Regulation of Cell Death by Mitochondrial Transport Systems of Calcium and Bcl-2 Proteins
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
18-04871S
Grantová Agentura České Republiky
PubMed
33096926
PubMed Central
PMC7590060
DOI
10.3390/membranes10100299
PII: membranes10100299
Knihovny.cz E-zdroje
- Klíčová slova
- Bax, Bcl-2 proteins, MCU, VDAC, apoptosis, calcium transport, mPTP, mitochondria, necrosis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondria represent the fundamental system for cellular energy metabolism, by not only supplying energy in the form of ATP, but also by affecting physiology and cell death via the regulation of calcium homeostasis and the activity of Bcl-2 proteins. A lot of research has recently been devoted to understanding the interplay between Bcl-2 proteins, the regulation of these interactions within the cell, and how these interactions lead to the changes in calcium homeostasis. However, the role of Bcl-2 proteins in the mediation of mitochondrial calcium homeostasis, and therefore the induction of cell death pathways, remain underestimated and are still not well understood. In this review, we first summarize our knowledge about calcium transport systems in mitochondria, which, when miss-regulated, can induce necrosis. We continue by reviewing and analyzing the functions of Bcl-2 proteins in apoptosis. Finally, we link these two regulatory mechanisms together, exploring the interactions between the mitochondrial Ca2+ transport systems and Bcl-2 proteins, both capable of inducing cell death, with the potential to determine the cell death pathway-either the apoptotic or the necrotic one.
Zobrazit více v PubMed
Carafoli E., Krebs J. Why calcium? how calcium became the best communicator. J. Biol. Chem. 2016;291:20849–20857. doi: 10.1074/jbc.R116.735894. PubMed DOI PMC
Krebs J., editor. Advances in Experimental Medicine and Biology. Volume 981. Springer International Publishing; Cham, Switzerland: 2017. Membrane Dynamics and Calcium Signaling.
Del Re D.P., Amgalan D., Linkermann A., Liu Q., Kitsis R.N. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev. 2019;99:1765–1817. doi: 10.1152/physrev.00022.2018. PubMed DOI PMC
Eisner D.A., Caldwell J.L., Kistamás K., Trafford A.W. Calcium and excitation-contraction coupling in the heart. Circ. Res. 2017;121:181–195. doi: 10.1161/CIRCRESAHA.117.310230. PubMed DOI PMC
Brini M., Calì T., Ottolini D., Carafoli E. Neuronal calcium signaling: Function and dysfunction. Cell Mol. Life Sci. 2014;71:2787–2814. doi: 10.1007/s00018-013-1550-7. PubMed DOI PMC
Duchen M.R. Ca2+-Dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem. J. 1992;283:41–50. doi: 10.1042/bj2830041. PubMed DOI PMC
Elustondo P.A., Nichols M., Robertson G.S., Pavlov E.V. Mitochondrial Ca2+ uptake pathways. J. Bioenergy Biomembr. 2017;49:113–119. doi: 10.1007/s10863-016-9676-6. PubMed DOI
Duchen M.R. Mitochondria in health and disease: Perspectives on a new mitochondrial biology. Mol. Asp. Med. 2004;25:365–451. doi: 10.1016/j.mam.2004.03.001. PubMed DOI
Santulli G., editor. Advances in Experimental Medicine and Biology. Volume 982. Springer International Publishing; Cham, Switzerland: 2017. Mitochondrial Dynamics in Cardiovascular Medicine.
Bravo-Sagua R., Parra V., Lopez-Crisosto C., Diaz P., Quest A.F.G., Lavandero S. Calcium transport and signaling in mitochondria. Compr. Physiol. 2017;7:623–634. doi: 10.1002/cphy.c160013. PubMed DOI
Giorgio V., Guo L., Bassot C., Petronilli V., Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium. 2018;70:56–63. doi: 10.1016/j.ceca.2017.05.004. PubMed DOI
Delierneux C., Kouba S., Shanmughapriya S., Potier-Cartereau M., Trebak M., Hempel N. Mitochondrial calcium regulation of Redox signaling in cancer. Cells. 2020;9:432. doi: 10.3390/cells9020432. PubMed DOI PMC
Belosludtsev K.N., Dubinin M.V., Belosludtseva N.V., Mironova G.D. Mitochondrial Ca2+ transport: Mechanisms, molecular structures, and orle in cells. Biochemistry. 2019;84:593–607. doi: 10.1134/S0006297919060026. PubMed DOI
Hausenloy D.J., Schulz R., Girao H., Kwak B.R., De Stefani D., Rizzuto R., Bernardi P., Di Lisa F. Mitochondrial ion channels as targets for cardioprotection. J. Cell. Mol. Med. 2020;24:7102–7114. doi: 10.1111/jcmm.15341. PubMed DOI PMC
Glaser T., Arnaud Sampaio V.F., Lameu C., Ulrich H. Calcium signalling: A common target in neurological disorders and neurogenesis. Semin. Cell Dev. Biol. 2019;95:25–33. doi: 10.1016/j.semcdb.2018.12.002. PubMed DOI
Trebak M., Earley S. Mitochondria structure and position in the local control of calcium signals in smooth muscle cells. In: McCarron J.G., Saunter C., Wilson C., Girkin J.M., Chalmers S., editors. Signal Transduction and Smooth Muscle. CRC Press; Boca Raton, FL, USA: 2018. PubMed
Bock F.J., Tait S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 2020;21:85–100. doi: 10.1038/s41580-019-0173-8. PubMed DOI
Wacquier B., Combettes L., Dupont G. Dual dynamics of mitochondrial permeability transition pore opening. Sci. Rep. 2020;10:3924. doi: 10.1038/s41598-020-60177-1. PubMed DOI PMC
Denton R.M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta Bioenergy. 2009;1787:1309–1316. doi: 10.1016/j.bbabio.2009.01.005. PubMed DOI
Picard M., Wallace D.C., Burelle Y. The rise of mitochondria in medicine. Mitochondrion. 2016;30:105–116. doi: 10.1016/j.mito.2016.07.003. PubMed DOI PMC
Duchen M.R. Mitochondria and calcium: From cell signalling to cell death. J. Physiol. 2000;529:57–68. doi: 10.1111/j.1469-7793.2000.00057.x. PubMed DOI PMC
Park M.K. Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J. 2001;20:1863–1874. doi: 10.1093/emboj/20.8.1863. PubMed DOI PMC
Giorgi C., Marchi S., Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 2018;19:713–730. doi: 10.1038/s41580-018-0052-8. PubMed DOI
Giacomello M., Pyakurel A., Glytsou C., Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 2020;21:204–224. doi: 10.1038/s41580-020-0210-7. PubMed DOI
Morciano G., Marchi S., Morganti C., Sbano L., Bittremieux M., Kerkhofs M., Corricelli M., Danese A., Karkucinska-Wieckowska A., Wieckowski M.R., et al. Role of Mitochondria-associated ER membranes in Calcium regulation in cancer-specific settings. Neoplasia. 2018;20:510–523. doi: 10.1016/j.neo.2018.03.005. PubMed DOI PMC
Herrera-Cruz M.S., Simmen T. Cancer: Untethering Mitochondria from the endoplasmic reticulum? Front. Oncol. 2017;7 doi: 10.3389/fonc.2017.00105. PubMed DOI PMC
Singaravelu K., Nelson C., Bakowski D., de Brito O.M., Ng S.-W., Di Capite J., Powell T., Scorrano L., Parekh A.B. Mitofusin 2 regulates STIM1 migration from the Ca2+ store to the plasma membrane in cells with depolarized Mitochondria. J. Biol. Chem. 2011;286:12189–12201. doi: 10.1074/jbc.M110.174029. PubMed DOI PMC
Jouaville L.S., Pinton P., Bastianutto C., Rutter G.A., Rizzuto R. Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming. Proc. Natl. Acad. Sci. USA. 1999;96:13807–13812. doi: 10.1073/pnas.96.24.13807. PubMed DOI PMC
Carpio M.A., Katz S.G. Methods to probe Calcium regulation by BCL-2 family members. Methods Mol. Biol. 2019;1877:173–183. doi: 10.1007/978-1-4939-8861-7_12. PubMed DOI
Rong Y., Distelhorst C.W. Bcl-2 protein family members: Versatile regulators of Calcium signaling in cell survival and apoptosis. Annu. Rev. Physiol. 2008;70:73–91. doi: 10.1146/annurev.physiol.70.021507.105852. PubMed DOI
Briston T., Roberts M., Lewis S., Powney B., Staddon J.M., Szabadkai G., Duchen M.R. Mitochondrial permeability transition pore: Sensitivity to opening and mechanistic dependence on substrate availability. Sci. Rep. 2017;7:10492. doi: 10.1038/s41598-017-10673-8. PubMed DOI PMC
Bonora M., Patergnani S., Ramaccini D., Morciano G., Pedriali G., Kahsay A.E., Bouhamida E., Giorgi C., Wieckowski M.R., Pinton P. Physiopathology of the permeability transition pore: Molecular mechanisms in human pathology. Biomolecules. 2020;10:998. doi: 10.3390/biom10070998. PubMed DOI PMC
Vasington F.D., Murphy J.V. Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J. Biol. Chem. 1962;237:2670–2677. PubMed
DeLuca H.F., Engstrom G.W. Calcium uptake by rat kidney mitochondria. Proc. Natl. Acad. Sci. USA. 1961;47:1744–1750. doi: 10.1073/pnas.47.11.1744. PubMed DOI PMC
