Recent developments in fluorescence correlation spectroscopy for diffusion measurements in planar lipid membranes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
20386647
PubMed Central
PMC2852847
DOI
10.3390/ijms11020427
PII: i11020427
Knihovny.cz E-zdroje
- Klíčová slova
- biomembranes, confocal microscopy, fluorescence fluctuation spectroscopy, giant unilamellar vesicles, lateral diffusion, supported lipid bilayers,
- MeSH
- difuze MeSH
- fluorescenční spektrometrie * MeSH
- konfokální mikroskopie MeSH
- lipidové dvojvrstvy chemie MeSH
- membránové lipidy chemie MeSH
- unilamelární lipozómy chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- lipidové dvojvrstvy MeSH
- membránové lipidy MeSH
- unilamelární lipozómy MeSH
Fluorescence correlation spectroscopy (FCS) is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support.
Zobrazit více v PubMed
Magde D, Elson E, Webb WW. Thermodynamic fluctuations in a reacting system–Measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 1972;29:705–708.
Elson E, Magde D. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers. 1974;13:1–27. PubMed
Magde D, Elson E. Fluorescence correlation spectroscopy. II. an experimental realization. Biopolymers. 1974;13:29–61. PubMed
Widengren J, Rigler R. Review-Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cell. Mol. Biol. 1998;44:857–879. PubMed
Magde D. Chemical-kinetics and fluorescence correlation spectroscopy. Q. Rev. Biophys. 1976;9:35–47. PubMed
Palmer AG, Thompson NL. Molecular aggregation characterized by high-order autocorrelation in fluorescence correlation spectroscopy. Biophys. J. 1987;52:257–270. PubMed PMC
Shi XK, Foo YH, Sudhaharan T, Chong SW, Korzh V, Ahmed S, Wohland T. Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys. J. 2009;97:678–686. PubMed PMC
Xiao Y, Buschmann V, Weston KD. Scanning fluorescence correlation spectroscopy: A tool for probing microsecond dynamics of surface-bound fluorescent species. Anal. Chem. 2005;77:36–46. PubMed
Yu LL, Tan MY, Ho B, Ding JL, Wohland T. Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: Aggregation of a lipopolysaccharide. Anal. Chim. Acta. 2006;556:216–225. PubMed
Ehrenberg M, Rigler R. Rotational Brownian-motion and fluorescence intensity fluctuations. Chem. Phys. 1974;4:390–401.
Ye F, Collinson MM, Higgins DA. Molecular orientation and its influence on autocorrelation amplitudes in single-molecule Imaging experiments. Anal. Chem. 2007;79:6465–6472. PubMed
Humpolickova J, Benda A, Sykora J, Machan R, Kral T, Gasinska B, Enderlein J, Hof M. Equilibrium dynamics of spermine-induced plasmid DNA condensation revealed by fluorescence lifetime correlation spectroscopy. Biophys. J. 2008;94:L17–L19. PubMed PMC
Widengren J, Mets U, Rigler R. Fluorescence correlation spectroscopy of triplet-states in solution - A theoretical and experimental-study. J. Phys. Chem. 1995;99:13368–13379.
Widengren J, Schwille P. Characterization of photoinduced isomerization and backisomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. J. Phys. Chem. A. 2000;104:6416–6428.
Widengren J, Mets U, Rigler R. Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chem. Phys. 1999;250:171–186.
Enderlein J, Gregor I, Patra D, Fitter J. Art and artefacts of fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol. 2004;5:155–161. PubMed
Enderlein J, Gregor I, Patra D, Dertinger T, Kaupp UB. Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. ChemPhysChem. 2005;6:2324–2336. PubMed
Chen Y, Muller JD, Berland KM, Gratton E. Fluorescence fluctuation spectroscopy. Methods. 1999;19:234–252. PubMed
Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 1976;16:1055–1069. PubMed PMC
Meyvis TKL, De Smedt SC, Van Oostveldt P, Demeester J. Fluorescence recovery after photobleaching: A versatile tool for mobility and interaction measurements in pharmaceutical research. Pharm. Res. 1999;16:1153–1162. PubMed
Sprague BL, McNally JG. FRAP analysis of binding: proper and fitting. Trends Cell Biol. 2005;15:84–91. PubMed
Benda A, Benes M, Marecek V, Lhotsky A, Hermens WT, Hof M. How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir. 2003;19:4120–4126.
Milon S, Hovius R, Vogel H, Wohland T. Factors influencing fluorescence correlation spectroscopy measurements on membranes: simulations and experiments. Chem. Phys. 2003;288:171–186.
