Synthesis and Biological Profiling of Quinolino-Fused 7-Deazapurine Nucleosides
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38737052
PubMed Central
PMC11080019
DOI
10.1021/acsomega.4c02031
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A series of quinolino-fused 7-deazapurine (pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline) ribonucleosides were designed and synthesized. The synthesis of the key 11-chloro-pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline was based on the Negishi cross-coupling of iodoquinoline with zincated 4,6-dichloropyrimidine followed by azidation and thermal or photochemical cyclization. Vorbrüggen glycosylation of the tetracyclic heterocycle followed by cross-coupling or substitution reactions at position 11 gave the desired set of final nucleosides that showed moderate to weak cytostatic activity and fluorescent properties. The corresponding fused adenosine derivative was converted to the triphosphate and successfully incorporated to RNA using in vitro transcription with T7 RNA polymerase.
Zobrazit více v PubMed
De Clercq E.; Li G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev. 2016, 29, 695–747. 10.1128/CMR.00102-15. PubMed DOI PMC
Seley-Radtke K. L.; Yates M. K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res. 2018, 154, 66–86. 10.1016/j.antiviral.2018.04.004. PubMed DOI PMC
Eyer L.; Nencka R.; De Clercq E.; Seley-Radtke K.; Růžek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antiviral Chem. Chemother. 2018, 26, 2040206618761299.10.1177/2040206618761299. PubMed DOI PMC
Eyer L.; Nencka R.; Huvarová I.; Palus M.; Alves M. J.; Gould E. A.; De Clercq E.; Růžek D. Nucleoside Inhibitors of Zika Virus. J. Infect. Dis. 2016, 214, 707–711. 10.1093/infdis/jiw226. PubMed DOI
Parker W. B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 2009, 109, 2880–2893. 10.1021/cr900028p. PubMed DOI PMC
Jordheim L. P.; Durantel D.; Zoulim F.; Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discovery 2013, 12, 447–464. 10.1038/nrd4010. PubMed DOI
Szakács G.; Paterson J. K.; Ludwig J. A.; Booth-Genthe C.; Gottesman M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discovery 2006, 5, 219–234. 10.1038/nrd1984. PubMed DOI
Robins R. K.; Revankar G. R. Purine analogs and related nucleosides and nucleotides as antitumor agents. Med. Res. Rev. 1985, 5, 273–296. 10.1002/med.2610050302. PubMed DOI
Seela F.; Zulauf M.; Chen S.-F. Pyrrolo[2,3-d]Pyrimidine Nucleosides: Synthesis and Antitumor Activity of 7-Substituted 7-Deaza-2’-Deoxyadenosines. Nucleosides, Nucleotides Nucleic Acids 2000, 19, 237–251. 10.1080/15257770008033006. PubMed DOI
Hulpia F.; Van Hecke K.; da Silva C. F.; da Gama Jaen Batista D.; Maes L.; Caljon G.; de Nazaré C Soeiro M.; Van Calenbergh S. Discovery of Novel 7-Aryl 7-Deazapurine 3′-Deoxy-Ribofuranosyl Nucleosides with Potent Activity against Trypanosoma Cruzi. J. Med. Chem. 2018, 61, 9287–9300. 10.1021/acs.jmedchem.8b00999. PubMed DOI
Hulpia F.; Campagnaro G. D.; Scortichini M.; Van Hecke K.; Maes L.; de Koning H. P.; Caljon G.; Van Calenbergh S. Revisiting Tubercidin against Kinetoplastid Parasites: Aromatic Substitutions at Position 7 Improve Activity and Reduce Toxicity. Eur. J. Med. Chem. 2019, 164, 689–705. 10.1016/j.ejmech.2018.12.050. PubMed DOI
Hulpia F.; Mabille D.; Campagnaro G. D.; Schumann G.; Maes L.; Roditi I.; Hofer A.; de Koning H. P.; Caljon G.; Van Calenbergh S. Combining Tubercidin and Cordycepin Scaffolds Results in Highly Active Candidates to Treat Late-Stage Sleeping Sickness. Nat. Commun. 2019, 10, 5564.10.1038/s41467-019-13522-6. PubMed DOI PMC