Mitchell P., Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature. 1967;213:137–139. doi: 10.1038/213137a0. PubMed DOI
Ludtmann M.H.R., Abramov A.Y. Mitochondrial calcium imbalance in Parkinson’s disease. Neurosci. Lett. 2018;663:86–90. doi: 10.1016/j.neulet.2017.08.044. PubMed DOI
Bhosale G., Sharpe J.A., Sundier S.Y., Duchen M.R. Calcium signaling as a mediator of cell energy demand and a trigger to cell death. Ann. N. Y. Acad. Sci. 2015;1350:107–116. doi: 10.1111/nyas.12885. PubMed DOI PMC
Rossi A., Pizzo P., Filadi R. Calcium, mitochondria and cell metabolism: A functional triangle in bioenergetics. Biochim. Biophys. Acta Mol. Cell Res. 2019;1866:1068–1078. doi: 10.1016/j.bbamcr.2018.10.016. PubMed DOI
Bertero E., Maack C. Calcium signaling and reactive oxygen species in mitochondria. Circ. Res. 2018;122:1460–1478. doi: 10.1161/CIRCRESAHA.118.310082. PubMed DOI
Missiroli S., Perrone M., Genovese I., Pinton P., Giorgi C. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. EBioMedicine. 2020;59:102943. doi: 10.1016/j.ebiom.2020.102943. PubMed DOI PMC
Burgoyne J.R., Mongue-Din H., Eaton P., Shah A.M. Redox signaling in cardiac physiology and pathology. Circ. Res. 2012;111:1091–1106. doi: 10.1161/CIRCRESAHA.111.255216. PubMed DOI
Mammucari C., Raffaello A., Vecellio Reane D., Gherardi G., De Mario A., Rizzuto R. Mitochondrial calcium uptake in organ physiology: From molecular mechanism to animal models. Pflug. Arch. 2018;470:1165–1179. doi: 10.1007/s00424-018-2123-2. PubMed DOI PMC
Ben-Hail D., Shoshan-Barmatz V. VDAC1-interacting anion transport inhibitors inhibit VDAC1 oligomerization and apoptosis. Biochim. Biophys. Acta Mol. Cell Res. 2016;1863:1612–1623. doi: 10.1016/j.bbamcr.2016.04.002. PubMed DOI
Schein S.J., Colombini M., Finkelstein A. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J. Membr. Biol. 1976;30:99–120. doi: 10.1007/BF01869662. PubMed DOI
Mazure N.M. VDAC in cancer. Biochim. Biophys. Acta Bioenergy. 2017;1858:665–673. doi: 10.1016/j.bbabio.2017.03.002. PubMed DOI
Becker T., Wagner R. Mitochondrial outer membrane channels: Emerging diversity in transport processes. BioEssays. 2018;40:1800013. doi: 10.1002/bies.201800013. PubMed DOI
Rostovtseva T.K., Queralt-Martín M., Rosencrans W.M., Bezrukov S.M. Targeting the multiple physiologic roles of VDAC with steroids and hydrophobic drugs. Front. Physiol. 2020;11:446. doi: 10.3389/fphys.2020.00446. PubMed DOI PMC
Shoshan-Barmatz V., Gincel D. The voltage-dependent anion channel: Characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem. Biophys. 2003;39:279–292. doi: 10.1385/CBB:39:3:279. PubMed DOI
Colombini M., Mannella C.A. VDAC, the early days. Biochim. Biophys. Acta Biomembr. 2012;1818:1438–1443. doi: 10.1016/j.bbamem.2011.11.014. PubMed DOI PMC
Colombini M. A candidate for the permeability pathway of the outer mitochondrial membrane. Nature. 1979;279:643–645. doi: 10.1038/279643a0. PubMed DOI
Kusano T., Tateda C., Berberich T., Takahashi Y. Voltage-dependent anion channels: Their roles in plant defense and cell death. Plant Cell Rep. 2009;28:1301–1308. doi: 10.1007/s00299-009-0741-z. PubMed DOI
Shoshan-Barmatz V., Mizrachi D. VDAC1: From structure to cancer therapy. Front. Oncol. 2012;2:164. doi: 10.3389/fonc.2012.00164. PubMed DOI PMC
Camara A.K.S., Zhou Y., Wen P.C., Tajkhorshid E., Kwok W.M. Mitochondrial VDAC1: A key gatekeeper as potential therapeutic target. Front. Physiol. 2017;8 doi: 10.3389/fphys.2017.00460. PubMed DOI PMC
Ponnalagu D., Singh H., editors. Handbook of Experimental Pharmacology. Volume 240. Springer; Berlin/Heidelberg, Germany: 2016. Anion channels of mitochondria; pp. 71–101. PubMed PMC
Neumann D., Bückers J., Kastrup L., Hell S.W., Jakobs S. Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys. 2010;3:4. doi: 10.1186/1757-5036-3-4. PubMed DOI PMC
Geula S., Ben-Hail D., Shoshan-Barmatz V. Structure-based analysis of VDAC1: N-terminus location, translocation, channel gating and association with anti-apoptotic proteins. Biochem. J. 2012;444:475–485. doi: 10.1042/BJ20112079. PubMed DOI
Cheng E.H.Y., Sheiko T.V., Fisher J.K., Craigen W.J., Korsmeyer S.J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science. 2003;301:513–517. doi: 10.1126/science.1083995. PubMed DOI
Checchetto V., Reina S., Magrì A., Szabo I., De Pinto V. Recombinant human voltage dependent anion selective channel Isoform 3 (hVDAC3) forms pores with a very small conductance. Cell. Physiol. Biochem. 2014;34:842–853. doi: 10.1159/000363047. PubMed DOI
De Pinto V., Guarino F., Guarnera A., Messina A., Reina S., Tomasello F.M., Palermo V., Mazzoni C. Characterization of human VDAC isoforms: A peculiar function for VDAC3? Biochim. Biophys. Acta. 2010;1797:1268–1275. doi: 10.1016/j.bbabio.2010.01.031. PubMed DOI
Lemasters J.J., Holmuhamedov E.L., Czerny C., Zhong Z., Maldonado E.N. Regulation of mitochondrial function by voltage dependent anion channels in ethanol metabolism and the Warburg effect. Biochim. Biophys. Acta. 2012;1818:1536–1544. doi: 10.1016/j.bbamem.2011.11.034. PubMed DOI PMC
Austin S., Nowikovsky K. LETM1: Essential for mitochondrial biology and cation homeostasis? Trends Biochem. Sci. 2019;44:648–658. doi: 10.1016/j.tibs.2019.04.002. PubMed DOI
Li Y., Tran Q., Shrestha R., Piao L., Park S., Park J., Park J. LETM1 is required for mitochondrial homeostasis and cellular viability (review) Mol. Med. Rep. 2019;19:3367–3375. doi: 10.3892/mmr.2019.10041. PubMed DOI PMC
Shao J., Fu Z., Ji Y., Guan X., Guo S., Ding Z., Yang X., Cong Y., Shen Y. Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) forms a Ca(2+)/H(+) antiporter. Sci. Rep. 2016;6:34174. doi: 10.1038/srep34174. PubMed DOI PMC
Waldeck-Weiermair M., Jean-Quartier C., Rost R., Khan M.J., Vishnu N., Bondarenko A.I., Imamura H., Malli R., Graier W.F. Leucine zipper EF hand-containing Transmembrane Protein 1 (Letm1) and uncoupling proteins 2 and 3 (UCP2/3) contribute to two distinct mitochondrial Ca2+ uptake pathways. J. Biol. Chem. 2011;286:28444–28455. doi: 10.1074/jbc.M111.244517. PubMed DOI PMC
De Stefani D., Raffaello A., Teardo E., Szabo I., Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 2011;476:336–340. doi: 10.1038/nature10230. PubMed DOI PMC
Baughman J.M., Perocchi F., Girgis H.S., Plovanich M., Belcher-Timme C.A., Sancak Y., Bao X.R., Strittmatter L., Goldberger O., Bogorad R.L., et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 2011;476:341–345. doi: 10.1038/nature10234. PubMed DOI PMC
Gunter T.E., Pfeiffer D.R. Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 1990;258:C755–C786. doi: 10.1152/ajpcell.1990.258.5.C755. PubMed DOI
Mishra J., Jhun B.S., Hurst S., O-Uchi J., Csordás G., Sheu S.S. The mitochondrial Ca2+ uniporter: Structure, function, and pharmacology. Handb. Exp. Pharmacol. 2017;240:129–156. doi: 10.1007/164_2017_1. PubMed DOI PMC
Pallafacchina G., Zanin S., Rizzuto R. Recent advances in the molecular mechanism of mitochondrial calcium uptake. F1000Research. 2018;7:1858. doi: 10.12688/f1000research.15723.1. PubMed DOI PMC
Granatiero V., De Stefani D., Rizzuto R. Mitochondrial calcium handling in physiology and disease. Adv. Exp. Med. Biol. 2017;982:25–47. doi: 10.1007/978-3-319-55330-6_2. PubMed DOI
Sancak Y., Markhard A.L., Kitami T., Kovacs-Bogdan E., Kamer K.J., Udeshi N.D., Carr S.A., Chaudhuri D., Clapham D.E., Li A.A., et al. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science. 2013;342:1379–1382. doi: 10.1126/science.1242993. PubMed DOI PMC
Cui C., Yang J., Fu L., Wang M., Wang X. Progress in understanding mitochondrial calcium uniporter complex-mediated calcium signalling: A potential target for cancer treatment. Br. J. Pharmacol. 2019;176:1190–1205. doi: 10.1111/bph.14632. PubMed DOI PMC
Pathak T., Trebak M. Mitochondrial Ca2+ signaling. Pharmacol. Ther. 2018;192:112–123. doi: 10.1016/j.pharmthera.2018.07.001. PubMed DOI PMC
Raffaello A., De Stefani D., Sabbadin D., Teardo E., Merli G., Picard A., Checchetto V., Moro S., Szabo I., Rizzuto R. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 2013;32:2362–2376. doi: 10.1038/emboj.2013.157. PubMed DOI PMC
Patron M., Checchetto V., Raffaello A., Teardo E., Vecellio Reane D., Mantoan M., Granatiero V., Szabo I., De Stefani D., Rizzuto R. MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol. Cell. 2014;53:726–737. doi: 10.1016/j.molcel.2014.01.013. PubMed DOI PMC