Ries J, Schwille P. Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys. J. 2006;91:1915–1924. PubMed PMC
Ries J, Schwille P. New concepts for fluorescence correlation spectroscopy on membranes. Phys. Chem. Chem. Phys. 2008;10:3487–3497. PubMed
Ries J, Chiantia S, Schwille P. Accurate determination of membrane dynamics with line-scan FCS. Biophys. J. 2009;96:1999–2008. PubMed PMC
Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J. Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements. ChemPhysChem. 2007;8:433–443. PubMed
Gielen E, Smisdom N, vandeVen M, De Clercq B, Gratton E, Digman M, Rigo JM, Hofkens J, Engelborghs Y, Ameloot M. Measuring diffusion of lipid-like probes in artificial and natural membranes by Raster Image Correlation Spectroscopy (RICS): Use of a commercial laser-scanning microscope with analog detection. Langmuir. 2009;25:5209–5218. PubMed PMC
Ruan QQ, Cheng MA, Levi M, Gratton E, Mantulin WW. Spatial-temporal studies of membrane dynamics: Scanning fluorescence correlation spectroscopy (SFCS) Biophys. J. 2004;87:1260–1267. PubMed PMC
Hohlbein J, Steinhart M, Schiene-Fischer C, Benda A, Hof M, Hubner CG. Confined diffusion in ordered nanoporous alumina membranes. Small. 2007;3:380–385. PubMed
Pieper T, Markova S, Kinjo M, Suter D. Effect of cholesterol on diffusion in surfactant bilayers. J Chem Phys. 2007;127:165102:1–165102:7. PubMed
Donsmark J, Rischel C. Fluorescence correlation spectroscopy at the oil-water interface: Hard disk diffusion behavior in dilute beta-lactoglobulin layers precedes monolayer formation. Langmuir. 2007;23:6614–6623. PubMed
Sukhishvili SA, Chen Y, Muller JD, Gratton E, Schweizer KS, Granick S. Surface diffusion of poly(ethylene glycol) Macromolecules. 2002;35:1776–1784.
Lingwood D, Ries J, Schwille P, Simons K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl. Acad. Sci. USA. 2008;105:10005–10010. PubMed PMC
Ohsugi Y, Kinjo M. Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope. J. Biomed. Opt. 2009;14:4. PubMed
Owen DM, Williamson D, Rentero C, Gaus K. Quantitative microscopy: Protein dynamics and membrane organisation. Traffic. 2009;10:962–971. PubMed
Marguet D, Lenne PF, Rigneault H, He HT. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J. 2006;25:3446–3457. PubMed PMC
Vigh L, Escriba PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B, Horvath I, Harwood JL. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog. Lipid Res. 2005;44:303–344. PubMed
Schwille P, Diez S. Synthetic biology of minimal systems. Crit. Rev. Biochem. Mol. Biol. 2009;44:223–242. PubMed
Singer SJ, Nicolson GL. Fluid mosaic model of structure of cell-membranes. Science. 1972;175:720–721. PubMed
Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572. PubMed
Thompson TE, Tillack TW. Organization of glycosphingolipids in bilayers and plasmamembranes of mammalian-cells. Annu. Rev. Biophys. Biophys. Chem. 1985;14:361–386. PubMed
Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell. 2004;116:577–589. PubMed
Vereb G, Szollosi J, Matko J, Nagy P, Farkas T, Vigh L, Matyus L, Waldmann TA, Damjanovich S. Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model. Proc. Natl. Acad. Sci. USA. 2003;100:8053–8058. PubMed PMC
Falck E, Patra M, Karttunen M, Hyvonen MT, Vattulainen I. Lessons of slicing membranes: Interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys. J. 2004;87:1076–1091. PubMed PMC
Gullapalli RR, Demirel MC, Butler PJ. Molecular dynamics simulations of DiI-C-18(3) in a DPPC lipid bilayer. Phys. Chem. Chem. Phys. 2008;10:3548–3560. PubMed PMC
Vacha R, Siu SWI, Petrov M, Bockmann RA, Barucha-Kraszewska J, Jurkiewicz P, Hof M, Berkowitz ML, Jungwirth P. Effects of Alkali Cations and Halide Anions on the DOPC Lipid Membrane. J. Phys. Chem. A. 2009;113:7235–7243. PubMed
Ratto TV, Longo ML. Obstructed diffusion in phase-separated supported lipid bilayers: A combined atomic force microscopy and fluorescence recovery after photobleaching approach. Biophys. J. 2002;83:3380–3392. PubMed PMC
Kusumi A, Sako Y, Yamamoto M. Confined lateral diffusion of membrane-receptors as studied by single-particle tracking (nanovid microscopy) - Effects of calcium-induced differentiation in cultured epithelial-cells. Biophys. J. 1993;65:2021–2040. PubMed PMC
Dietrich C, Yang B, Fujiwara T, Kusumi A, Jacobson K. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 2002;82:274–284. PubMed PMC
Benes M, Billy D, Hermens WT, Hof M. Muscovite (mica) allows the characterisation of supported Bilayers by ellipsometry and confocal fluorescence correlation spectroscopy. Biol. Chem. 2002;383:337–341. PubMed
Steinem C, Janshoff A, Ulrich WP, Sieber M, Galla HJ. Impedance analysis of supported lipid bilayer membranes: A scrutiny of different preparation techniques. Biochim. Biophys. Acta—Biomembr. 1996;1279:169–180. PubMed
Sharonov A, Bandichhor R, Burgess K, Petrescu AD, Schroeder F, Kier AB, Hochstrasser RM. Lipid diffusion from single molecules of a labeled protein undergoing dynamic association with giant unilamellar vesicles and supported bilayers. Langmuir. 2008;24:844–850. PubMed
Reeves JP, Dowben RM. Formation and properties of thin-walled phospholipid vesicles. J. Cell. Physiol. 1969;73:49–60. PubMed
Angelova MI, Dimitrov DS. Liposome electroformation. Faraday Discuss. Chem. Soc. 1986;81:303–311.