Johnson S. A.; Thomas W. Therapeutic potential of purine analogue combinations in the treatment of lymphoid malignancies. Hematol. Oncol. 2000, 18, 141–153. 10.1002/1099-1069(200012)18:4<141::AID-HON666>3.0.CO;2-%23. PubMed DOI
Johnson S. A. Nucleoside analogues in the treatment of haematological malignancies. Expert Opin. Pharmacother. 2001, 2, 929–943. 10.1517/14656566.2.6.929. PubMed DOI
Galmarini C. M.; Mackey J. R.; Dumontet C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 2002, 3, 415–424. 10.1016/S1470-2045(02)00788-X. PubMed DOI
Galmarini C. M.; Popowycz F.; Joseph B. Cytotoxic Nucleoside Analogues: Different Strategies to Improve Their Clinical Efficacy. Curr. Med. Chem. 2008, 15, 1072–1082. 10.2174/092986708784221449. PubMed DOI
Sharma P.; Allison J. P. Immune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative Potential. Cell 2015, 161, 205–214. 10.1016/j.cell.2015.03.030. PubMed DOI PMC
June C. H.; O’Connor R. S.; Kawalekar O. U.; Ghassemi S.; Milone M. C. CAR T Cell Immunotherapy for Human Cancer. Science 2018, 359, 1361–1365. 10.1126/science.aar6711. PubMed DOI
Myers J. A.; Miller J. S. Exploring the NK Cell Platform for Cancer Immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18, 85–100. 10.1038/s41571-020-0426-7. PubMed DOI PMC
Galmarini C. M.; Mackey J. R.; Dumontet C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 2001, 15, 875–890. 10.1038/sj.leu.2402114. PubMed DOI
Menéndez-Arias L. Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Res. 2008, 134, 124–146. 10.1016/j.virusres.2007.12.015. PubMed DOI
Fleischer R.; Boxwell D.; Sherman K. E. Nucleoside analogues and mitochondrial toxicity. Clin. Infect. Dis. 2004, 38, e79–e80. 10.1086/383151. PubMed DOI
Perlíková P.; Hocek M. Pyrrolo[2,3-d]pyrimidine (7-deazapurine) as a privileged scaffold in design of antitumor and antiviral nucleosides. Med. Res. Rev. 2017, 37, 1429–1460. 10.1002/med.21465. PubMed DOI PMC
Bourderioux A.; Nauš P.; Perlíková P.; Pohl R.; Pichová I.; Votruba I.; Džubák P.; Konečný P.; Hajdúch M.; Stray K. M.; Wang T.; Ray A. S.; Feng J. Y.; Birkuš G.; Cihlar T.; Hocek M. Synthesis and Significant Cytostatic Activity of 7-Hetaryl-7-deazaadenosines. J. Med. Chem. 2011, 54, 5498–5507. 10.1021/jm2005173. PubMed DOI
Perlíková P.; Rylová G.; Nauš P.; Elbert T.; Tloušt’ová E.; Bourderioux A.; Slavětínská L. P.; Motyka K.; Doležal D.; Znojek P.; Nová A.; Harvanová M.; Džubák P.; Šiller M.; Hlaváć J.; Hajdúch M.; Hocek M. 7-(2-Thienyl)-7-Deazaadenosine (AB61), a New Potent Nucleoside Cytostatic with a Complex Mode of Action. Mol. Cancer Ther. 2016, 15, 922–937. 10.1158/1535-7163.MCT-14-0933. PubMed DOI
Nauš P.; Caletková O.; Konećný P.; Džubák P.; Bogdanová K.; Koláŕ M.; Vrbková J.; Slavětínská L.; Tloušt’ová E.; Perlíková P.; Hajdúch M.; Hocek M. Synthesis, Cytostatic, Antimicrobial, and Anti-HCV Activity of 6-Substituted 7-(Het)aryl-7-deazapurine Ribonucleosides. J. Med. Chem. 2014, 57, 1097–1110. 10.1021/jm4018948. PubMed DOI
Tokarenko A.; Lišková B.; Smoleń S.; Táborská N.; Tichý M.; Gurská S.; Perlíková P.; Frydrych I.; Tloušt’ová E.; Znojek P.; Mertlíková-Kaiserová H.; Poštová Slavětínská L.; Pohl R.; Klepetáŕová B.; Khalid N. U. A.; Wenren Y.; Laposa R. R.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Cytotoxic and Antiviral Profiling of Pyrrolo- and Furo-Fused 7-Deazapurine Ribonucleosides. J. Med. Chem. 2018, 61, 9347–9359. 10.1021/acs.jmedchem.8b01258. PubMed DOI