Csordás G., Golenár T., Seifert E.L., Kamer K.J., Sancak Y., Perocchi F., Moffat C., Weaver D., de la Fuente Perez S., Bogorad R., et al. MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter. Cell Metab. 2013;17:976–987. doi: 10.1016/j.cmet.2013.04.020. PubMed DOI PMC
Wang L., Yang X., Li S., Wang Z., Liu Y., Feng J., Zhu Y., Shen Y. Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake. EMBO J. 2014;33:594–604. doi: 10.1002/embj.201386523. PubMed DOI PMC
Vais H., Payne R., Paudel U., Li C., Foskett J.K. Coupled transmembrane mechanisms control MCU-mediated mitochondrial Ca2+ uptake. Proc. Natl. Acad. Sci. USA. 2020;117:21731–21739. doi: 10.1073/pnas.2005976117. PubMed DOI PMC
Paillard M., Csordás G., Szanda G., Golenár T., Debattisti V., Bartok A., Wang N., Moffat C., Seifert E.L., Spät A., et al. Tissue-specific mitochondrial decoding of cytoplasmic Ca2+ signals is controlled by the stoichiometry of MICU1/2 and MCU. Cell Rep. 2017;18:2291–2300. doi: 10.1016/j.celrep.2017.02.032. PubMed DOI PMC
Plovanich M., Bogorad R.L., Sancak Y., Kamer K.J., Strittmatter L., Li A.A., Girgis H.S., Kuchimanchi S., De Groot J., Speciner L., et al. MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS ONE. 2013;8:e55785. doi: 10.1371/journal.pone.0055785. PubMed DOI PMC
Kamer K.J., Grabarek Z., Mootha V.K. High-affinity cooperative Ca2+ binding by MICU 1– MICU 2 serves as an on–off switch for the uniporter. EMBO Rep. 2017;18:1397–1411. doi: 10.15252/embr.201643748. PubMed DOI PMC
Payne R., Hoff H., Roskowski A., Foskett J.K. MICU2 restricts spatial crosstalk between InsP 3 R and MCU channels by regulating threshold and gain of MICU1-mediated inhibition and activation of MCU. Cell Rep. 2017;21:3141–3154. doi: 10.1016/j.celrep.2017.11.064. PubMed DOI PMC
Mallilankaraman K., Cardenas C., Doonan P.J., Chandramoorthy H.C., Irrinki K.M., Golenar T., Csordas G., Madireddi P., Yang J., Muller M., et al. MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat. Cell Biol. 2012;14:1336–1343. doi: 10.1038/ncb2622. PubMed DOI PMC
Ren T., Wang J., Zhang H., Yuan P., Zhu J., Wu Y., Huang Q., Guo X., Zhang J., Ji L., et al. MCUR1-mediated mitochondrial calcium signaling facilitates cell survival of hepatocellular carcinoma via reactive oxygen species-dependent P53 degradation. Antioxid. Redox Signal. 2018;28:1120–1136. doi: 10.1089/ars.2017.6990. PubMed DOI
Tomar D., Dong Z., Shanmughapriya S., Koch D.A., Thomas T., Hoffman N.E., Timbalia S.A., Goldman S.J., Breves S.L., Corbally D.P., et al. MCUR1 is a scaffold factor for the MCU complex function and promotes mitochondrial bioenergetics. Cell Rep. 2016;15:1673–1685. doi: 10.1016/j.celrep.2016.04.050. PubMed DOI PMC
Paupe V., Prudent J., Dassa E.P., Rendon O.Z., Shoubridge E.A. CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. Cell Metab. 2015;21:109–116. doi: 10.1016/j.cmet.2014.12.004. PubMed DOI
Bassi M.T., Manzoni M., Bresciani R., Pizzo M.T., Della Monica A., Barlati S., Monti E., Borsani G. Cellular expression and alternative splicing of SLC25A23, a member of the mitochondrial Ca2+-dependent solute carrier gene family. Gene. 2005;345:173–182. doi: 10.1016/j.gene.2004.11.028. PubMed DOI
Harborne S.P.D., King M.S., Crichton P.G., Kunji E.R.S. Calcium regulation of the human mitochondrial ATP-Mg/Pi carrier SLC25A24 uses a locking pin mechanism. Sci. Rep. 2017;7:45383. doi: 10.1038/srep45383. PubMed DOI PMC
Gunter T.E., Gunter K.K. Uptake of calcium by mitochondria: Transport and possible function. IUBMB Life. 2001;52:197–204. doi: 10.1080/15216540152846000. PubMed DOI
Xu Z., Zhang D., He X., Huang Y., Shao H. Transport of calcium ions into mitochondria. Curr. Genom. 2016;17:215–219. doi: 10.2174/1389202917666160202215748. PubMed DOI PMC
Sparagna G.C., Gunter K.K., Sheu S.-S., Gunter T.E. Mitochondrial Calcium uptake from physiological-type pulses of Calcium. J. Biol. Chem. 1995;270:27510–27515. doi: 10.1074/jbc.270.46.27510. PubMed DOI
Beutner G., Sharma V.K., Giovannucci D.R., Yule D.I., Sheu S.S. Identification of a Ryanodine receptor in Rat Heart mitochondria. J. Biol. Chem. 2001;276:21482–21488. doi: 10.1074/jbc.M101486200. PubMed DOI
Beutner G., Sharma V.K., Lin L., Ryu S.Y., Dirksen R.T., Sheu S.S. Type 1 Ryanodine receptor in cardiac mitochondria: Transducer of excitation–metabolism coupling. Biochim. Biophys. Acta Biomembr. 2005;1717:1–10. doi: 10.1016/j.bbamem.2005.09.016. PubMed DOI
Babich L.G., Shlykov S.G., Kosterin S.O. Ca ion transport in smooth muscle mitochondria. Ukr. Biochem. J. 2014;86:18–30. doi: 10.15407/ubj86.06.018. PubMed DOI
Altschafl B.A., Beutner G., Sharma V.K., Sheu S.S., Valdivia H.H. The mitochondrial ryanodine receptor in rat heart: A pharmaco-kinetic profile. Biochim. Biophys. Acta Biomembr. 2007;1768:1784–1795. doi: 10.1016/j.bbamem.2007.04.011. PubMed DOI
Tamai S., Iida H., Yokota S., Sayano T., Kiguchiya S., Ishihara N., Hayashi J.-I., Mihara K., Oka T. Characterization of the mitochondrial protein LETM1, which maintains the mitochondrial tubular shapes and interacts with the AAA-ATPase BCS1L. J. Cell Sci. 2008;121:2588–2600. doi: 10.1242/jcs.026625. PubMed DOI
Endele S., Fuhry M., Pak S.J., Zabel B.U., Winterpacht A. LETM1, a novel gene encoding a putative EF-hand Ca(2+)-binding protein, flanks the Wolf-Hirschhorn syndrome (WHS) critical region and is deleted in most WHS patients. Genomics. 1999;60:218–225. doi: 10.1006/geno.1999.5881. PubMed DOI
Hasegawa A., van der Bliek A.M. Inverse correlation between expression of the Wolfs Hirschhorn candidate gene Letm1 and mitochondrial volume in C. elegans and in mammalian cells. Hum. Mol. Genet. 2007;16:2061–2071. doi: 10.1093/hmg/ddm154. PubMed DOI
Schlickum S., Moghekar A., Simpson J.C., Steglich C., O’Brien R.J., Winterpacht A., Endele S.U. LETM1, a gene deleted in Wolf-Hirschhorn syndrome, encodes an evolutionarily conserved mitochondrial protein. Genomics. 2004;83:254–261. doi: 10.1016/j.ygeno.2003.08.013. PubMed DOI
Lin Q.T., Stathopulos P.B. Molecular mechanisms of leucine zipper EF-Hand containing transmembrane Protein-1 function in health and disease. Int. J. Mol. Sci. 2019;20:286. doi: 10.3390/ijms20020286. PubMed DOI PMC
Doonan P.J., Chandramoorthy H.C., Hoffman N.E., Zhang X., Cardenas C., Shanmughapriya S., Rajan S., Vallem S., Chen X., Foskett J.K., et al. LETM1-dependent mitochondrial Ca2+ flux modulates cellular bioenergetics and proliferation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2014;28:4936–4949. doi: 10.1096/fj.14-256453. PubMed DOI PMC
Jiang D., Zhao L., Clish C.B., Clapham D.E. Letm1, the mitochondrial Ca2+/H+ antiporter, is essential for normal glucose metabolism and alters brain function in Wolf-Hirschhorn syndrome. Proc. Natl. Acad. Sci. USA. 2013;110:E2249–E2254. doi: 10.1073/pnas.1308558110. PubMed DOI PMC
Jiang D., Zhao L., Clapham D.E. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science. 2009;326:144–147. doi: 10.1126/science.1175145. PubMed DOI PMC
Okamura K., Matsushita S., Kato Y., Watanabe H., Matsui A., Oka T., Matsuura T. In vitro synthesis of the human calcium transporter Letm1 within cell-sized liposomes and investigation of its lipid dependency. J. Biosci. Bioeng. 2019;127:544–548. doi: 10.1016/j.jbiosc.2018.11.003. PubMed DOI
Nowikovsky K., Bernardi P. LETM1 in mitochondrial cation transport. Front. Physiol. 2014;5:83. doi: 10.3389/fphys.2014.00083. PubMed DOI PMC
De Marchi U., Santo-Domingo J., Castelbou C., Sekler I., Wiederkehr A., Demaurex N. NCLX protein, but not LETM1, mediates mitochondrial Ca2+ extrusion, thereby limiting Ca2+-induced NAD(P)H production and modulating matrix redox state. J. Biol. Chem. 2014;289:20377–20385. doi: 10.1074/jbc.M113.540898. PubMed DOI PMC
Carafoli E., Tiozzo R., Lugli G., Crovetti F., Kratzing C. The release of calcium from heart mitochondria by sodium. J. Mol. Cell. Cardiol. 1974;6:361–371. doi: 10.1016/0022-2828(74)90077-7. PubMed DOI
Wingrove D.E., Gunter T.E. Kinetics of mitochondrial calcium transport. I. Characteristics of the sodium-independent calcium efflux mechanism of liver mitochondria. J. Biol. Chem. 1986;261:15159–15165. PubMed
Wingrove D.E., Gunter T.E. Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium. J. Biol. Chem. 1986;261:15166–15171. PubMed