Bagatolli LA, Parasassi T, Gratton E. Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods—A two photon fluorescence microscopy study. Chem. Phys. Lipids. 2000;105:135–147. PubMed
Boxer SG. Molecular transport and organization in supported lipid membranes. Curr. Opin. Chem. Biol. 2000;4:704–709. PubMed
Sackmann E. Supported membranes: Scientific and practical applications. Science. 1996;271:43–48. PubMed
Tamm LK, Mcconnell HM. Supported phospholipid-bilayers. Biophys. J. 1985;47:105–113. PubMed PMC
Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E. Lipid rafts reconstituted in model membranes. Biophys. J. 2001;80:1417–1428. PubMed PMC
Kahya N, Scherfeld D, Bacia K, Schwille P. Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. J. Struct. Biol. 2004;147:77–89. PubMed
Lee CC, Petersen NO. The lateral diffusion of selectively aggregated peptides in giant unilamellar vesicles. Biophys. J. 2003;84:1756–1764. PubMed PMC
Wahl M, Gregor I, Patting M, Enderlein J. Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt. Express. 2003;11:3583–3591. PubMed
Hess ST, Huang SH, Heikal AA, Webb WW. Biological and chemical applications of fluorescence correlation spectroscopy: A review. Biochemistry. 2002;41:697–705. PubMed
Thompson NL. Fluorescence correlation spectroscopy. In: Lakowicz JR, editor. Topics in Fluorescence Spectroscopy. Vol. 1. Plenum Press; New York, NY, USA: 1991. pp. 337–378.
Yu L, Ding JL, Ho B, Wohland T. Investigation of a novel artificial antimicrobial peptide by fluorescence correlation spectroscopy: An amphipathic cationic pattern is sufficient for selective binding to bacterial type membranes and antimicrobial activity. Biochim. Biophys. Acta—Biomembr. 2005;1716:29–39. PubMed
Schwille P, Oehlenschlager F, Walter NG. Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry. 1996;35:10182–10193. PubMed
Zhang LF, Granick S. Interleaflet diffusion coupling when polymer adsorbs onto one sole leaflet of a supported phospholipid bilayer. Macromolecules. 2007;40:1366–1368.
Donsmark J, Jorgensen L, Mollmann S, Frokjaer S, Rischel C. Kinetics of insulin adsorption at the oil-water interface and diffusion properties of adsorbed layers monitored using fluorescence correlation spectroscopy. Pharm. Res. 2006;23:148–155. PubMed
Provencher SW. A constrained regularization method for inverting data represented by linear algebraic or integral-Equations. Comput. Phys. Commun. 1982;27:213–227.
Enderlein J, Gregor I, Patra D, Fitter J. Statistical analysis of diffusion coefficient determination by fluorescence correlation spectroscopy. J. Fluoresc. 2005;15:415–422. PubMed
Koppel DE. Statistical accuracy in fluorescence correlation spectroscopy. Phys. Rev. A. 1974;10:1938–1945.
Qian H. On the statistics of fluorescence correlation spectroscopy. Biophys. Chem. 1990;38:49–57. PubMed
Wohland T, Rigler R, Vogel H. The standard deviation in fluorescence correlation spectroscopy. Biophys. J. 2001;80:2987–2999. PubMed PMC
Kask P, Gunther R, Axhausen P. Statistical accuracy in fluorescence fluctuation experiments. Eur. Biophys. J. Biophys. Lett. 1997;25:163–169.
