Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28710349
PubMed Central
PMC5511215
DOI
10.1038/s41598-017-05539-y
PII: 10.1038/s41598-017-05539-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
It is a fundamental question in cell biology and biophysics whether sphingomyelin (SM)- and cholesterol (Chol)- driven nanodomains exist in living cells and in model membranes. Biophysical studies on model membranes revealed SM and Chol driven micrometer-sized liquid-ordered domains. Although the existence of such microdomains has not been proven for the plasma membrane, such lipid mixtures have been often used as a model system for 'rafts'. On the other hand, recent super resolution and single molecule results indicate that the plasma membrane might organize into nanocompartments. However, due to the limited resolution of those techniques their unambiguous characterization is still missing. In this work, a novel combination of Förster resonance energy transfer and Monte Carlo simulations (MC-FRET) identifies directly 10 nm large nanodomains in liquid-disordered model membranes composed of lipid mixtures containing SM and Chol. Combining MC-FRET with solid-state wide-line and high resolution magic angle spinning NMR as well as with fluorescence correlation spectroscopy we demonstrate that these nanodomains containing hundreds of lipid molecules are fluid and disordered. In terms of their size, fluidity, order and lifetime these nanodomains may represent a relevant model system for cellular membranes and are closely related to nanocompartments suggested to exist in cellular membranes.
Zobrazit více v PubMed
Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572. doi: 10.1038/42408. PubMed DOI
Brown DA, London E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 1998;164:103–114. doi: 10.1007/s002329900397. PubMed DOI
Baumgart T, et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. USA. 2007;104:3165–3170. doi: 10.1073/pnas.0611357104. PubMed DOI PMC
Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327:46–50. doi: 10.1126/science.1174621. PubMed DOI
Levental I, Grzybek M, Simons K. Raft domains of variable properties and compositions in plasma membrane vesicles. Proc. Natl. Acad. Sci. USA. 2011;108:11411–6. doi: 10.1073/pnas.1105996108. PubMed DOI PMC
Sezgin E, et al. Adaptive lipid packing and bioactivity in membrane domains. PLoS One. 2015;10:1–14. doi: 10.1371/journal.pone.0123930. PubMed DOI PMC
Eggeling C, et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature. 2009;457:1159–1162. doi: 10.1038/nature07596. PubMed DOI
Bernardino de la Serna J, Schütz GJ, Eggeling C, Cebecauer M. There Is No Simple Model of the Plasma Membrane Organization. Front. Cell Dev. Biol. 2016;4:1–17. doi: 10.3389/fcell.2016.00106. PubMed DOI PMC
Owen DM, Williamson DJ, Magenau A, Gaus K. Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 2012;3:1256. doi: 10.1038/ncomms2273. PubMed DOI
Kreder R, et al. Solvatochromic Nile Red Probes with FRET Quencher Reveal Lipid Order Heterogeneity in Living and Apoptotic Cells. ACS Chem. Biol. 2015;10:1435–1442. doi: 10.1021/cb500922m. PubMed DOI
Sanchez SA, Tricerri MA, Gratton E. Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc. Natl. Acad. Sci. USA. 2012;109:7314–9. doi: 10.1073/pnas.1118288109. PubMed DOI PMC
Ritchie K, Iino R, Fujiwara T, Murase K, Kusumi A. The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (Review) Mol. Membr. Biol. 2003;20:13–18. doi: 10.1080/0968768021000055698. PubMed DOI
Varma R, Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 1998;394:798–801. doi: 10.1038/29563. PubMed DOI
Smith AK, Freed JH. Determination of Tie-Line Fields for Coexisting Lipid Phases: An ESR Study. J. Phys. Chem. B. 2009;113:3957–3971. doi: 10.1021/jp808412x. PubMed DOI PMC
Farkas, E. R. & Webb, W. W. Precise and millidegree stable temperature control for fluorescence imaging: Application to phase transitions in lipid membranes. Rev. Sci. Instrum. 81 (2010). PubMed PMC
Loura LMS, Fernandes F, Prieto M. Membrane microheterogeneity: Forster resonance energy transfer characterization of lateral membrane domains. Eur. Biophys. J. with Biophys. Lett. 2010;39:589–607. doi: 10.1007/s00249-009-0547-5. PubMed DOI