Hunter D.R., Haworth R.A., Hunter D.R., Haworth R.A. The Ca2+-induced membrane transition in mitochondria. Arch. Biochem. Biophys. 1979;195:468–477. doi: 10.1016/0003-9861(79)90373-4. PubMed DOI
Tsai M.F., Jiang D., Zhao L., Clapham D., Miller C. Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1. J. Gen. Physiol. 2014;143:67–73. doi: 10.1085/jgp.201311096. PubMed DOI PMC
Nowikovsky K., Pozzan T., Rizzuto R., Scorrano L., Bernardi P. The pathophysiology of LETM1. J. Gen. Physiol. 2012;139:445–454. doi: 10.1085/jgp.201110757. PubMed DOI PMC
Palty R., Silverman W.F., Hershfinkel M., Caporale T., Sensi S.L., Parnis J., Nolte C., Fishman D., Shoshan-Barmatz V., Herrmann S., et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl. Acad. Sci. USA. 2010;107:436–441. doi: 10.1073/pnas.0908099107. PubMed DOI PMC
Luongo T.S., Lambert J.P., Gross P., Nwokedi M., Lombardi A.A., Shanmughapriya S., Carpenter A.C., Kolmetzky D., Gao E., van Berlo J.H., et al. The mitochondrial Na(+)/Ca(2+) exchanger is essential for Ca(2+) homeostasis and viability. Nature. 2017;545:93–97. doi: 10.1038/nature22082. PubMed DOI PMC
Kostic M., Sekler I. Functional properties and mode of regulation of the mitochondrial Na+/Ca2+ exchanger, NCLX. Semin. Cell Dev. Biol. 2019;94:59–65. doi: 10.1016/j.semcdb.2019.01.009. PubMed DOI
Palty R., Ohana E., Hershfinkel M., Volokita M., Elgazar V., Beharier O., Silverman W.F., Argaman M., Sekler I. Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger. J. Biol. Chem. 2004;279:25234–25240. doi: 10.1074/jbc.M401229200. PubMed DOI
Sheng J.-Z., Prinsen C.F.M., Clark R.B., Giles W.R., Schnetkamp P.P.M. Na+-Ca2+-K+ currents measured in insect cells transfected with the retinal cone or Rod Na+-Ca2+-K+ exchanger cDNA. Biophys. J. 2000;79:1945–1953. doi: 10.1016/S0006-3495(00)76443-5. PubMed DOI PMC
Gunter T.E., Yule D.I., Gunter K.K., Eliseev R.A., Salter J.D. Calcium and mitochondria. FEBS Lett. 2004;567:96–102. doi: 10.1016/j.febslet.2004.03.071. PubMed DOI
Takeuchi A., Kim B., Matsuoka S. The destiny of Ca2+ released by mitochondria. J. Physiol. Sci. 2015;65:11–24. doi: 10.1007/s12576-014-0326-7. PubMed DOI PMC
Haworth R.A., Hunter D.R., Berkoff H.A. Na+ releases Ca2+ from liver, kidney and lung mitochondria. FEBS Lett. 1980;110:216–218. doi: 10.1016/0014-5793(80)80076-7. PubMed DOI
Zhang Y., Lipton P. Cytosolic Ca2+ changes during in vitro ischemia in rat hippocampal slices: Major roles for glutamate and Na+-dependent Ca2+ release from mitochondria. J. Neurosci. 1999;19:3307–3315. doi: 10.1523/JNEUROSCI.19-09-03307.1999. PubMed DOI PMC
Islam M.M., Takeuchi A., Matsuoka S. Membrane current evoked by mitochondrial Na+–Ca2+ exchange in mouse heart. J. Physiol. Sci. 2020;70:24. doi: 10.1186/s12576-020-00752-3. PubMed DOI PMC
Samanta K., Mirams G.R., Parekh A.B. Sequential forward and reverse transport of the Na+ Ca2+ exchanger generates Ca2+ oscillations within mitochondria. Nat. Commun. 2018;9:156. doi: 10.1038/s41467-017-02638-2. PubMed DOI PMC
Kolomiets O.V., Danylovych Y.V., Danylovych H.V., Kosterin S.O. Ca(2+)/H(+)-exchange in myometrium mitochondria. Ukr. Biochem. J. 2014;86:41–48. doi: 10.15407/ubj86.03.041. PubMed DOI
Kandaurova N.V. Ph.D. Thesis. Palladin Institute of Biochemistry, National Academy of Sciences; Kiev, Ukraine: 2011. Ca2+-Induced Changes of Membrane Potential of Myometrium Mitochondria.
Gunter K.K., Zuscik M.J., Gunter T.E. The Na(+)-independent Ca2+ efflux mechanism of liver mitochondria is not a passive Ca2+/2H+ exchanger. J. Biol. Chem. 1991;266:21640–21648. PubMed
Huang E., Qu D., Huang T., Rizzi N., Boonying W., Krolak D., Ciana P., Woulfe J., Klein C., Slack R.S., et al. PINK1-mediated phosphorylation of LETM1 regulates mitochondrial calcium transport and protects neurons against mitochondrial stress. Nat. Commun. 2017;8:1399. doi: 10.1038/s41467-017-01435-1. PubMed DOI PMC
Pérez M.J., Quintanilla R.A. Development or disease: Duality of the mitochondrial permeability transition pore. Dev. Biol. 2017;426:1–7. doi: 10.1016/j.ydbio.2017.04.018. PubMed DOI
Britti E., Delaspre F., Tamarit J., Ros J. Mitochondrial calcium signalling and neurodegenerative diseases. Neuronal Signal. 2018;2 doi: 10.1042/NS20180061. PubMed DOI PMC
Biasutto L., Azzolini M., Szabò I., Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. Biochim. Biophys. Acta Mol. Cell Res. 2016;1863:2515–2530. doi: 10.1016/j.bbamcr.2016.02.012. PubMed DOI
Li Y., Sun J., Wu R., Bai J., Hou Y., Zeng Y., Zhang Y., Wang X., Wang Z., Meng X. Mitochondrial MPTP: A novel target of ethnomedicine for stroke treatment by apoptosis inhibition. Front. Pharmacol. 2020;11:352. doi: 10.3389/fphar.2020.00352. PubMed DOI PMC
Hurst S., Hoek J., Sheu S.S. Mitochondrial Ca2+ and regulation of the permeability transition pore. J. Bioenergy Biomembr. 2017;49:27–47. doi: 10.1007/s10863-016-9672-x. PubMed DOI PMC
Altschuld R.A., Hohl C.M., Castillo L.C., Garleb A.A., Starling R.C., Brierley G.P. Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. Am. J. Physiol. Circ. Physiol. 1992;262:H1699–H1704. doi: 10.1152/ajpheart.1992.262.6.H1699. PubMed DOI
Mnatsakanyan N., Beutner G., Porter G.A., Alavian K.N., Jonas E.A. Physiological roles of the mitochondrial permeability transition pore. J. Bioenergy Biomembr. 2017;49:13–25. doi: 10.1007/s10863-016-9652-1. PubMed DOI PMC
Basso E., Fante L., Fowlkes J., Petronilli V., Forte M.A., Bernardi P. Properties of the permeability transition pore in mitochondria devoid of Cyclophilin, D. J. Biol. Chem. 2005;280:18558–18561. doi: 10.1074/jbc.C500089200. PubMed DOI
Shanmughapriya S., Rajan S., Hoffman N.E., Higgins A.M., Tomar D., Nemani N., Hines K.J., Smith D.J., Eguchi A., Vallem S., et al. SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Mol. Cell. 2015;60:47–62. doi: 10.1016/j.molcel.2015.08.009. PubMed DOI PMC
Baines C.P., Kaiser R.A., Purcell N.H., Blair N.S., Osinska H., Hambleton M.A., Brunskill E.W., Sayen M.R., Gottlieb R.A., Dorn G.W., et al. Loss of Cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–662. doi: 10.1038/nature03434. PubMed DOI
Nakagawa T., Shimizu S., Watanabe T., Yamaguchi O., Otsu K., Yamagata H., Inohara H., Kubo T., Tsujimoto Y. Cyclophilin D-Dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–658. doi: 10.1038/nature03317. PubMed DOI
Schinzel A.C., Takeuchi O., Huang Z., Fisher J.K., Zhou Z., Rubens J., Hetz C., Danial N.N., Moskowitz M.A., Korsmeyer S.J. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. USA. 2005;102:12005–12010. doi: 10.1073/pnas.0505294102. PubMed DOI PMC
Alam M.R., Baetz D., Ovize M. Cyclophilin D and myocardial ischemia–reperfusion injury: A fresh perspective. J. Mol. Cell. Cardiol. 2015;78:80–89. doi: 10.1016/j.yjmcc.2014.09.026. PubMed DOI
Kokoszka J.E., Waymire K.G., Levy S.E., Sligh J.E., Cai J., Jones D.P., MacGregor G.R., Wallace D.C. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. 2004;427:461–465. doi: 10.1038/nature02229. PubMed DOI PMC
Karch J., Bround M.J., Khalil H., Sargent M.A., Latchman N., Terada N., Peixoto P.M., Molkentin J.D. Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Sci. Adv. 2019;5:eaaw4597. doi: 10.1126/sciadv.aaw4597. PubMed DOI PMC
Bround M.J., Bers D.M., Molkentin J.D. A 20/20 view of ANT function in mitochondrial biology and necrotic cell death. J. Mol. Cell. Cardiol. 2020;144:A3–A13. doi: 10.1016/j.yjmcc.2020.05.012. PubMed DOI PMC
Kwong J.Q., Davis J., Baines C.P., Sargent M.A., Karch J., Wang X., Huang T., Molkentin J.D. Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell Death Differ. 2014;21:1209–1217. doi: 10.1038/cdd.2014.36. PubMed DOI PMC
Varanyuwatana P., Halestrap A.P. The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion. 2012;12:120–125. doi: 10.1016/j.mito.2011.04.006. PubMed DOI PMC
Hurst S., Baggett A., Csordas G., Sheu S.-S. SPG7 targets the m-AAA protease complex to process MCU for uniporter assembly, Ca2+ influx, and regulation of mitochondrial permeability transition pore opening. J. Biol. Chem. 2019;294:10807–10818. doi: 10.1074/jbc.RA118.006443. PubMed DOI PMC
Leung A.W.C., Varanyuwatana P., Halestrap A.P. The mitochondrial phosphate carrier interacts with Cyclophilin D and may play a key role in the permeability transition. J. Biol. Chem. 2008;283:26312–26323. doi: 10.1074/jbc.M805235200. PubMed DOI PMC