Schwille P, Heinze KG. Two-photon fluorescence cross-correlation spectroscopy. ChemPhysChem. 2001;2:269–272. PubMed
Guo L, Har JY, Sankaran J, Hong YM, Kannan B, Wohland T. Molecular diffusion measurement in lipid bilayers over wide concentration ranges: A comparative study. ChemPhysChem. 2008;9:721–728. PubMed
Wenger J, Rigneault H, Dintinger J, Marguet D, Lenne PF. Single-fluorophore diffusion in a lipid membrane over a subwavelength aperture. J Biol Phys. 2006;32:SN1–SN4. PubMed PMC
Samiee KT, Moran-Mirabal JM, Cheung YK, Craighead HG. Zero mode waveguides for single-molecule spectroscopy on lipid membranes. Biophys. J. 2006;90:3288–3299. PubMed PMC
Blom H, Kastrup L, Eggeling C. Fluorescence fluctuation spectroscopy in reduced detection volumes. Curr. Pharm. Biotechnol. 2006;7:51–66. PubMed
Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature. 2009;457:1159–1162. PubMed
Gregor I, Patra D, Enderlein J. Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. ChemPhysChem. 2005;6:164–170. PubMed
Petrášek Z, Schwille P. Photobleaching in two-photon scanning fluorescence correlation spectroscopy. ChemPhysChem. 2008;9:147–158. PubMed
Widengren J, Rigler R. Mechanism of photobleaching investigated by fluorescence correlation spectroscopy. Bioimaging. 1996;4:149–157.
Satsoura D, Leber B, Andrews DW, Fradin C. Circumvention of fluorophore photobleaching in fluorescence fluctuation experiments: A beam scanning approach. ChemPhysChem. 2007;8:834–848. PubMed PMC
Petersen NO. Diffusion and aggregation in biological-membranes. Can. J. Biochem. Cell. B. 1984;62:1158–1166. PubMed
Schwille P, Korlach J, Webb WW. Fluorescence correlation spectroscopy with singlemolecule sensitivity on cell and model membranes. Cytometry. 1999;36:176–182. PubMed
Dittrich PS, Schwille P. Photobleaching and stabilization of fluorophores used for singlemolecule analysis with one- and two-photon excitation. Appl. Phys. B: Lasers Opt. 2001;73:829–837.
Zipfel WR, Williams RM, Webb WW. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 2003;21:1368–1376. PubMed
Mutze J, Petrasek Z, Schwille P. Independence of maximum single molecule fluorescence count rate on the temporal and spectral laser pulse width in two-photon FCS. J. Fluoresc. 2007;17:805–810. PubMed
Petrasek Z, Schwille P. Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys. J. 2008;94:1437–1448. PubMed PMC
Petersen NO. Scanning fluorescence correlation spectroscopy. 1. Theory and simulation of aggregation measurements. Biophys. J. 1986;49:809–815. PubMed PMC
Hebert B, Costantino S, Wiseman PW. Spatiotemporal image correlation Spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J. 2005;88:3601–3614. PubMed PMC
Chiantia S, Ries J, Schwille P. Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim. Biophys. Acta—Biomembr. 2009;1788:225–233. PubMed
Garcia-Saez AJ, Schwille P. Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods. 2008;46:116–122. PubMed
Hess ST, Webb WW. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys. J. 2002;83:2300–2317. PubMed PMC
Chiantia S, Ries J, Kahya N, Schwille P. Combined AFM and two-focus SFCS study of raftexhibiting model membranes. ChemPhysChem. 2006;7:2409–2418. PubMed
Hansen RL, Zhu XR, Harris JM. Fluorescence correlation spectroscopy with patterned photoexcitation for measuring solution diffusion coefficients of robust fluorophores. Anal. Chem. 1998;70:1281–1287. PubMed
Kannan B, Har JY, Liu P, Maruyama I, Ding JL, Wohland T. Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy. Anal. Chem. 2006;78:3444–3451. PubMed
Dertinger T, von der Hocht I, Benda A, Hof M, Enderlein J. Surface sticking and lateral diffusion of lipids in supported bilayers. Langmuir. 2006;22:9339–9344. PubMed
Didier P, Godet J, Mely Y. Two-photon two-focus fluorescence correlation spectroscopy with a tunable distance between the excitation volumes. J. Fluoresc. 2009;19:561–565. PubMed
Brinkmeier M, Dorre K, Stephan J, Eigen M. Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures. Anal. Chem. 1999;71:609–616. PubMed
Burkhardt M, Schwille P. Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy. Opt. Express. 2006;14:5013–5020. PubMed
Kannan B, Guo L, Sudhaharan T, Ahmed S, Maruyama I, Wohland T. Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera. Anal. Chem. 2007;79:4463–4470. PubMed
Sankaran J, Manna M, Guo L, Kraut R, Wohland T. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy. Biophys. J. 2009;97:2630–2639. PubMed PMC
Sorscher SM, Klein MP. Profile of a focused collimated laser-beam near the focal minimum characterized by fluorescence correlation spectroscopy. Rev. Sci. Instrum. 1980;51:98–102.
