 2018, 26, 2040206618764483.10.1177/2040206618764483. PubMed DOI PMC
Roy V.; Agrofoglio L. A. Nucleosides and emerging viruses: A new story. Drug Discovery Today 2022, 27, 1945–1953. 10.1016/j.drudis.2022.02.013. PubMed DOI PMC
Chien M.; Anderson T. K.; Jockusch S.; Tao C.; Li X.; Kumar S.; Russo J. J.; Kirchdoerfer R. N.; Ju J. Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase, a Key Drug Target for COVID-19. J. Proteome Res. 2020, 19, 4690–4697. 10.1021/acs.jproteome.0c00392. PubMed DOI PMC
Eastman R. T.; Roth J. S.; Brimacombe K. R.; Simeonov A.; Shen M.; Patnaik S.; Hall M. D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent. Sci. 2020, 6, 672–683. 10.1021/acscentsci.0c00489. PubMed DOI PMC
Siegel D.; Hui H. C.; Doerffler E.; Clarke M. O.; Chun K.; Zhang L.; Neville S.; Carra E.; Lew W.; Ross B.; Wang Q.; Wolfe L.; Jordan R.; Soloveva V.; Knox J.; Perry J.; Perron M.; Stray K. M.; Barauskas O.; Feng J. Y.; Xu Y.; Lee G.; Rheingold A. L.; Ray A. S.; Bannister R.; Strickley R.; Swaminathan S.; Lee W. A.; Bavari S.; Cihlar T.; Lo M. K.; Warren T. K.; Mackman R. L. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J. Med. Chem. 2017, 60, 1648–1661. 10.1021/acs.jmedchem.6b01594. PubMed DOI
Jayk Bernal A.; Gomes da Silva M. M.; Musungaie D. B.; Kovalchuk E.; Gonzalez A.; Delos Reyes V.; Martín-Quirós A.; Caraco Y.; Williams-Diaz A.; Brown M. L.; Du J.; Pedley A.; Assaid C.; Strizki J.; Grobler J. A.; Shamsuddin H. H.; Tipping R.; Wan H.; Paschke A.; Butterton J. R.; Johnson M. G.; De Anda C. MOVe-OUT Study Group. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. New Engl. J. Med. 2022, 386, 509–520. 10.1056/NEJMoa2116044. PubMed DOI PMC
Nascimento I. J. D. S.; Santos-Júnior P. F. da S.; Aquino T. M. de; Araújo-Júnior J. X. de; Silva-Júnior E. F. da. Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur. J. Med. Chem. 2021, 224, 113698.10.1016/j.ejmech.2021.113698. PubMed DOI
Ju J.; Li X.; Kumar S.; Jockusch S.; Chien M.; Tao C.; Morozova I.; Kalachikov S.; Kirchdoerfer R. N.; Russo J. J. Nucleotide analogues as inhibitors of SARS-CoV Polymerase. Pharmacol. Res. Perspect. 2020, 8, e0067410.1002/prp2.674. PubMed DOI PMC
Kabinger F.; Stiller C.; Schmitzová J.; Dienemann C.; Kokic G.; Hillen H. S.; Höbartner C.; Cramer P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol. 2021, 28, 740–746. 10.1038/s41594-021-00651-0. PubMed DOI PMC
Bourderioux A.; Naus P.; Perlíková P.; Pohl R.; Pichová I.; Votruba I.; Dzubák P.; Konecný P.; Hajdúch M.; Stray K. M.; Wang T.; Ray A. S.; Feng J. Y.; Birkus G.; Cihlar T.; Hocek M. Synthesis and significant cytostatic activity of 7-hetaryl-7-deazaadenosines. J. Med. Chem. 2011, 54, 5498–5507. 10.1021/jm2005173. PubMed DOI
Perlíková P.; Rylová G.; Nauš P.; Elbert T.; Tloušt′ová E.; Bourderioux A.; Slavětínská L. P.; Motyka K.; Doležal D.; Znojek P.; Nová A.; Harvanová M.; Džubák P.; Šiller M.; Hlaváč J.; Hajdúch M.; Hocek M. 7-(2-Thienyl)-7-Deazaadenosine (AB61), a New Potent Nucleoside Cytostatic with a Complex Mode of Action. Mol. Cancer Ther. 2016, 15, 922–937. 10.1158/1535-7163.MCT-14-0933. PubMed DOI
Milisavljevic N.; Konkolová E.; Kozák J.; Hodek J.; Veselovská L.; Sýkorová V.; Čížek K.; Pohl R.; Eyer L.; Svoboda P.; Růžek D.; Weber J.; Nencka R.; Bouřa E.; Hocek M. Antiviral Activity of 7-Substituted 7-Deazapurine Ribonucleosides, Monophosphate Prodrugs, and Triphoshates against Emerging RNA Viruses. ACS Infect. Dis. 2021, 7, 471–478. 10.1021/acsinfecdis.0c00829. PubMed DOI