Tichý M.; Smoleń S.; Tloušt’ová E.; Pohl R.; Oždian T.; Hejtmánková K.; Lišková B.; Gurská S.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Cytostatic and Antiviral Profiling of Thieno-Fused 7-Deazapurine Ribonucleosides. J. Med. Chem. 2017, 60, 2411–2424. 10.1021/acs.jmedchem.6b01766. PubMed DOI
Tichý M.; Pohl R.; Xu H. Y.; Chen Y.-L.; Yokokawa F.; Shi P.-Y.; Hocek M. Synthesis and antiviral activity of 4,6-disubstituted pyrimido[4,5-b]indole ribonucleosides. Bioorg. Med. Chem. 2012, 20, 6123–6133. 10.1016/j.bmc.2012.08.021. PubMed DOI
Tichý M.; Pohl R.; Tloušt’ová E.; Weber J.; Bahador G.; Lee Y.-J.; Hocek M. Synthesis and biological activity of benzo-fused 7-deazaadenosine analogues. 5- and 6-substituted 4-amino- or 4-alkylpyrimido[4,5-b]indole ribonucleosides. Bioorg. Med. Chem. 2013, 21, 5362–5372. 10.1016/j.bmc.2013.06.011. PubMed DOI
Veselovská L.; Kudlová N.; Gurská S.; Lišková B.; Medvedíková M.; Hodek O.; Tloušt’ová E.; Milisavljevic N.; Tichý M.; Perlíková P.; Mertlíková-Kaiserová H.; Trylćová J.; Pohl R.; Klepetáŕová B.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Cytotoxic and Antiviral Activity Profiling of All-Four Isomeric Series of Pyrido-Fused 7-Deazapurine Ribonucleosides. Chem.—Eur. J. 2020, 26, 13002–13015. 10.1002/chem.202001124. PubMed DOI
Ghosh K.; Perlikova P.; Havlíček V.; Yang C.; Pohl R.; Tloušt’ová E.; Hodek J.; Gurská S.; Džubák P.; Hajdúch M.; Hocek M. Isomeric Naphtho-Fused 7-Deazapurine Nucleosides and Nucleotides. Synthesis, Biological Activity, Photophysical Properties and Enzymatic Incorporation to Nucleic Acids. Eur. J. Org. Chem. 2018, 2018, 5092–5108. 10.1002/ejoc.201800165. DOI
Yang C.; Slavětínská L. P.; Fleuti M.; Klepetáŕová B.; Tichý M.; Gurská S.; Pavliš P.; Džubák P.; Hajdúch M.; Hocek M. Synthesis of Polycyclic Hetero-Fused 7-Deazapurine Heterocycles and Nucleosides through C–H Dibenzothiophenation and Negishi Coupling. J. Am. Chem. Soc. 2022, 144, 19437–19446. 10.1021/jacs.2c07517. PubMed DOI PMC
Mosrin M.; Knochel P. Regio- and Chemoselective Metalation of Chloropyrimidine Derivatives with TMPMgCl·LiCl and TMP2Zn·2 MgCl2·2 LiCl. Chem. – Eur. J. 2009, 15, 1468–1477. 10.1002/chem.200801831. PubMed DOI
Mosrin M.; Knochel P. TMPZnCl·LiCl: A New Active Selective Base for the Directed Zincation of Sensitive Aromatics and Heteroaromatics. Org. Lett. 2009, 11, 1837–1840. 10.1021/ol900342a. PubMed DOI
Smirnova N. B.; Postovskii I. Y.; Vereshchagina N. N.; Lundina I. B.; Mudretsova I. I. New Cases of Tetrazole-Azide Tautomeric Transformations. Chem. Heterocycl. Compd. 1970, 4, 130–131. 10.1007/BF00478105. DOI
Hyatt H. A.; Swenton J. S. A Facile Synthesis of 9H-Pyrimido [4,5-b]indole via Photolysis of 4-Azido-5-phenylpyrimidine. J. Heterocycl. Chem. 1972, 9, 409–410. 10.1002/jhet.5570090240. DOI
Zhou F.; Liu S.; Santarsiero B. D.; Wink D. J.; Boudinet D.; Facchetti A.; Driver T. Synthesis and Properties of New N-Heteroheptacenes for Solution-Based Organic Field Effect Transistors. Chem. – Eur. J. 2017, 23, 12542–12549. 10.1002/chem.201701966. PubMed DOI
Stokes B. J.; Jovanović B.; Dong H.; Richert K. J.; Riell R. D.; Driver T. G. Rh2(II)-Catalyzed Synthesis of Carbazoles from Biaryl Azides. J. Org. Chem. 2009, 74, 3225–3228. 10.1021/jo9002536. PubMed DOI PMC
Niedballa U.; Vorbrüggen H. A general synthesis of N-glycosides. I. Synthesis of pyrimidine nucleosides. J. Org. Chem. 1974, 39, 3654–3660. 10.1021/jo00939a008. PubMed DOI
Vorbrüggen H.; Krolikiewicz K.; Bennua B. Nucleoside syntheses, XXII Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem. Ber. 1981, 114, 1234–1255. 10.1002/cber.19811140404. DOI