Przybylo M, Sykora J, Humpolickova J, Benda A, Zan A, Hof M. Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir. 2006;22:9096–9099. PubMed
Skinner JP, Chen Y, Muller JD. Fluorescence fluctuation spectroscopy in the presence of immobile fluorophores. Biophys. J. 2008;94:2349–2360. PubMed PMC
Kolin DL, Ronis D, Wiseman PW. k-Space image correlation spectroscopy: A method for accurate transport measurements independent of fluorophore photophysics. Biophys. J. 2006;91:3061–3075. PubMed PMC
Gielen E, Smisdom N, De Clercq B, Vandeven M, Gijsbers R, Debyser Z, Rigo JM, Hofkens J, Engelborghs Y, Ameloot M. Diffusion of myelin oligodendrocyte glycoprotein in living OLN-93 cells investigated by raster-scanning image correlation spectroscopy (RICS) J. Fluoresc. 2008;18:813–819. PubMed
Petersen NO, Johnson DC, Schlesinger MJ. Scanning fluorescence correlation spectroscopy. 2. Application to virus glycoprotein aggregation. Biophys. J. 1986;49:817–820. PubMed PMC
Skinner JP, Chen Y, Muller JD. Position-sensitive scanning fluorescence correlation spectroscopy. Biophys. J. 2005;89:1288–1301. PubMed PMC
Petersen NO, Hoddelius PL, Wiseman PW, Seger O, Magnusson KE. Quantitation of membrane-receptor distributions by image correlation spectroscopy-Concept and application. Biophys. J. 1993;65:1135–1146. PubMed PMC
Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J. 2005;89:1317–1327. PubMed PMC
Digman MA, Sengupta P, Wiseman PW, Brown CM, Horwitz AR, Gratton E. Fluctuation correlation spectroscopy with a laser-scanning microscope: Exploiting the hidden time structure. Biophys. J. 2005;88:L33–L36. PubMed PMC
Štefl M, Kulakowska A, Hof M. Simultaneous characterization of lateral lipid and prothrombin diffusion coefficients by z-scan fluorescence correlation spectroscopy. Biophys. J. 2009;97:L1–L3. PubMed PMC
Benda A, Fagul’ova V, Deyneka A, Enderlein J, Hof M. Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: New perspectives in supported phospholipid bilayer research. Langmuir. 2006;22:9580–9585. PubMed
Bohmer M, Wahl M, Rahn HJ, Erdmann R, Enderlein J. Time-resolved fluorescence correlation spectroscopy. Chem. Phys. Lett. 2002;353:439–445.
Kapusta P, Wahl M, Benda A, Hof M, Enderlein J. Fluorescence lifetime correlation spectroscopy. J. Fluoresc. 2007;17:43–48. PubMed
Enderlein J, Gregor I. Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy. Rev Sci Instrum. 2005;76:033102:1–033102:5.
Humpolickova J, Beranova L, Stepanek M, Benda A, Prochazka K, Hof M. Fluorescence lifetime correlation spectroscopy reveals compaction mechanism of 10 and 49 kbp dna and differences between polycation and cationic surfactant. J. Phys. Chem. B. 2008;112:16823–16829. PubMed
Perez-Luna VH, Yang SP, Rabinovich EM, Buranda T, Sklar LA, Hampton PD, Lopez GP. Fluorescence biosensing strategy based on energy transfer between fluorescently labeled receptors and a metallic surface. Biosens. Bioelectron. 2002;17:71–78. PubMed
Zhang XL, Chen LG, Lv P, Gao HY, Wei SJ, Dong ZC, Hou JG. Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols. Appl Phys Lett. 2008;92:223118:1–223118:3.
Kittredge KW, Fox MA, Whitesell JK. Effect of alkyl chain length on the fluorescence of 9-alkylfluorenyl thiols as self-assembled monolayers on gold. J. Phys. Chem. B. 2001;105:10594–10599.
Ries J, Petrov EP, Schwille P. Total internal reflection fluorescence correlation spectroscopy: Effects of lateral diffusion and surface-generated fluorescence. Biophys. J. 2008;95:390–399. PubMed PMC
Thompson NL, Pearce KH, Hsieh HV. Total internal-reflection fluorescence microscopy—Application to substrate-supported planar membranes. Eur. Biophys. J. Biophys. Lett. 1993;22:367–378. PubMed
Ries J, Ruckstuhl T, Verdes D, Schwille P. Supercritical angle fluorescence correlation Spectroscopy. Biophys. J. 2008;94:221–229. PubMed PMC
Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW. Zero-mode waveguides for single-molecule analysis at high concentrations. Science. 2003;299:682–686. PubMed
Wenger J, Conchonaud F, Dintinger J, Wawrezinieck L, Ebbesen TW, Rigneault H, Marguet D, Lenne PF. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys. J. 2007;92:913–919. PubMed PMC
Vobornik D, Banks DS, Lu ZF, Fradin C, Taylor R, Johnston LJ. Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes. Appl Phys Lett. 2008;93:163904:1–163904:26.