Hulpia F.; Van Hecke K.; França da Silva C.; da Gama Jaen Batista D.; Maes L.; Caljon G.; de Nazaré C. Soeiro M.; Van Calenbergh S. Discovery of Novel 7-Aryl 7-Deazapurine 3′-Deoxy-ribofuranosyl Nucleosides with Potent Activity against Trypanosoma cruzi. J. Med. Chem. 2018, 61, 9287–9300. 10.1021/acs.jmedchem.8b00999. PubMed DOI
Hulpia F.; Mabille D.; Campagnaro G. D.; Schumann G.; Maes L.; Roditi I.; Hofer A.; de Koning H. P.; Caljon G.; Van Calenbergh S. Combining tubercidin and cordycepin scaffolds results in highly active candidates to treat late-stage sleeping sickness. Nat. Commun. 2019, 10, 5564.10.1038/s41467-019-13522-6. PubMed DOI PMC
Hulpia F.; Campagnaro G. D.; Scortichini M.; Van Hecke K.; Maes L.; de Koning H. P.; Caljon G.; Van Calenbergh S. Revisiting tubercidin against kinetoplastid parasites: Aromatic substitutions at position 7 improve activity and reduce toxicity. Eur. J. Med. Chem. 2019, 164, 689–705. 10.1016/j.ejmech.2018.12.050. PubMed DOI
Bouton J.; Furquim d’Almeida A.; Maes L.; Caljon G.; Van Calenbergh S.; Hulpia F. Synthesis and evaluation of 3′-fluorinated 7-deazapurine nucleosides as antikinetoplastid agents. Eur. J. Med. Chem. 2021, 216, 113290.10.1016/j.ejmech.2021.113290. PubMed DOI
Tichý M.; Pohl R.; Xu H. Y.; Chen Y.-L.; Yokokawa F.; Shi P.-Y.; Hocek M. Synthesis and antiviral activity of 4,6-disubstituted pyrimido[4,5-b]indole ribonucleosides. Bioorg. Med. Chem. 2012, 20, 6123–6133. 10.1016/j.bmc.2012.08.021. PubMed DOI
Tichý M.; Smoleń S.; Tloušt’ová E.; Pohl R.; Oždian T.; Hejtmánková K.; Lišková B.; Gurská S.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Cytostatic and Antiviral Profiling of Thieno-Fused 7-Deazapurine Ribonucleosides. J. Med. Chem. 2017, 60, 2411–2424. 10.1021/acs.jmedchem.6b01766. PubMed DOI
Tokarenko A.; Lišková B.; Smoleń S.; Táborská N.; Tichý M.; Gurská S.; Perlíková P.; Frydrych I.; Tloušt’ová E.; Znojek P.; Mertlíková-Kaiserová H.; Poštová Slavětínská L.; Pohl R.; Klepetářová B.; Khalid N.-U.-A.; Wenren Y.; Laposa R. R.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Cytotoxic and Antiviral Profiling of Pyrrolo- and Furo-Fused 7-Deazapurine Ribonucleosides. J. Med. Chem. 2018, 61, 9347–9359. 10.1021/acs.jmedchem.8b01258. PubMed DOI
Fleuti M.; Bártová K.; Slavětínská L. P.; Tloušt’ová E.; Tichý M.; Gurská S.; Pavliš P.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Biological Profiling of Pyrazolo-Fused 7-Deazapurine Nucleosides. J. Org. Chem. 2020, 85, 10539–10551. 10.1021/acs.joc.0c00928. PubMed DOI
Veselovská L.; Kudlová N.; Gurská S.; Lišková B.; Medvedíková M.; Hodek O.; Tloušt′ová E.; Milisavljevic N.; Tichý M.; Perlíková P.; Mertlíková-Kaiserová H.; Trylčová J.; Pohl R.; Klepetářová B.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Cytotoxic and Antiviral Activity Profiling of All-Four Isomeric Series of Pyrido-Fused 7-Deazapurine Ribonucleosides. Chem.—Eur. J. 2020, 26, 13002–13015. 10.1002/chem.202001124. PubMed DOI
Ghosh K.; Perlikova P.; Havlicek V.; Yang C.; Pohl R.; Tloustova E.; Hodek J.; Gurska S.; Dzubak P.; Hajduch M.; Hocek M. Isomeric Naphtho-Fused 7-Deazapurine Nucleosides and Nucleotides. Synthesis, Biological Activity, Photophysical Properties and Enzymatic Incorporation to Nucleic Acids. Eur. J. Org. Chem. 2018, 2018, 5092–5108. 10.1002/ejoc.201800165. DOI