Vorbrüggen H. Adventures in Silicon-Organic Chemistry. Acc. Chem. Res. 1995, 28, 509–520. 10.1021/ar00060a007. DOI
Michel B. Y.; Strazewski P. Synthesis of (−)-neplanocin A with the highest overall yield via an efficient Mitsunobu coupling. Tetrahedron 2007, 63, 9836–9841. 10.1016/j.tet.2007.06.100. DOI
Kim Y. A.; Sharon A.; Chu C. K.; Rais R. H.; Al Safarjalani O. N.; Naguib F. N. M.; el Kouni M. H. Structure–Activity Relationships of 7-Deaza-6-benzylthioinosine Analogues as Ligands of Toxoplasma gondii Adenosine Kinase. J. Med. Chem. 2008, 51, 3934–3945. 10.1021/jm800201s. PubMed DOI
Okamoto A.; Tanaka K.; Fukuta T.; Saito I. Design of Base-discriminating Fluorescent Nucleoside and Its Application to T/C SNP Typing. J. Am. Chem. Soc. 2003, 125, 9296–9297. 10.1021/ja035408l. PubMed DOI
Okamoto A.; Tanaka K.; Fukuta T.; Saito I. Cytosine Detection by a Fluorescein-Labeled Probe Containing Base-Discriminating Fluorescent Nucleobase. ChemBioChem. 2004, 5, 958–963. 10.1002/cbic.200400010. PubMed DOI
Bosáková A.; Perlíková P.; Tichý M.; Pohl R.; Hocek M. 6-Aryl-4-amino-pyrimido[4,5-b]indole 2’-deoxyribonucleoside triphosphates (benzo-fused 7-deaza-dATP analogues): Synthesis, fluorescent properties, enzymatic incorporation into DNA and DNA-protein binding study. Bioorg. Med. Chem. 2016, 24, 4528–4535. 10.1016/j.bmc.2016.07.054. PubMed DOI
Würth C.; Grabolle M.; Pauli J.; Spieles M.; Resch-Genger U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 2013, 8, 1535–1550. 10.1038/nprot.2013.087. PubMed DOI
Riss T. L.; Moravec R. A.; Niles A. L.; Duellman S.; Benink H. A.; Worzella T. J.; Minor L.. Cell Viability Assays. In Assay Guidance Manual; Sittampalan G. S.; Grossman A.; Brimacombe K., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda (MD), 2019; Chapter 3.2, pp 403–427. https://www.ncbi.nlm.nih.gov/books/NBK144065/.
Nosková V.; Džubák P.; Kuzmina G.; Ludkova A.; Stehlik D.; Trojanec R.; Janostakova A.; Korinkova G.; Mihal V.; Hajduch M. In vitro chemoresistance profile and expression/function of MDR associated proteins in resistant cell lines derived from CCRF-CEM, K562, A549 and MDA MB 231 parental cells. Neoplasma 2002, 49, 418–425. PubMed
Aslantürk Ö. S.In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. In Genotoxicity – A Predictable Risk to our Actual World; Larramendy M. L.; Soloneski S., Eds.; IntechOpen: London, 2018; pp 1–17. DOI: 10.5772/intechopen.71923. DOI
Yang C.; Pohl R.; Tichý M.; Gurská S.; Pavliš P.; Džubák P.; Hajdúch M.; Hocek M. Synthesis, Photophysical Properties, and Biological Profiling of Benzothieno-Fused 7-Deazapurine Ribonucleosides. J. Org. Chem. 2020, 85, 8085–8101. 10.1021/acs.joc.0c00927. PubMed DOI
Yang C.; Tichý M.; Poštová Slavětínská L.; Vaiedelich E.; Gurská S.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Biological Profiling of Benzofuro-Fused 7-Deazapurine Nucleosides. Eur. J. Org. Chem. 2023, 26, e20230072310.1002/ejoc.202300723. DOI
Burgess K.; Cook D. Syntheses of Nucleoside Triphosphates. Chem. Rev. 2000, 100, 2047–2060. 10.1021/cr990045m. PubMed DOI
Hollenstein M. Nucleoside Triphosphates — Building Blocks for the Modification of Nucleic Acids. Molecules 2012, 17, 13569–13591. 10.3390/molecules171113569. PubMed DOI PMC
Milisavljevič N.; Perlíková P.; Pohl R.; Hocek M. Enzymatic Synthesis of Base-Modified RNA by T7 RNA Polymerase. A Systematic Study and Comparison of 5-Substituted Pyrimidine and 7-Substituted 7-Deazapurine Nucleoside Triphosphates as Substrates. Org. Biomol. Chem. 2018, 16, 5800–5807. 10.1039/C8OB01498A. PubMed DOI