Giorgio V., von Stockum S., Antoniel M., Fabbro A., Fogolari F., Forte M., Glick G.D., Petronilli V., Zoratti M., Szabo I., et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl. Acad. Sci. USA. 2013;110:5887–5892. doi: 10.1073/pnas.1217823110. PubMed DOI PMC
Bonora M., Bononi A., De Marchi E., Giorgi C., Lebiedzinska M., Marchi S., Patergnani S., Rimessi A., Suski J.M., Wojtala A., et al. Role of the c subunit of the F O ATP synthase in mitochondrial permeability transition. Cell Cycle. 2013;12:674–683. doi: 10.4161/cc.23599. PubMed DOI PMC
Crompton M., Costi A. Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur. J. Biochem. 1988;178:489–501. doi: 10.1111/j.1432-1033.1988.tb14475.x. PubMed DOI
Carraro M., Giorgio V., Šileikytė J., Sartori G., Forte M., Lippe G., Zoratti M., Szabò I., Bernardi P. Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J. Biol. Chem. 2014;289:15980–15985. doi: 10.1074/jbc.C114.559633. PubMed DOI PMC
Zhou W., Marinelli F., Nief C., Faraldo-Gómez J.D. Atomistic simulations indicate the c-subunit ring of the F1Fo ATP synthase is not the mitochondrial permeability transition pore. Elife. 2017;6 doi: 10.7554/eLife.23781. PubMed DOI PMC
He J., Ford H.C., Carroll J., Ding S., Fearnley I.M., Walker J.E. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc. Natl. Acad. Sci. USA. 2017;114:3409–3414. doi: 10.1073/pnas.1702357114. PubMed DOI PMC
He J., Carroll J., Ding S., Fearnley I.M., Walker J.E. Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. Proc. Natl. Acad. Sci. USA. 2017;114:9086–9091. doi: 10.1073/pnas.1711201114. PubMed DOI PMC
Bonora M., Wieckowski M.R., Chinopoulos C., Kepp O., Kroemer G., Galluzzi L., Pinton P. Molecular mechanisms of cell death: Central implication of ATP synthase in mitochondrial permeability transition. Oncogene. 2015;34:1475–1486. doi: 10.1038/onc.2014.96. PubMed DOI
Halestrap A.P., Richardson A.P. The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 2015;78:129–141. doi: 10.1016/j.yjmcc.2014.08.018. PubMed DOI
Bernardi P. The mitochondrial permeability transition pore: A mystery solved? Front. Physiol. 2013;4 doi: 10.3389/fphys.2013.00095. PubMed DOI PMC
Jonas E.A., Porter G.A., Beutner G., Mnatsakanyan N., Alavian K.N. Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase. Pharmacol. Res. 2015;99:382–392. doi: 10.1016/j.phrs.2015.04.013. PubMed DOI PMC
Elustondo P.A., Nichols M., Negoda A., Thirumaran A., Zakharian E., Robertson G.S., Pavlov E. V Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase C-subunit, polyhydroxybutyrate and inorganic polyphosphate. Cell Death Discov. 2016;2:16070. doi: 10.1038/cddiscovery.2016.70. PubMed DOI PMC
Alavian K.N., Beutner G., Lazrove E., Sacchetti S., Park H.-A., Licznerski P., Li H., Nabili P., Hockensmith K., Graham M., et al. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc. Natl. Acad. Sci. USA. 2014;111:10580–10585. doi: 10.1073/pnas.1401591111. PubMed DOI PMC
Chinopoulos C. Mitochondrial permeability transition pore: Back to the drawing board. Neurochem. Int. 2018;117:49–54. doi: 10.1016/j.neuint.2017.06.010. PubMed DOI
Ichas F., Jouaville L.S., Mazat J.P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997;89:1145–1153. doi: 10.1016/S0092-8674(00)80301-3. PubMed DOI
Lu X., Kwong J.Q., Molkentin J.D., Bers D.M. Individual cardiac mitochondria undergo rare transient permeability transition pore openings. Circ. Res. 2016;118:834–841. doi: 10.1161/CIRCRESAHA.115.308093. PubMed DOI PMC
Ichas F., Mazat J.-P. From calcium signaling to cell death: Two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim. Biophys. Acta Bioenergy. 1998;1366:33–50. doi: 10.1016/S0005-2728(98)00119-4. PubMed DOI
Gainutdinov T., Molkentin J.D., Siemen D., Ziemer M., Debska-Vielhaber G., Vielhaber S., Gizatullina Z., Orynbayeva Z., Gellerich F.N. Knockout of cyclophilin D in Ppif−/− mice increases stability of brain mitochondria against Ca2+ stress. Arch. Biochem. Biophys. 2015;579:40–46. doi: 10.1016/j.abb.2015.05.009. PubMed DOI
Bernardi P., von Stockum S. The permeability transition pore as a Ca2+ release channel: New answers to an old question. Cell Calcium. 2012;52:22–27. doi: 10.1016/j.ceca.2012.03.004. PubMed DOI PMC
Korge P., Yang L., Yang J.-H., Wang Y., Qu Z., Weiss J.N. Protective role of transient pore openings in calcium handling by cardiac mitochondria. J. Biol. Chem. 2011;286:34851–34857. doi: 10.1074/jbc.M111.239921. PubMed DOI PMC
Elrod J.W., Wong R., Mishra S., Vagnozzi R.J., Sakthievel B., Goonasekera S.A., Karch J., Gabel S., Farber J., Force T., et al. Cyclophilin D controls mitochondrial pore–dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. J. Clin. Investig. 2010;120:3680–3687. doi: 10.1172/JCI43171. PubMed DOI PMC
Lamb H.M. Double agents of cell death: Novel emerging functions of apoptotic regulators. FEBS J. 2020;287:2647–2663. doi: 10.1111/febs.15308. PubMed DOI PMC
Baines C.P., Gutiérrez-Aguilar M. The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. Cell Calcium. 2018;73:121–130. doi: 10.1016/j.ceca.2018.05.003. PubMed DOI PMC
Zorow D.B., Kinnally K.W., Perini S., Tedeschi H. Multiple conductance levels in rat heart inner mitochondrial membranes studied by patch clamping. Biochim. Biophys. Acta Biomembr. 1992;1105:263–270. doi: 10.1016/0005-2736(92)90203-X. PubMed DOI
Petronilli V., Miotto G., Canton M., Brini M., Colonna R., Bernardi P., Di Lisa F. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys. J. 1999;76:725–734. doi: 10.1016/S0006-3495(99)77239-5. PubMed DOI PMC
Xu H., Cui S., Zhang Y., Ren J. Mitochondrial Ca2+ regulation in the etiology of heart failure: Physiological and pathophysiological implications. Acta Pharmacol. Sin. 2020;10:1301–1309. doi: 10.1038/s41401-020-0476-5. PubMed DOI PMC
Kinnally K.W., Peixoto P.M., Ryu S.-Y., Dejean L.M. Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim. Biophys. Acta Mol. Cell Res. 2011;1813:616–622. doi: 10.1016/j.bbamcr.2010.09.013. PubMed DOI PMC
Bernardi P., Rasola A., Forte M., Lippe G. The mitochondrial permeability transition pore: Channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol. Rev. 2015;95:1111–1155. doi: 10.1152/physrev.00001.2015. PubMed DOI PMC
Elrod J.W., Molkentin J.D. Physiologic functions of Cyclophilin D and the mitochondrial permeability transition pore. Circ. J. 2013;77:1111–1122. doi: 10.1253/circj.CJ-13-0321. PubMed DOI PMC
Halestrap A. Mitochondrial permeability transition pore opening during myocardial reperfusion—A target for cardioprotection. Cardiovasc. Res. 2004;61:372–385. doi: 10.1016/S0008-6363(03)00533-9. PubMed DOI
Szabó I., Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. FEBS Lett. 1993;330:201–205. doi: 10.1016/0014-5793(93)80273-W. PubMed DOI
Crompton M., Virji S., Ward J.M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur. J. Biochem. 1998;258:729–735. doi: 10.1046/j.1432-1327.1998.2580729.x. PubMed DOI
Zheng Y., Shi Y., Tian C., Jiang C., Jin H., Chen J., Almasan A., Tang H., Chen Q. Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene. 2004;23:1239–1247. doi: 10.1038/sj.onc.1207205. PubMed DOI PMC
Chaudhuri A.D., Choi D.C., Kabaria S., Tran A., Junn E. MicroRNA-7 regulates the function of mitochondrial permeability transition pore by targeting VDAC1 expression. J. Biol. Chem. 2016;291:6483–6493. doi: 10.1074/jbc.M115.691352. PubMed DOI PMC
Zhou H., Hu S., Jin Q., Shi C., Zhang Y., Zhu P., Ma Q., Tian F., Chen Y. Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J. Am. Heart Assoc. 2017:6. doi: 10.1161/JAHA.116.005328. PubMed DOI PMC
Tan W., Colombini M. VDAC closure increases calcium ion flux. Biochim. Biophys. Acta Biomembr. 2007;1768:2510–2515. doi: 10.1016/j.bbamem.2007.06.002. PubMed DOI PMC
Tikunov A., Johnson C.B., Pediaditakis P., Markevich N., Macdonald J.M., Lemasters J.J., Holmuhamedov E. Closure of VDAC causes oxidative stress and accelerates the Ca2+-induced mitochondrial permeability transition in rat liver mitochondria. Arch. Biochem. Biophys. 2010;495:174–181. doi: 10.1016/j.abb.2010.01.008. PubMed DOI PMC
Glab J.A., Cao Z., Puthalakath H. Bcl-2 family proteins, beyond the veil. Int. Rev. Cell Mol. Biol. 2020;351:1–22. PubMed
García-Fruitós E., editor. Methods in Molecular Biology. Volume 1258. Springer; New York, NY, USA: 2015. Insoluble Proteins.