Vobornik D, Banks DS, Lu ZF, Fradin C, Taylor R, Johnston LJ. Near-field optical probes provide subdiffraction-limited excitation areas for fluorescence correlation spectroscopy on membranes. Pure. Appl. Chem. 2009;81:1645–1653.
Ringemann C, Harke B, von Middendorff C, Medda R, Honigmann A, Wagner R, Leutenegger M, Schonle A, Hell SW, Eggeling C. Exploring single-molecule dynamics with fluorescence nanoscopy. N J Phys. 2009;11:103054:1–103054:29.
Ratto TV, Longo ML. Anomalous subdiffusion in heterogeneous lipid Bilayers. Langmuir. 2003;19:1788–1793.
Saxton MJ. Lateral diffusion in an archipelago-Distance dependence of the diffusion-coefficient. Biophys. J. 1989;56:615–622. PubMed PMC
Schwille P, Korlach J, Webb WW. Anomalous subdiffusion of proteins and lipids in membranes observed by fluorescence correlation spectroscopy. Biophys. J. 1999;76:A391.
Schutz GJ, Schindler H, Schmidt T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 1997;73:1073–1080. PubMed PMC
Weiss M, Hashimoto H, Nilsson T. Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys. J. 2003;84:4043–4052. PubMed PMC
Saxton MJ. Anomalous diffusion due to obstacles-A Monte-Carlo study. Biophys. J. 1994;66:394–401. PubMed PMC
Saxton MJ. Anomalous diffusion due to binding: A Monte Carlo study. Biophys. J. 1996;70:1250–1262. PubMed PMC
Saxton MJ. Anomalous subdiffusion in fluorescence photobleaching recovery: A Monte Carlo study. Biophys. J. 2001;81:2226–2240. PubMed PMC
Saxton MJ. A biological interpretation of transient anomalous subdiffusion. I. Qualitative model. Biophys. J. 2007;92:1178–1191. PubMed PMC
Wawrezinieck L, Rigneault H, Marguet D, Lenne PF. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 2005;89:4029–4042. PubMed PMC
Vats K, Kyoung M, Sheets ED. Characterizing the chemical complexity of patterned biomimetic membranes. Biochim. Biophys. Acta-Biomembr. 2008;1778:2461–2468. PubMed PMC
Sisan DR, Arevalo R, Graves C, McAllister R, Urbach JS. Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophys. J. 2006;91:4241–4252. PubMed PMC
Saxton MJ. Single-particle tracking—Effects of corrals. Biophys. J. 1995;69:389–398. PubMed PMC
Deverall MA, Gindl E, Sinner EK, Besir H, Ruehe J, Saxton MJ, Naumann CA. Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophys. J. 2005;88:1875–1886. PubMed PMC
Saxton MJ. Lateral diffusion in a mixture of mobile and immobile particles - A Monte-Carlo study. Biophys. J. 1990;58:1303–1306. PubMed PMC
Destainville N. Theory of fluorescence correlation spectroscopy at variable observation area for two-dimensional diffusion on a meshgrid. Soft Mat. 2008;4:1288–1301. PubMed
Humpolickova J, Gielen E, Benda A, Fagulova V, Vercammen J, Vandeven M, Hof M, Ameloot M, Engelborghs Y. Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys. J. 2006;91:L23–L25. PubMed PMC
Almeida PFF, Vaz WLC, Thompson TE. Lateral diffusion in the liquid-phases of dimyristoylphosphatidylcholine cholesterol lipid bilayers - A free-volume analysis. Biochemistry. 1992;31:6739–6747. PubMed
Vaz WLC, Clegg RM, Hallmann D. Translational diffusion of lipids in liquid-crystalline phase phosphatidylcholine multibilayers-A comparison of experiment with theory. Biochemistry. 1985;24:781–786. PubMed
Vaz WLC, Goodsaid-Zalduondo F, Jacobson K. Lateral diffusion of lipids and proteins in bilayer-membranes. FEBS Lett. 1984;174:199–207.
