Fluorescence Lifetime Correlation Spectroscopy (FLCS): concepts, applications and outlook
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23202928
PubMed Central
PMC3497302
DOI
10.3390/ijms131012890
PII: ijms131012890
Knihovny.cz E-zdroje
- MeSH
- difuze MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční spektrometrie * MeSH
- fotony MeSH
- liposomy chemie MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fluorescenční barviva MeSH
- liposomy MeSH
Fluorescence Lifetime Correlation Spectroscopy (FLCS) is a variant of fluorescence correlation spectroscopy (FCS), which uses differences in fluorescence intensity decays to separate contributions of different fluorophore populations to FCS signal. Besides which, FLCS is a powerful tool to improve quality of FCS data by removing noise and distortion caused by scattered excitation light, detector thermal noise and detector afterpulsing. We are providing an overview of, to our knowledge, all published applications of FLCS. Although these are not numerous so far, they illustrate possibilities for the technique and the research topics in which FLCS has the potential to become widespread. Furthermore, we are addressing some questions which may be asked by a beginner user of FLCS. The last part of the text reviews other techniques closely related to FLCS. The generalization of the idea of FLCS paves the way for further promising application of the principle of statistical filtering of signals. Specifically, the idea of fluorescence spectral correlation spectroscopy is here outlined.
J Heyrovský Institute of Physical Chemistry of ASCR v v i Dolejškova 3 18223 Prague 8 Czech Republic
Zobrazit více v PubMed
Elson E., Magde D. Fluorescence correlation spectroscopy. I. conceptual basis and theory. Biopolymers. 1974;13:1–27. PubMed
Thompson N.L., Lieto A.M., Allen N.W. Recent advances in fluorescence correlation spectroscopy. Curr. Opin. Struc. Biol. 2002;12:634–641. PubMed
Kapusta P., Wahl M., Benda A., Hof M., Enderlein J. Fluorescence lifetime correlation spectroscopy. J. Fluoresc. 2007;17:43–48. PubMed
Beranová L., Humpolíčková J., Hof M. Principles and Applications of Fluorescence Lifetime Correlation Spectroscopy. In: Baldini F., Homola J., Lieberman R.A., editors. Optical Sensors 2009; Proceedings of SPIE; Prague, Czech Republic. April 20–23, 2009; Bellingham, WA, USA: SPIE-International Society For Optical Engineering; 2009. pp. 735612:1–735612:9.
Macháň R., Hof M. Recent developments in fluorescence correlation spectroscopy for diffusion measurements in planar lipid membranes. Int. J. Mol. Sci. 2010;11:427–457. PubMed PMC
Böhmer M., Wahl M., Rahn H.J., Erdmann R., Enderlein J. Time-resolved fluorescence correlation spectroscopy. Chem. Phys. Lett. 2002;353:439–445.
Enderlein J., Gregor I. Using fluorescence lifetime for discriminating detector after pulsing in fluorescence-correlation spectroscopy. Rev. Sci. Instrum. 2005;76:033102:1–033102:5.
Benda A., Hof M., Wahl M., Patting M., Erdmann R., Kapusta P. TCSPC upgrade of a confocal FCS microscope. Rev. Sci. Instrum. 2005;76:033106:1–033106:4.
Benda A., Fagul’ova V., Deyneka A., Enderlein J., Hof M. Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: New perspectives in supported phospholipid bilayer research. Langmuir. 2006;22:9580–9585. PubMed
Rüttinger S., Kapusta P., Patting M., Wahl M., Macdonald R. Comparison of Background Corrected Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Correlation Spectroscopy: Dilution Series Revisited. In: Enderlein J., Gryczynski Z.K., Erdmann R., editors. Single Molecule Spectroscopy and Imaging II; Proceedings of SPIE; San Jose, CA, USA. 24 January 2009; Bellingham, WA, USA: SPIE-International Society For Optical Engineering; 2009. pp. 718508:1–718508:6.