Peña-Blanco A., García-Sáez A.J. Bax, Bak and beyond—Mitochondrial performance in apoptosis. FEBS J. 2018;285:416–431. doi: 10.1111/febs.14186. PubMed DOI
Hardwick J.M., Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb. Perspect. Biol. 2013;5:a008722. doi: 10.1101/cshperspect.a008722. PubMed DOI PMC
Rasmussen M.L., Gama V. A connection in life and death: The BCL-2 family coordinates mitochondrial network dynamics and stem cell fate. Int. Rev. Cell Mol. Biol. 2020;353:255–284. PubMed PMC
Adams J.M. The Bcl-2 protein family: Arbiters of cell survival. Science. 1998;281:1322–1326. doi: 10.1126/science.281.5381.1322. PubMed DOI
Choudhury S. A comparative analysis of BCL-2 family. Bioinformation. 2019;15:299–306. doi: 10.6026/97320630015299. PubMed DOI PMC
Ivanova H., Wagner L.E., Tanimura A., Vandermarliere E., Luyten T., Welkenhuyzen K., Alzayady K.J., Wang L., Hamada K., Mikoshiba K., et al. Bcl-2 and IP3 compete for the ligand-binding domain of IP3Rs modulating Ca2+ signaling output. Cell. Mol. Life Sci. 2019;76:3843–3859. doi: 10.1007/s00018-019-03091-8. PubMed DOI PMC
Vervliet T., Parys J.B., Bultynck G. Bcl-2 proteins and calcium signaling: Complexity beneath the surface. Oncogene. 2016;35:5079–5092. doi: 10.1038/onc.2016.31. PubMed DOI
Fouqué A., Lepvrier E., Debure L., Gouriou Y., Malleter M., Delcroix V., Ovize M., Ducret T., Li C., Hammadi M., et al. The apoptotic members CD95, BclxL, and Bcl-2 cooperate to promote cell migration by inducing Ca2+ flux from the endoplasmic reticulum to mitochondria. Cell Death Differ. 2016;23:1702–1716. doi: 10.1038/cdd.2016.61. PubMed DOI PMC
Lanave C., Santamaria M., Saccone C. Comparative genomics: The evolutionary history of the Bcl-2 family. Gene. 2004;333:71–79. doi: 10.1016/j.gene.2004.02.017. PubMed DOI
Zmasek C.M., Godzik A. Evolution of the animal apoptosis network. Cold Spring Harb. Perspect. Biol. 2013;5:a008649. doi: 10.1101/cshperspect.a008649. PubMed DOI PMC
Kvansakul M., Caria S., Hinds M. The Bcl-2 Family in host-virus interactions. Viruses. 2017;9:290. doi: 10.3390/v9100290. PubMed DOI PMC
Aouacheria A., Rech de Laval V., Combet C., Hardwick J.M. Evolution of Bcl-2 homology motifs: Homology versus homoplasy. Trends Cell Biol. 2013;23:103–111. doi: 10.1016/j.tcb.2012.10.010. PubMed DOI PMC
Tsujimoto Y., Finger L., Yunis J., Nowell P., Croce C. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984;226:1097–1099. doi: 10.1126/science.6093263. PubMed DOI
Cleary M.L., Smith S.D., Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell. 1986;47:19–28. doi: 10.1016/0092-8674(86)90362-4. PubMed DOI
Vaux D.L., Cory S., Adams J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335:440–442. doi: 10.1038/335440a0. PubMed DOI
Birkinshaw R.W., Czabotar P.E. The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Semin. Cell Dev. Biol. 2017;72:152–162. doi: 10.1016/j.semcdb.2017.04.001. PubMed DOI
Cory S., Adams J.M. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer. 2002;2:647–656. doi: 10.1038/nrc883. PubMed DOI
Huska J.D., Lamb H.M., Hardwick J.M. Overview of BCL-2 family proteins and therapeutic potentials. Methods Mol. Biol. 2019;1877:1–21. PubMed
Delbridge A.R.D., Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015;22:1071–1080. doi: 10.1038/cdd.2015.50. PubMed DOI PMC
Adams J.M. BAX and BAK become killers without a BH3 trigger. Cell Res. 2019;29:967–968. doi: 10.1038/s41422-019-0253-5. PubMed DOI PMC
Vervloessem T., Kerkhofs M., La Rovere R.M., Sneyers F., Parys J.B., Bultynck G. Bcl-2 inhibitors as anti-cancer therapeutics: The impact of and on calcium signaling. Cell Calcium. 2018;70:102–116. doi: 10.1016/j.ceca.2017.05.014. PubMed DOI
Gavathiotis E., editor. BCL-2 Family Proteins-Methods in Molecular Biology. Volume 1877. Springer; New York, NY, USA: 2019.