Yang C.; Pohl R.; Tichý M.; Gurská S.; Pavliš P.; Džubák P.; Hajdúch M.; Hocek M. Synthesis, Photophysical Properties, and Biological Profiling of Benzothieno-Fused 7-Deazapurine Ribonucleosides. J. Org. Chem. 2020, 85, 8085–8101. 10.1021/acs.joc.0c00927. PubMed DOI
Berger F.; Ritter T. Site-Selective Late-Stage C–H Functionalization via Thianthrenium Salts. Synlett 2022, 33, 339–345. 10.1055/s-0040-1706034. DOI
Chen X.-Y.; Wu Y.; Wang P.. Recent Advances in Thianthrenation/Phenoxathiination Enabled Site-Selective Functionalization of Arenes. Synthesis 2022, 54,10.1055/s-0041-1737493. DOI
Yorimitsu H. Catalytic Transformations of Sulfonium Salts via C-S Bond Activation. Chem. Rec. 2021, 21, 3356–3369. 10.1002/tcr.202000172. PubMed DOI
Kaiser D.; Klose I.; Oost R.; Neuhaus J.; Maulide N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem. Rev. 2019, 119, 8701–8780. 10.1021/acs.chemrev.9b00111. PubMed DOI PMC
Berger F.; Plutschack M. B.; Riegger J.; Yu W.; Speicher S.; Ho M.; Frank N.; Ritter T. Site-selective and versatile aromatic C-H functionalization by thianthrenation. Nature 2019, 567, 223–228. 10.1038/s41586-019-0982-0. PubMed DOI
Juliá F.; Shao Q.; Duan M.; Plutschack M. B.; Berger F.; Mateos J.; Lu C.; Xue X.-S.; Houk K. N.; Ritter T. High Site Selectivity in Electrophilic Aromatic Substitutions: Mechanism of C-H Thianthrenation. J. Am. Chem. Soc. 2021, 143, 16041–16054. 10.1021/jacs.1c06281. PubMed DOI PMC
Kafuta K.; Korzun A.; Böhm M.; Golz C.; Alcarazo M. Synthesis, Structure, and Reactivity of 5-(Aryl)dibenzothiophenium Triflates. Angew. Chem., Int. Ed. 2020, 59, 1950–1955. 10.1002/anie.201912383. PubMed DOI PMC
Xu P.; Zhao D.; Berger F.; Hamad A.; Rickmeier J.; Petzold R.; Kondratiuk M.; Bohdan K.; Ritter T. Site-Selective Late-Stage Aromatic [18 F]Fluorination via Aryl Sulfonium Salts. Angew. Chem., Int. Ed. 2020, 59, 1956–1960. 10.1002/anie.201912567. PubMed DOI PMC
Alvarez E. M.; Karl T.; Berger F.; Torkowski L.; Ritter T. Late-Stage Heteroarylation of Hetero(aryl)sulfonium Salts Activated by α-Amino Alkyl Radicals. Angew. Chem., Int. Ed. 2021, 60, 13609–13613. 10.1002/anie.202103085. PubMed DOI PMC
Berger F.; Alvarez E. M.; Frank N.; Bohdan K.; Kondratiuk M.; Torkowski L.; Engl P. S.; Barletta J.; Ritter T. Cine-Substitutions at Five-Membered Hetarenes Enabled by Sulfonium Salts. Org. Lett. 2020, 22, 5671–5674. 10.1021/acs.orglett.0c02067. PubMed DOI PMC
Aukland M. H.; Talbot F. J. T.; Fernández-Salas J. A.; Ball M.; Pulis A. P.; Procter D. J. An Interrupted Pummerer/Nickel-Catalysed Cross-Coupling Sequence. Angew. Chem., Int. Ed. 2018, 57, 9785–9789. 10.1002/anie.201805396. PubMed DOI
Minami H.; Nogi K.; Yorimitsu H. Nickel-Catalyzed Negishi-Type Arylation of Trialkylsulfonium Salts. Synlett 2021, 32, 1542–1546. 10.1055/s-0040-1707817. DOI
Gangjee A.; Zaware N.; Raghavan S.; Ihnat M.; Shenoy S.; Kisliuk R. L. Single Agents with Designed Combination Chemotherapy Potential: Synthesis and Evaluation of Substituted Pyrimido[4,5-b]indoles as Receptor Tyrosine Kinase and Thymidylate Synthase Inhibitors and as Antitumor Agents. J. Med. Chem. 2010, 53 (4), 1563–1578. 10.1021/jm9011142. PubMed DOI PMC