Rüttinger S., Kapusta P., Patting M., Wahl M., Macdonald R. On the resolution capabilities and limits of fluorescence lifetime correlation spectroscopy (FLCS) measurements. J. Fluoresc. 2010;20:105–114. PubMed
Padilla-Parra S., Auduge N., Coppey-Moisan M., Tramier M. Dual-color fluorescence lifetime correlation spectroscopy to quantify protein-protein interactions in live cell. Microsc. Res. Tech. 2011;74:788–793. PubMed
Chen J.J., Irudayaraj J. Fluorescence lifetime cross correlation spectroscopy resolves EGFR and antagonist interaction in live cells. Anal. Chem. 2010;82:6415–6421. PubMed
Schwille P., MeyerAlmes F.J., Rigler R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 1997;72:1878–1886. PubMed PMC
Muller B.K., Zaychikov E., Brauchle C., Lamb D.C. Pulsed interleaved excitation. Biophys. J. 2005;89:3508–3522. PubMed PMC
Ray K., Zhang J., Lakowicz J.R. Fluorescence lifetime correlation spectroscopic study of fluorophore-labeled silver nanoparticles. Anal. Chem. 2008;80:7313–7318. PubMed PMC
Ray K., Zhang J.A., Lakowicz J.R. Fluorophore Conjugated Silver Nanoparticles: A Time-resolved Fluorescence Correlation Spectroscopic Study. In: Enderlein J., Gryczynski Z.K., Erdmann R., editors. Single Molecule Spectroscopy and Imaging II; Proceedings of SPIE; San Jose, CA, USA. 24 January 2009; Bellingham, WA, USA: SPIE-International Society For Optical Engineering; 2009. pp. 71850C:1–71850C:7. PubMed PMC
Humpolíčková J., Beranová L., Štěpánek M., Benda A., Procházka K., Hof M. Fluorescence lifetime correlation spectroscopy reveals compaction mechanism of 10 and 49 kbp DNA and differences between polycation and cationic surfactant. J. Phys. Chem. B. 2008;112:16823–16829. PubMed
Humpolíčková J., Benda A., Sýkora J., Macháň R., Kral T., Gasinska B., Enderlein J., Hof M. Equilibrium dynamics of spermine-induced plasmid DNA condensation revealed by fluorescence lifetime correlation spectroscopy. Biophys. J. 2008;94:L17–L19. PubMed PMC
Humpolíčková J., Štěpánek M., Kral T., Benda A., Procházka K., Hof M. On mechanism of intermediate-sized circular DNA compaction mediated by spermine: Contribution of fluorescence lifetime correlation spectroscopy. J. Fluoresc. 2008;18:679–684. PubMed
Yoshikawa K., Takahashi M., Vasilevskaya V.V., Khokhlov A.R. Large discrete transition in a single DNA molecule appears continuous in the ensemble. Phys. Rev. Lett. 1996;76:3029–3031. PubMed
Ueda M., Yoshikawa K. Phase transition and phase segregation in a single double-stranded DNA molecule. Phys. Rev. Lett. 1996;77:2133–2136. PubMed
Humpolíčková J., Benda A., Beranová L., Hof M. Compaction mechanism of intermediate-sized DNA elucidated by fluorescence lifetime correlation spectroscopy. Chem. Listy. 2009;103:911–914.
Paredes J.M., Crovetto L., Orte A., Alvarez-Pez J.M., Talavera E.M. Influence of the solvent on the ground- and excited-state buffer-mediated proton-transfer reactions of a xanthenic dye. Phys. Chem. Chem. Phys. 2011;13:1685–1694. PubMed
Paredes J.M., Crovetto L., Orte A., Lopez S.G., Talavera E.M., Alvarez-Pez J.M. Photophysics of the interaction between a fluorescein derivative and Ficoll. J. Phys. Chem. A. 2011;115:13242–13250. PubMed
Paredes J.M., Garzon A., Crovetto L., Orte A., Lopez S.G., Alvarez-Pez J.M. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions. Phys. Chem. Chem. Phys. 2012;14:5795–5800. PubMed
Orte A., Ruedas-Rama M.J., Paredes J.M., Crovetto L., Alvarez-Pez J.M. Dynamics of water-in-oil nanoemulsions revealed by fluorescence lifetime correlation spectroscopy. Langmuir. 2011;27:12792–12799. PubMed
Gregor I., Enderlein J. Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy. Photochem. Photobiol. Sci. 2007;6:13–18. PubMed
Felekyan S., Kalinin S., Sanabria H., Valeri A., Seidel C.A.M. Filtered FCS: Species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. Chem Phys Chem. 2012;13:1036–1053. PubMed PMC
Gärtner M., Mutze J., Ohrt T., Schwille P. Fluorescence Lifetime Correlation Spectroscopy for Precise Concentration Detection in vivo by Background Subtraction. In: Georgakoudi I., Popp J., Svanberg K., editors. Clinical and Biomedical Spectroscopy; Proceedings of SPIE; Munich, Germany. 14 June 2009; Bellingham, WA, USA: SPIE-International Society For Optical Engineering; 2009. pp. 73681V:1–73681V:7.