Chipuk J.E., Moldoveanu T., Llambi F., Parsons M.J., Green D.R. The BCL-2 family reunion. Mol. Cell. 2010;37:299–310. doi: 10.1016/j.molcel.2010.01.025. PubMed DOI PMC
Correia C., Lee S.-H., Meng X.W., Vincelette N.D., Knorr K.L.B., Ding H., Nowakowski G.S., Dai H., Kaufmann S.H. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. Biochim. Biophys. Acta Mol. Cell Res. 2015;1853:1658–1671. doi: 10.1016/j.bbamcr.2015.03.012. PubMed DOI PMC
Singh R., Letai A., Sarosiek K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 2019;20:175–193. doi: 10.1038/s41580-018-0089-8. PubMed DOI PMC
Voss A.K., Strasser A. The essentials of developmental apoptosis. F1000Research. 2020;9:148. doi: 10.12688/f1000research.21571.1. PubMed DOI PMC
Suvarna V., Singh V., Murahari M. Current overview on the clinical update of Bcl-2 anti-apoptotic inhibitors for cancer therapy. Eur. J. Pharmacol. 2019;862:172655. doi: 10.1016/j.ejphar.2019.172655. PubMed DOI
Luna-Vargas M.P.A., Chipuk J.E. Physiological and pharmacological control of BAK, BAX, and beyond. Trends Cell Biol. 2016;26:906–917. doi: 10.1016/j.tcb.2016.07.002. PubMed DOI PMC
Campbell K.J., Tait S.W.G. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018;8:180002. doi: 10.1098/rsob.180002. PubMed DOI PMC
Gabellini C., Trisciuoglio D., Del Bufalo D. Non-canonical roles of Bcl-2 and Bcl-xL proteins: Relevance of BH4 domain. Carcinogenesis. 2017;38:579–587. doi: 10.1093/carcin/bgx016. PubMed DOI
Senichkin V.V., Kopeina G.S., Prokhorova E.A., Zamaraev A.V., Lavrik I.N., Zhivotovsky B. Modulation of Mcl-1 transcription by serum deprivation sensitizes cancer cells to cisplatin. Biochim. Biophys. Acta Gen. Subj. 2018;1862:557–566. doi: 10.1016/j.bbagen.2017.11.021. PubMed DOI
Kale J., Osterlund E.J., Andrews D.W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2018;25:65–80. doi: 10.1038/cdd.2017.186. PubMed DOI PMC
Certo M., Moore V.D.G., Nishino M., Wei G., Korsmeyer S., Armstrong S.A., Letai A. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 2006;9:351–365. doi: 10.1016/j.ccr.2006.03.027. PubMed DOI
Ku B., Liang C., Jung J.U., Oh B.H. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res. 2011;21:627–641. doi: 10.1038/cr.2010.149. PubMed DOI PMC
Llambi F., Wang Y.-M., Victor B., Yang M., Schneider D.M., Gingras S., Parsons M.J., Zheng J.H., Brown S.A., Pelletier S., et al. BOK is a non-canonical BCL-2 family effector of apoptosis regulated by ER-associated degradation. Cell. 2016;165:421–433. doi: 10.1016/j.cell.2016.02.026. PubMed DOI PMC
Ke F.F.S., Vanyai H.K., Cowan A.D., Delbridge A.R.D., Whitehead L., Grabow S., Czabotar P.E., Voss A.K., Strasser A. Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK. Cell. 2018;173:1217–1230. doi: 10.1016/j.cell.2018.04.036. PubMed DOI
Suhaili S.H., Karimian H., Stellato M., Lee T.H., Aguilar M.I. Mitochondrial outer membrane permeabilization: A focus on the role of mitochondrial membrane structural organization. Biophys. Rev. 2017;9:443–457. doi: 10.1007/s12551-017-0308-0. PubMed DOI PMC
Oltval Z.N., Milliman C.L., Korsmeyer S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell. 1993;74:609–619. doi: 10.1016/0092-8674(93)90509-O. PubMed DOI
Youle R.J., Strasser A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008;9:47–59. doi: 10.1038/nrm2308. PubMed DOI
Hsu Y.T., Youle R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 1998;273:10777–10783. doi: 10.1074/jbc.273.17.10777. PubMed DOI
Schellenberg B., Wang P., Keeble J.A., Rodriguez-Enriquez R., Walker S., Owens T.W., Foster F., Tanianis-Hughes J., Brennan K., Streuli C.H., et al. Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol. Cell. 2013;49:959–971. doi: 10.1016/j.molcel.2012.12.022. PubMed DOI PMC
Suzuki M., Youle R.J., Tjandra N. Structure of bax. Cell. 2000;103:645–654. doi: 10.1016/S0092-8674(00)00167-7. PubMed DOI
Ke F., Voss A., Kerr J.B., O’Reilly L.A., Tai L., Echeverry N., Bouillet P., Strasser A., Kaufmann T. BCL-2 family member BOK is widely expressed but its loss has only minimal impact in mice. Cell Death Differ. 2012;19:915–925. doi: 10.1038/cdd.2011.210. PubMed DOI PMC
Echeverry N., Bachmann D., Ke F., Strasser A., Simon H.U., Kaufmann T. Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ. 2013;20:785–799. doi: 10.1038/cdd.2013.10. PubMed DOI PMC
Krishna S., Low I.C.C., Pervaiz S. Regulation of mitochondrial metabolism: Yet another facet in the biology of the oncoprotein Bcl-2. Biochem. J. 2011;435:545–551. doi: 10.1042/BJ20101996. PubMed DOI
Villunger A. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science. 2003;302:1036–1038. doi: 10.1126/science.1090072. PubMed DOI
Chou J.J., Li H., Salvesen G.S., Yuan J., Wagner G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell. 1999;96:615–624. doi: 10.1016/S0092-8674(00)80572-3. PubMed DOI
Billen L.P., Shamas-Din A., Andrews D.W. Bid: A Bax-like BH3 protein. Oncogene. 2008;27:S93–S104. doi: 10.1038/onc.2009.47. PubMed DOI
Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem. Biophys. Res. Commun. 2018;500:26–34. doi: 10.1016/j.bbrc.2017.06.190. PubMed DOI
Shamas-Din A., Kale J., Leber B., Andrews D.W. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol. 2013;5:a008714. doi: 10.1101/cshperspect.a008714. PubMed DOI PMC
Siddiqui W.A., Ahad A., Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: An update. Arch. Toxicol. 2015;89:289–317. doi: 10.1007/s00204-014-1448-7. PubMed DOI
Moldoveanu T., Grace C.R., Llambi F., Nourse A., Fitzgerald P., Gehring K., Kriwacki R.W., Green D.R. BID-induced structural changes in BAK promote apoptosis. Nat. Struct. Mol. Biol. 2013;20:589–597. doi: 10.1038/nsmb.2563. PubMed DOI PMC
Czabotar P.E., Westphal D., Dewson G., Ma S., Hockings C., Fairlie W.D., Lee E.F., Yao S., Robin A.Y., Smith B.J., et al. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell. 2013;152:519–531. doi: 10.1016/j.cell.2012.12.031. PubMed DOI
Zheng J.H., Viacava Follis A., Kriwacki R.W., Moldoveanu T. Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J. 2016;283:2690–2700. doi: 10.1111/febs.13527. PubMed DOI
Bogner C., Kale J., Pogmore J., Chi X., Shamas-Din A., Fradin C., Leber B., Andrews D.W. Allosteric regulation of BH3 proteins in Bcl-xL complexes enables switch-like activation of bax. Mol. Cell. 2020;77:901–912.e9. doi: 10.1016/j.molcel.2019.12.025. PubMed DOI
Kalkavan H., Green D.R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 2018;25:46–55. doi: 10.1038/cdd.2017.179. PubMed DOI PMC
Kim H., Tu H.C., Ren D., Takeuchi O., Jeffers J.R., Zambetti G.P., Hsieh J.J.-D., Cheng E.H.Y. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell. 2009;36:487–499. doi: 10.1016/j.molcel.2009.09.030. PubMed DOI PMC
Lovell J.F., Billen L.P., Bindner S., Shamas-Din A., Fradin C., Leber B., Andrews D.W. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by bax. Cell. 2008;135:1074–1084. doi: 10.1016/j.cell.2008.11.010. PubMed DOI
Gross A., Katz S.G. Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ. 2017;24:1348–1358. doi: 10.1038/cdd.2017.22. PubMed DOI PMC
Li H., Chen Y., Jones A.F., Sanger R.H., Collis L.P., Flannery R., McNay E.C., Yu T., Schwarzenbacher R., Bossy B., et al. Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA. 2008;105:2169–2174. doi: 10.1073/pnas.0711647105. PubMed DOI PMC
Autret A., Martin S.J. Bcl-2 family proteins and mitochondrial fission/fusion dynamics. Cell. Mol. Life Sci. 2010;67:1599–1606. doi: 10.1007/s00018-010-0286-x. PubMed DOI PMC
Karbowski M., Norris K.L., Cleland M.M., Jeong S.Y., Youle R.J. Role of Bax and Bak in mitochondrial morphogenesis. Nature. 2006;443:658–662. doi: 10.1038/nature05111. PubMed DOI
Cleland M.M., Norris K.L., Karbowski M., Wang C., Suen D.F., Jiao S., George N.M., Luo X., Li Z., Youle R.J. Bcl-2 family interaction with the mitochondrial morphogenesis machinery. Cell Death Differ. 2011;18:235–247. doi: 10.1038/cdd.2010.89. PubMed DOI PMC
Morciano G., Giorgi C., Balestra D., Marchi S., Perrone D., Pinotti M., Pinton P. Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death. Mol. Biol. Cell. 2016;27:20–34. doi: 10.1091/mbc.E15-01-0028. PubMed DOI PMC
Cereghetti G.M., Stangherlin A., de Brito O.M., Chang C.R., Blackstone C., Bernardi P., Scorrano L. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl. Acad. Sci. USA. 2008;105:15803–15808. doi: 10.1073/pnas.0808249105. PubMed DOI PMC
Morciano G., Pedriali G., Sbano L., Iannitti T., Giorgi C., Pinton P. Intersection of mitochondrial fission and fusion machinery with apoptotic pathways: Role of Mcl-1. Biol. Cell. 2016;108:279–293. doi: 10.1111/boc.201600019. PubMed DOI
Brooks C., Wei Q., Feng L., Dong G., Tao Y., Mei L., Xie Z.-J., Dong Z. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc. Natl. Acad. Sci. USA. 2007;104:11649–11654. doi: 10.1073/pnas.0703976104. PubMed DOI PMC
Shimizu S., Konishi A., Kodama T., Tsujimoto Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. USA. 2000;97:3100–3105. doi: 10.1073/pnas.97.7.3100. PubMed DOI PMC
Shimizu S., Narita M., Tsujimoto Y., Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999;399:483–487. doi: 10.1038/20959. PubMed DOI