Kahya N, Schwille P. How phospholipid-cholesterol interactions modulate lipid lateral diffusion, as revealed by fluorescence correlation spectroscopy. J. Fluoresc. 2006;16:671–678. PubMed
Klymchenko AS, Duportail G, Demchenko AP, Mely Y. Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys. J. 2004;86:2929–2941. PubMed PMC
Burns AR, Frankel DJ, Buranda T. Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy. Biophys. J. 2005;89:1081–1093. PubMed PMC
Saffman PG, Delbruck M. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. USA. 1975;72:3111–3113. PubMed PMC
Petrov EP, Schwille P. Translational diffusion in lipid membranes beyond the Saffman-Delbruck approximation. Biophys. J. 2008;94:L41–L43. PubMed PMC
Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, Poolman B. Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 2009;131:12650–12656. PubMed
Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov NS, Genest M, Hodges RS, Urbach W. Lateral mobility of proteins in liquid membranes revisited. Proc. Natl. Acad. Sci. USA. 2006;103:2098–2102. PubMed PMC
Guigas G, Weiss M. Size-dependent diffusion of membrane inclusions. Biophys. J. 2006;91:2393–2398. PubMed PMC
Paulick MG, Wise AR, Forstner MB, Groves JT, Bertozzi CR. Synthetic analogues of glycosylphosphatidylinositol-anchored proteins and their behavior in supported lipid bilayers. J. Am. Chem. Soc. 2007;129:11543–11550. PubMed
Golebiewska U, Gambhir A, Hangyas-Mihalyne G, Zaitseva I, Radler J, McLaughlin S. Membrane-bound basic peptides sequester multivalent (PIP2), but not monovalent (PS), acidic lipids. Biophys. J. 2006;91:588–599. PubMed PMC
Saxton MJ. Lateral diffusion in an archipelago-The effect of mobile obstacles. Biophys. J. 1987;52:989–997. PubMed PMC
Pearce KH, Hof M, Lentz BR, Thompson NL. Comparison of the membrane-binding kinetics of bovine prothrombin and its fragment-1. J. Biol. Chem. 1993;268:22984–22991. PubMed
Forstner MB, Yee CK, Parikh AN, Groves JT. Lipid lateral mobility and membrane phase structure modulation by protein binding. J. Am. Chem. Soc. 2006;128:15221–15227. PubMed
Blondelle SE, Lohner K, Aguilar MI. Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity. Biochim. Biophys. Acta-Biomembr. 1999;1462:89–108. PubMed
Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim. Biophys. Acta-Biomembr. 1999;1462:157–183. PubMed
Ambroggio EE, Separovic F, Bowie JH, Fidelio GD, Bagatolli LA. Direct visualization of membrane leakage induced by the antibiotic peptides: Maculatin, citropin, and aurein. Biophys. J. 2005;89:1874–1881. PubMed PMC
Sheynis T, Sykora J, Benda A, Kolusheva S, Hof M, Jelinek R. Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. Eur. J. Biochem. 2003;270:4478–4487. PubMed
Macháň R, Miszta A, Hermens W, Hof M.Real-time monitoring of melittin induced pore and tubule formation from supported lipid bilayers and its physiological relevance Chem Phys Lipids 2009. doi: 10.1016/j.chemphyslip.2009.1011.1005. PubMed
Miszta A, Machan R, Benda A, Ouellette AJ, Hermens WT, Hof M. Combination of ellipsometry, laser scanning microscopy and Z-scan fluorescence correlation spectroscopy elucidating interaction of cryptdin-4 with supported phospholipid bilayers. J. Pept. Sci. 2008;14:503–509. PubMed
Fahey PF, Webb WW. Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid-crystals. Biochemistry. 1978;17:3046–3053. PubMed
Montes LR, Alonso A, Goni FM, Bagatolli LA. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys. J. 2007;93:3548–3554. PubMed PMC
Chiantia S, Kahya N, Ries J, Schwille P. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys. J. 2006;90:4500–4508. PubMed PMC
Benes M, Billy D, Benda A, Speijer H, Hof M, Hermens WT. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass. Langmuir. 2004;20:10129–10137. PubMed
Richter RP, Berat R, Brisson AR. Formation of solid-supported lipid bilayers: An integrated view. Langmuir. 2006;22:3497–3505. PubMed
Stelzle M, Weissmuller G, Sackmann E. On the application of supported bilayers as receptive layers for biosensors with electrical detection. J. Phys. Chem. 1993;97:2974–2981.