Loura LM, Fedorov A, Prieto M. Fluid-fluid membrane microheterogeneity: a fluorescence resonance energy transfer study. Biophys. J. 2001;80:776–788. doi: 10.1016/S0006-3495(01)76057-2. PubMed DOI PMC
Bader AN, et al. Homo-FRET imaging as a tool to quantify protein and lipid clustering. ChemPhysChem. 2011;12:475–483. doi: 10.1002/cphc.201000801. PubMed DOI
Benda A, et al. How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir. 2003;19:4120–4126. doi: 10.1021/la0270136. DOI
Šachl R, Johansson LB-Å, Hof M. Förster resonance energy transfer (FRET) between heterogeneously distributed probes: Application to lipid nanodomains and pores. Int. J. Mol. Sci. 2012;13:16141–16156. doi: 10.3390/ijms131216141. PubMed DOI PMC
Šachl R, et al. Distribution of BODIPY-labelled phosphatidylethanolamines in lipid bilayers exhibiting different curvatures. Phys. Chem. Chem. Phys. 2011;13:11694–11701. doi: 10.1039/c1cp20608g. PubMed DOI
Štefl M, et al. Dynamics and size of cross-linking-induced lipid nanodomains in model membranes. Biophys. J. 2012;102:2104–2113. doi: 10.1016/j.bpj.2012.03.054. PubMed DOI PMC
Honigmann A, et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat. Commun. 2014;5:5412. doi: 10.1038/ncomms6412. PubMed DOI
Šachl R, et al. On multivalent receptor activity of GM1 in cholesterol containing membranes. Biochim. Biophys. Acta. 2015;1853:850–7. doi: 10.1016/j.bbamcr.2014.07.016. PubMed DOI
Amaro M, et al. GM1 Ganglioside Inhibits b-amyloid Oligomerization Induced by Sphingomyelin. Angew. Chemie. 2016;55:9411–9415. doi: 10.1002/anie.201603178. PubMed DOI PMC
Marushchak D, Gretskaya N, Mikhalyov I, Johansson LB-Å. Self-aggregation - an intrinsic property of G(M1) in lipid bilayers. Mol. Membr. Biol. 2007;24:102–112. doi: 10.1080/09687860600995235. PubMed DOI
Nyholm TKM, Lindroos D, Westerlund B, Slotte JP. Construction of a DOPC/PSM/cholesterol phase diagram based on the fluorescence properties of trans-parinaric acid. Langmuir. 2011;27:8339–50. doi: 10.1021/la201427w. PubMed DOI
Veatch SL, Keller SL. Miscibility Phase Diagrams of Giant Vesicles Containing Sphingomyelin. Phys. Rev. Lett. 2005;94:148101. doi: 10.1103/PhysRevLett.94.148101. PubMed DOI
Rheinstädter MC, Mouritsen OG. Small-scale structure in fluid cholesterol-lipid bilayers. Curr. Opin. Colloid Interface Sci. 2013;18:440–447. doi: 10.1016/j.cocis.2013.07.001. DOI
Leidy C, Wolkers WF, Jørgensen K, Mouritsen OG, Crowe JH. Lateral Organization and Domain Formation in a Two-Component Lipid Membrane System. Biophys. J. 2001;80:1819–1828. doi: 10.1016/S0006-3495(01)76152-8. PubMed DOI PMC
Epand RM, et al. Novel properties of cholesterol-dioleoylphosphatidylcholine mixtures. Biochim. Biophys. Acta - Biomembr. 2003;1616:196–208. doi: 10.1016/j.bbamem.2003.08.006. PubMed DOI
Šachl, R., Bergstrand, J., Widengren, J. & Hof, M. Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains. J. Phys.D Appl. Phys. 49, 114002 (11pp) (2016).
Korlach J, Schwille P, Webb W, Feigenson GW. Characterization of Lipid Bilayer Phases By Confocal Microscopy and Fluorescence Correlation Spectroscopy. Proc. Natl. Acad. Sci. 1999;96:8461–8466. doi: 10.1073/pnas.96.15.8461. PubMed DOI PMC
Dufourc EJ, Mayer C, Stohrer J, Althoff G, Kothe G. Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements. Biophys. J. 1992;61:42–57. doi: 10.1016/S0006-3495(92)81814-3. PubMed DOI PMC
Holland GP, McIntyre SK, Alam TM. Distinguishing individual lipid headgroup mobility and phase transitions in raft-forming lipid mixtures with 31P MAS NMR. Biophys. J. 2006;90:4248–4260. doi: 10.1529/biophysj.105.077289. PubMed DOI PMC
Lindström F, Williamson PTF, Gröbner G. Molecular insight into the electrostatic membrane surface potential by 14N/31p MAS NMR spectroscopy: nociceptin-lipid association. J. Am. Chem. Soc. 2005;127:6610–6. doi: 10.1021/ja042325b. PubMed DOI
Cullis PR, De Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta - Rev. Biomembr. 1979;559:399–420. doi: 10.1016/0304-4157(79)90012-1. PubMed DOI
Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Resonance in One and Two Dimensions. (Oxford University Press, 1987).