Zhang Y.-M.; Razler T.; Jackson P. F. Synthesis of pyrimido[4,5-b]indoles and benzo[4,5]furo[2,3-d]pyrimidines via palladium-catalyzed intramolecular arylation. Tetrahedron Lett. 2002, 43 (46), 8235–8239. 10.1016/S0040-4039(02)02036-1. DOI
Kondo Y.; Watanabe R.; Sakamoto T.; Yamanaka H. Condensed Heteroaromatic Ring-systems, 16. Synthesis of Pyrrolo-[2,3-d]pyrimidine Derivatives. Chem. Pharm. Bull. 1989, 37, 2933–2936. 10.1248/cpb.37.2933. DOI
McCann L. C.; Organ M. G. On the remarkably different role of salt in the cross-coupling of arylzincs from that seen with alkylzincs. Angew. Chem., Int. Ed. 2014, 53, 4386–4389. 10.1002/anie.201400459. PubMed DOI
Kovács T.; Ötvös L. Simple synthesis of 5-vinyl- and 5-ethynyl-2′-deoxyuridine-5′-triphosphates. Tetrahedron Lett. 1988, 29, 4525–4528. 10.1016/S0040-4039(00)80537-7. DOI
Okamoto A.; Tanaka K.; Fukuta T.; Saito I. Design of Base-discriminating Fluorescent Nucleoside and Its Application to T/c SNP Typing. J. Am. Chem. Soc. 2003, 125, 9296–9297. 10.1021/ja035408l. PubMed DOI
Bosáková A.; Perlíková P.; Tichý M.; Pohl R.; Hocek M. 6-Aryl-4-amino-pyrimido[4,5-b]indole 2’-deoxyribonucleoside triphosphates (benzo-fused 7-deaza-dATP analogues): Synthesis, fluorescent properties, enzymatic incorporation into DNA and DNA-protein binding study. Bioorg. Med. Chem. 2016, 24, 4528–4535. 10.1016/j.bmc.2016.07.054. PubMed DOI
Okamoto A.; Tanaka K.; Fukuta T.; Saito I. Cytosine Detection by a Fluorescein-Labeled Probe Containing Base-Discriminating Fluorescent Nucleobase. ChemBioChem. 2004, 5, 958–963. 10.1002/cbic.200400010. PubMed DOI
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Method Appl. Fluoresc. 2022, 10, 044001.10.1088/2050-6120/ac7bd8. PubMed DOI
Nosková V.; Džubák P.; Kuzmina G.; Ludkova A.; Stehlik D.; Trojanec R.; Janostakova A.; Korinkova G.; Mihal V.; Hajduch M. In vitro chemoresistance profile and expression/function of MDR associated proteins in resistant cell lines derived from CCRF-CEM, K562, A549 and MDA MB 231 parental cells. Neoplasma 2002, 49, 418–425. PubMed
Riss T. L.; Moravec R. A.; Niles A. L.; Duellman S.; Benink H. A.; Worzella T. J.; Minor L.. Cell Viability Assays. 2013 May 1 [Updated 2016 Jul 1]. In Assay Guidance Manual [Online]; Sittampalam G. S.; Coussens N. P., Nelson H., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, 2004. https://www.ncbi.nlm.nih.gov/books/NBK144065/ (accessed 10/12, 2016).
De Clercq E.; Balzarini J.; Madej D.; Hansske F.; Robins M. J. Nucleic acid related compounds. 51. Synthesis and biological properties of sugar-modified analogues of the nucleoside antibiotics tubercidin, toyocamycin, sangivamycin, and formycin. J. Med. Chem. 1987, 30, 481–486. 10.1021/jm00386a007. PubMed DOI
Seela F.; Zulauf M.; Chen S. F. Pyrrolo[2,3-d]pyrimidine nucleosides: synthesis and antitumor activity of 7-substituted 7-deaza-2’-deoxyadenosines. Nucleosides Nucleotides Nucleic Acids 2000, 19, 237–251. 10.1080/15257770008033006. PubMed DOI
Krueger A. T.; Lu H.; Lee A. H. F.; Kool E. T. Synthesis and properties of size-expanded DNAs: toward designed, functional genetic systems. Acc. Chem. Res. 2007, 40, 141–150. 10.1021/ar068200o. PubMed DOI PMC
Krueger A. T.; Kool E. T. Fluorescence of size-expanded DNA bases: reporting on DNA sequence and structure with an unnatural genetic set. J. Am. Chem. Soc. 2008, 130, 3989–3999. 10.1021/ja0782347. PubMed DOI