Cha T, Guo A, Zhu XY. Formation of supported phospholipid bilayers on molecular surfaces: Role of surface charge density and electrostatic interaction. Biophys. J. 2006;90:1270–1274. PubMed PMC
Richter R, Mukhopadhyay A, Brisson A. Pathways of lipid vesicle deposition on solid surfaces: A combined QCM-D and AFM study. Biophys. J. 2003;85:3035–3047. PubMed PMC
Spinke J, Yang J, Wolf H, Liley M, Ringsdorf H, Knoll W. Polymer-supported bilayer on a solid substrate. Biophys. J. 1992;63:1667–1671. PubMed PMC
Wright LL, Palmer AG, Thompson NL. Inhomogeneous translational diffusion of monoclonal-antibodies on phospholipid Langmuir-Blodgett films. Biophys. J. 1988;54:463–470. PubMed PMC
Stelzle M, Sackmann E. Sensitive Detection of Protein Adsorption to Supported Lipid Bilayers by Frequency-Dependent Capacitance Measurements and Microelectrophoresis. Biochim. Biophys. Acta. 1989;981:135–142. PubMed
Bayerl TM, Thomas RK, Penfold J, Rennie A, Sackmann E. Specular reflection of neutrons at phospholipid monolayers - changes of monolayer structure and headgroup hydration at the transition from the expanded to the condensed phase state. Biophys. J. 1990;57:1095–1098. PubMed PMC
Johnson SJ, Bayerl TM, Mcdermott DC, Adam GW, Rennie AR, Thomas RK, Sackmann E. Structure of an Adsorbed Dimyristoylphosphatidylcholine Bilayer Measured with Specular Reflection of Neutrons. Biophys. J. 1991;59:289–294. PubMed PMC
Hetzer M, Heinz S, Grage S, Bayerl TM. Asymmetric molecular friction in supported phospholipid bilayers revealed by NMR measurements of lipid diffusion. Langmuir. 1998;14:982–984.
Korlach J, Schwille P, Webb WW, Feigenson GW. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA. 1999;96:8461–8466. PubMed PMC
Zhang LF, Granick S. Slaved diffusion in phospholipid bilayers. Proc. Natl. Acad. Sci. USA. 2005;102:9118–9121. PubMed PMC
Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P. Probing lipid mobility of raftexhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 2003;278:28109–28115. PubMed
Bockmann RA, Hac A, Heimburg T, Grubmuller H. Effect of sodium chloride on a lipid bilayer. Biophys. J. 2003;85:1647–1655. PubMed PMC
Doeven MK, Folgering JHA, Krasnikov V, Geertsma ER, van den Bogaart G, Poolman B. Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys. J. 2005;88:1134–1142. PubMed PMC
Bacia K, Scherfeld D, Kahya N, Schwille P. Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys. J. 2004;87:1034–1043. PubMed PMC
Sum AK, Faller R, de Pablo JJ. Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophys. J. 2003;85:2830–2844. PubMed PMC
van den Bogaart G, Hermans N, Krasnikov V, de Vries AH, Poolman B. On the decrease in lateral mobility of phospholipids by sugars. Biophys. J. 2007;92:1598–1605. PubMed PMC
Sackmann E, Tanaka M. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol. 2000;18:58–64. PubMed
Renner L, Osaki T, Chiantia S, Schwille P, Pompe T, Werner C. Supported lipid bilayers on spacious and pH-responsive polymer cushions with varied hydrophilicity. J. Phys. Chem. B. 2008;112:6373–6378. PubMed
Ma C, Srinivasan MP, Waring AJ, Lehrer RI, Longo ML, Stroeve P. Supported lipid bilayers lifted from the substrate by layer-by-layer polyion cushions on self-assembled monolayers. Colloid Surf. B: Biointerfaces. 2003;28:319–329.
Rossi C, Briand E, Parot P, Odorico M, Chopineau J. Surface response methodology for the study of supported membrane formation. J. Phys. Chem. B. 2007;111:7567–7576. PubMed
Deverall MA, Garg S, Ludtke K, Jordan R, Ruhe J, Naumann CA. Transbilayer coupling of obstructed lipid diffusion in polymer-tethered phospholipid bilayers. Soft Matt. 2008;4:1899–1908.
Wagner ML, Tamm LK. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys. J. 2000;79:1400–1414. PubMed PMC
Kiessling V, Crane JM, Tamm LK. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophys. J. 2006;91:3313–3326. PubMed PMC
Leutenegger M, Lasser T, Sinner EK, Robelek R. Imaging of G protein-coupled receptors in solid-supported planar lipid membranes. Biointerphases. 2008;3:FA136–FA145. PubMed
Horner A, Antonenko YN, Pohl P. Coupled diffusion of peripherally bound peptides along the outer and inner membrane leaflets. Biophys. J. 2009;96:2689–2695. PubMed PMC
Devaux PF. Static and dynamic lipid asymmetry in cell-membranes. Biochemistry. 1991;30:1163–1173. PubMed
Bretsche M. Asymmetrical lipid bilayer structure for biological membranes. Nat. New Biol. 1972;236:11–12. PubMed
Meseth U, Wohland T, Rigler R, Vogel H. Resolution of fluorescence correlation measurements. Biophys. J. 1999;76:1619–1631. PubMed PMC
Zhang LF, Granick S. Lipid diffusion compared in outer and inner leaflets of planar supported bilayers. J Chem Phys. 2005;123:211104:1–211104:4. PubMed
Ries J, Yu SR, Burkhardt M, Brand M, Schwille P. Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat. Methods. 2009;6:U643–U645. PubMed
Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered
Fluorescence Lifetime Correlation Spectroscopy (FLCS): concepts, applications and outlook