Bonev BB, Chan WC, Bycroft BW, Roberts GCK, Watts A. Interaction of the lantibiotic nisin with mixed lipid bilayers: A 31P and 2H NMR study. Biochemistry. 2000;39:11425–11433. doi: 10.1021/bi0001170. PubMed DOI
Armstrong CL, et al. The Observation of Highly Ordered Domains in Membranes with Cholesterol. PLoS One. 2013;8:1–10. PubMed PMC
Baoukina, S., Mendez-Villuendas, E., Bennett, W. F. D. & Tieleman, D. P. Computer simulations of the phase separation in model membranes. Faraday Discuss. 63–75, doi:10.1039/c2fd20117h (2013). PubMed
Honerkamp-Smith, A. R. R. Machta, B., Benjamin, B. & Keller, S. Experimental Observations of Dynamic Critical Phenomena in a Lipid Membrane. Phys. Rev. Lett. 108, 265702 (5pp) (2012). PubMed PMC
Ohvo-Rekilä H, Ramstedt B, Leppimäki P, Peter Slotte J. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 2002;41:66–97. doi: 10.1016/S0163-7827(01)00020-0. PubMed DOI
Silvius JR, Del Giudice D, Lafleur M. Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry. 1996;35:15198–15208. doi: 10.1021/bi9615506. PubMed DOI
Slotte JP. Sphingomyelin-cholesterol interactions in biological and model membranes. Chem. Phys. Lipids. 1999;102:13–27. doi: 10.1016/S0009-3084(99)00071-7. PubMed DOI
Boggs JM. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim. Biophys. Acta - Rev. Biomembr. 1987;906:353–404. doi: 10.1016/0304-4157(87)90017-7. PubMed DOI
Hyvonen MT, et al. Molecular dynamics simulation of sphingomyelin bilayer. J. Phys. Chem. B. 2003;107:9102–9108. doi: 10.1021/jp035319v. DOI
Huang J, Feigenson GW. Monte Carlo simulation of lipid mixtures: finding phase separation. Biophys. J. 1993;65:1788–1794. doi: 10.1016/S0006-3495(93)81234-7. PubMed DOI PMC
Sezgin E, et al. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 2012;7:1042–51. doi: 10.1038/nprot.2012.059. PubMed DOI
Angelova M, Soleau S, Meleard P. Preparation of Giant Vesicles by External AC Electric Fields - Kinetics and Applications. Trends Colloid Interface Sci. VI. 1992;89:127–131. doi: 10.1007/BFb0116295. DOI
Wallgren M, Lidman M, Pham QD, Cyprych K, Gröbner G. The oxidized phospholipid PazePC modulates interactions between Bax and mitochondrial membranes. Biochim. Biophys. Acta - Biomembr. 2012;1818:2718–2724. doi: 10.1016/j.bbamem.2012.06.005. PubMed DOI
Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG. Heteronuclear decoupling in rotating solids. J. Chem. Phys. 1995;103:6951. doi: 10.1063/1.470372. DOI
van Beek J. D. matNMR: A flexible toolbox for processing, analyzing and visualizing magnetic resonance data in Matlab? J. Magn. Reson. 2007;187:19–26. doi: 10.1016/j.jmr.2007.03.017. PubMed DOI
Valeur, B. Molecular Fluorescence Principles and Applications (2001).
Macháň R, Hof M. Recent Developments in Fluorescence Correlation Spectroscopy for Diffusion Measurements in Planar Lipid Membranes. Int. J. Mol. Sci. 2010;11:427–457. doi: 10.3390/ijms11020427. PubMed DOI PMC
Which Moiety Drives Gangliosides to Form Nanodomains?
Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?
The impact of the glycan headgroup on the nanoscopic segregation of gangliosides
Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems
FSCS Reveals the Complexity of Lipid Domain Dynamics in the Plasma Membrane of Live Cells