Macháň R., Hof M., Chernovets T., Zhmak M.N., Ovchinnikova T.V., Sýkora J. Formation of arenicin-1 microdomains in bilayers and their specific lipid interaction revealed by Z-scan FCS. Anal. Bioanal. Chem. 2011;399:3547–3554. PubMed
Macháň R., Miszta A., Hermens W., Hof M. Real-time monitoring of melittin-induced pore and tubule formation from supported lipid bilayers and its physiological relevance. Chem. Phys. Lipids. 2010;163:200–206. PubMed
Pembouong G., Morellet N., Kral T., Hof M., Scherman D., Bureau M.F., Mignet N. A comprehensive study in triblock copolymer membrane interaction. J. Control Release. 2011;151:57–64. PubMed
Ortmann U., Dertinger T., Wahl M., Patting M., Erdmann R. Compact TCSPC Upgrade Package for Laser Scanning Microscopes Based on 375- to 470-nm Picosecond Diode Lasers. In: Cote G.L., Priezzhev A.V., editors. Optical Diagnostics and Sensing IV; Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE); San Jose, CA, USA. 24 January 2004; Bellingham, WA, USA: SPIE-International Society For Optical Engineering; 2004. pp. 179–186.
Foo Y.H., Naredi-Rainer N., Lamb D.C., Ahmed S., Wohland T. Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy. Biophys. J. 2012;102:1174–1183. PubMed PMC
Humpolíčková J., Enderlein J. Forschungszentrum Jülich GmbH., Jülich, Germany. Personal communication. 2009.
Lakowicz J.R. Principles of Fluorescence Spectrosopy. 3rd ed. Springer Science + Business Media, LLC; New York, NY, USA: 2006.
Felekyan S., Kuhnemuth R., Kudryavtsev V., Sandhagen C., Becker W., Seidel C.A.M. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum. 2005;76:083104:1–083104:14.
Fluorescence lifetime correlation spectroscopy using the SymPhoTime software: FLCS tutorial. [accessed on 8 August 2012]. Available online: http://www.picoquant.com/technotes/appnote_flcs_spt.pdf.
Benda A. Fluorescence Spectral Correlation Spectroscopy (FSCS) Resolving Correlation Functions of Compounds with Totally Overlapping Spectra. Rev. Sci. Instrum. 2012 unpublished work.
Felekyan S., Kalinin S., Valeri A., Seidel C.A.M. Filtered FCS and Species Cross Correlation Function. In: Periasamy A., So P.T.C., editors. Multiphoton Microscopy in the Biomedical Sciences IX; Proceedings of SPIE; San Jose, CA, USA. 24 January 2009; Bellingham, WA, USA: SPIE-International Society For Optical Engineering; 2009. pp. 71830D:1–71830D:12.
Eggeling C., Berger S., Brand L., Fries J.R., Schaffer J., Volkmer A., Seidel C.A.M. Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J. Biotechnol. 2001;86:163–180. PubMed
Lamb D.C., Schenk A., Rocker C., Scalfi-Happ C., Nienhaus G.U. Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection. Biophys. J. 2000;79:1129–1138. PubMed PMC
Time-Gated Fluorescence Correlation Spectroscopy for Improved Concentration Determinations. [accessed on 8 August 2012]. Available online: http://www.picoquant.com/technotes/appnote_tg-fcs.pdf.
Ishii K., Tahara T. Resolving inhomogeneity using lifetime-weighted fluorescence correlation spectroscopy. J. Phys. Chem. B. 2010;114:12383–12391. PubMed
Ishii K., Tahara T. Extracting decay curves of the correlated fluorescence photons measured in fluorescence correlation spectroscopy. Chem. Phys. Lett. 2012;519–520:130–133.
Yang H., Xie X.S. Probing single-molecule dynamics photon by photon. J. Chem. Phys. 2002;117:10965–10979.
Yang H., Xie X.S. Statistical approaches for probing single-molecule dynamics photon-by-photon. Chem. Phys. 2002;284:423–437.
Single-Color Fluorescence Lifetime Cross-Correlation Spectroscopy In Vivo
Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations
FSCS Reveals the Complexity of Lipid Domain Dynamics in the Plasma Membrane of Live Cells