Arbel N., Ben-Hail D., Shoshan-Barmatz V. Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J. Biol. Chem. 2012;287:23152–23161. doi: 10.1074/jbc.M112.345918. PubMed DOI PMC
Huang H., Shah K., Bradbury N.A., Li C., White C. Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca2+ uptake and reactive oxygen species generation. Cell Death Dis. 2014;5:e1482. doi: 10.1038/cddis.2014.419. PubMed DOI PMC
Karch J., Kwong J.Q., Burr A.R., Sargent M.A., Elrod J.W., Peixoto P.M., Martinez-Caballero S., Osinska H., Cheng E.H.-Y., Robbins J., et al. Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife. 2013;2 doi: 10.7554/eLife.00772. PubMed DOI PMC
Whelan R.S., Konstantinidis K., Wei A.-C., Chen Y., Reyna D.E., Jha S., Yang Y., Calvert J.W., Lindsten T., Thompson C.B., et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc. Natl. Acad. Sci. USA. 2012;109:6566–6571. doi: 10.1073/pnas.1201608109. PubMed DOI PMC
Monaco G., Decrock E., Arbel N., van Vliet A.R., La Rovere R.M., De Smedt H., Parys J.B., Agostinis P., Leybaert L., Shoshan-Barmatz V., et al. The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J. Biol. Chem. 2015;290:9150–9161. doi: 10.1074/jbc.M114.622514. PubMed DOI PMC
Marzo I. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science. 1998;281:2027–2031. doi: 10.1126/science.281.5385.2027. PubMed DOI
Ivanova H., Vervliet T., Monaco G., Terry L.E., Rosa N., Baker M.R., Parys J.B., Serysheva I.I., Yule D.I., Bultynck G. Bcl-2-protein family as modulators of IP3 receptors and other organellar Ca2+ channels. Cold Spring Harb. Perspect. Biol. 2020;12 doi: 10.1101/cshperspect.a035089. PubMed DOI PMC
Arbel N., Shoshan-Barmatz V. Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity. J. Biol. Chem. 2010;285:6053–6062. doi: 10.1074/jbc.M109.082990. PubMed DOI PMC
Zhu L., Yu Y., Chua B.H.L., Ho Y.S., Kuo T.H. Regulation of sodium–calcium exchange and mitochondrial energetics by Bcl-2 in the heart of transgenic mice. J. Mol. Cell. Cardiol. 2001;33:2135–2144. doi: 10.1006/jmcc.2001.1476. PubMed DOI
Shteinfer-Kuzmine A., Argueti S., Gupta R., Shvil N., Abu-Hamad S., Gropper Y., Hoeber J., Magrì A., Messina A., Kozlova E.N., et al. A VDAC1-derived N-terminal peptide inhibits mutant SOD1-VDAC1 interactions and toxicity in the SOD1 model of ALS. Front. Cell. Neurosci. 2019;13 doi: 10.3389/fncel.2019.00346. PubMed DOI PMC
Abu-Hamad S., Arbel N., Calo D., Arzoine L., Israelson A., Keinan N., Ben-Romano R., Friedman O., Shoshan-Barmatz V. The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J. Cell Sci. 2009;122:1906–1916. doi: 10.1242/jcs.040188. PubMed DOI
Shoshan-Barmatz V., Ben-Hail D., Admoni L., Krelin Y., Tripathi S.S. The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim. Biophys. Acta Biomembr. 2015;1848:2547–2575. doi: 10.1016/j.bbamem.2014.10.040. PubMed DOI
Shoshan-Barmatz V., Krelin Y., Shteinfer-Kuzmine A. VDAC1 functions in Ca2+ homeostasis and cell life and death in health and disease. Cell Calcium. 2018;69:81–100. doi: 10.1016/j.ceca.2017.06.007. PubMed DOI
Huang H., Hu X., Eno C.O., Zhao G., Li C., White C. An interaction between Bcl-x L and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake. J. Biol. Chem. 2013;288:19870–19881. doi: 10.1074/jbc.M112.448290. PubMed DOI PMC
Pavlov E., Grigoriev S.M., Dejean L.M., Zweihorn C.L., Mannella C.A., Kinnally K.W. The mitochondrial channel VDAC has a cation-selective open state. Biochim. Biophys. Acta Bioenerg. 2005;1710:96–102. doi: 10.1016/j.bbabio.2005.09.006. PubMed DOI
Abu-Hamad S., Zaid H., Israelson A., Nahon E., Shoshan-Barmatz V. Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1. J. Biol. Chem. 2008;283:13482–13490. doi: 10.1074/jbc.M708216200. PubMed DOI
Shoshan-Barmatz V., Keinan N., Zaid H. Uncovering the role of VDAC in the regulation of cell life and death. J. Bioenergy Biomembr. 2008;40:183–191. doi: 10.1007/s10863-008-9147-9. PubMed DOI
Zaid H., Abu-Hamad S., Israelson A., Nathan I., Shoshan-Barmatz V. The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ. 2005;12:751–760. doi: 10.1038/sj.cdd.4401599. PubMed DOI
Vander Heiden M.G., Li X.X., Gottleib E., Hill R.B., Thompson C.B., Colombini M. Bcl-x l promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J. Biol. Chem. 2001;276:19414–19419. doi: 10.1074/jbc.M101590200. PubMed DOI
Malia T.J., Wagner G. NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-x L †. Biochemistry. 2007;46:514–525. doi: 10.1021/bi061577h. PubMed DOI PMC
Shimizu S., Shinohara Y., Tsujimoto Y. Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene. 2000;19:4309–4318. doi: 10.1038/sj.onc.1203788. PubMed DOI
Rajan S., Choi M., Nguyen Q.T., Ye H., Liu W., Toh H.T., Kang C., Kamariah N., Li C., Huang H., et al. Structural transition in Bcl-xL and its potential association with mitochondrial calcium ion transport. Sci. Rep. 2015;5:10609. doi: 10.1038/srep10609. PubMed DOI PMC
Rizzuto R., De Stefani D., Raffaello A., Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 2012;13:566–578. doi: 10.1038/nrm3412. PubMed DOI
Belzacq A.-S., Vieira H.L.A., Verrier F., Vandecasteele G., Cohen I., Prévost M.-C., Larquet E., Pariselli F., Petit P.X., Kahn A., et al. Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Res. 2003;63:541–546. PubMed
Heiden M.G.V., Chandel N.S., Schumacker P.T., Thompson C.B. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell. 1999;3:159–167. doi: 10.1016/S1097-2765(00)80307-X. PubMed DOI
Chen Y., Aon M.A., Hsu Y.-T., Soane L., Teng X., McCaffery J.M., Cheng W.-C., Qi B., Li H., Alavian K.N., et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J. Cell Biol. 2011;195:263–276. doi: 10.1083/jcb.201108059. PubMed DOI PMC
Lidman M., Pokorná Š., Dingeldein A.P.G., Sparrman T., Wallgren M., Šachl R., Hof M., Gröbner G. The oxidized phospholipid PazePC promotes permeabilization of mitochondrial membranes by Bax. Biochim. Biophys. Acta Biomembr. 2016;1858:1288–1297. doi: 10.1016/j.bbamem.2016.03.003. PubMed DOI
Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L., Amelio I., Andrews D.W., et al. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486–541. doi: 10.1038/s41418-017-0012-4. PubMed DOI PMC
Ellis H. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986;44:817–829. doi: 10.1016/0092-8674(86)90004-8. PubMed DOI
Garrido C., Kroemer G. Life’s smile, death’s grin: Vital functions of apoptosis-executing proteins. Curr. Opin. Cell Biol. 2004;16:639–646. doi: 10.1016/j.ceb.2004.09.008. PubMed DOI
Galluzzi L., Joza N., Tasdemir E., Maiuri M.C., Hengartner M., Abrams J.M., Tavernarakis N., Penninger J., Madeo F., Kroemer G. No death without life: Vital functions of apoptotic effectors. Cell Death Differ. 2008;15:1113–1123. doi: 10.1038/cdd.2008.28. PubMed DOI PMC
Guicciardi M.E., Malhi H., Mott J.L., Gores G.J., editors. Comprehensive Physiology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2013. Apoptosis and necrosis in the liver. PubMed PMC
Fink S.L., Cookson B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 2005;73:1907–1916. doi: 10.1128/IAI.73.4.1907-1916.2005. PubMed DOI PMC
Chen Q., Kang J., Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct. Target. Ther. 2018;3:18. doi: 10.1038/s41392-018-0018-5. PubMed DOI PMC
Nikoletopoulou V., Markaki M., Palikaras K., Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta Mol. Cell Res. 2013;1833:3448–3459. doi: 10.1016/j.bbamcr.2013.06.001. PubMed DOI
Kroemer G., El-Deiry W.S., Golstein P., Peter M.E., Vaux D., Vandenabeele P., Zhivotovsky B., Blagosklonny M.V., Malorni W., Knight R.A., et al. Classification of cell death: Recommendations of the nomenclature committee on cell death. Cell Death Differ. 2005;12:1463–1467. doi: 10.1038/sj.cdd.4401724. PubMed DOI
Zeiss C.J. The apoptosis-necrosis continuum: Insights from genetically altered mice. Vet. Pathol. 2003;40:481–495. doi: 10.1354/vp.40-5-481. PubMed DOI
D’Arcy M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019;43:582–592. doi: 10.1002/cbin.11137. PubMed DOI
Gross A., McDonnell J.M., Korsmeyer S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899–1911. doi: 10.1101/gad.13.15.1899. PubMed DOI
Kung G., Konstantinidis K., Kitsis R.N. Programmed necrosis, not apoptosis, in the heart. Circ. Res. 2011;108:1017–1036. doi: 10.1161/CIRCRESAHA.110.225730. PubMed DOI
Izzo V., Bravo-San Pedro J.M., Sica V., Kroemer G., Galluzzi L. Mitochondrial permeability transition: New findings and persisting uncertainties. Trends Cell Biol. 2016;26:655–667. doi: 10.1016/j.tcb.2016.04.006. PubMed DOI
Alavian K.N., Li H., Collis L., Bonanni L., Zeng L., Sacchetti S., Lazrove E., Nabili P., Flaherty B., Graham M., et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. 2011;13:1224–1233. doi: 10.1038/ncb2330. PubMed DOI PMC
Chen Q., Xu H., Xu A., Ross T., Bowler E., Hu Y., Lesnefsky E.J. Inhibition of Bcl-2 sensitizes mitochondrial permeability transition pore (MPTP) opening in ischemia-damaged mitochondria. PLoS ONE. 2015;10:e0118834. doi: 10.1371/journal.pone.0118834. PubMed DOI PMC
Zamzami N., Hamel C.E.L., Maisse C., Brenner C., Muñoz-Pinedo C., Belzacq A.-S., Costantini P., Vieira H., Loeffler M., Molle G., et al. Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene. 2000;19:6342–6350. doi: 10.1038/sj.onc.1204030. PubMed DOI