A Novel Nanoprobe for Multimodal Imaging Is Effectively Incorporated into Human Melanoma Metastatic Cell Lines

. 2015 Sep 08 ; 16 (9) : 21658-80. [epub] 20150908

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26370983

To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T₁ relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/μL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.

Zobrazit více v PubMed

Spano D., Zollo M. Tumor microenvironment: A main actor in the metastasis process. Clin. Exp. Metastasis. 2012;29:381–395. doi: 10.1007/s10585-012-9457-5. PubMed DOI

Fink K.R., Fink J.R. Imaging of brain metastases. Surg. Neurol. Int. 2013;4(Suppl. 4):S209–S219. PubMed PMC

Giovannini E., Lazzeri P., Milano A., Gaeta M.C., Ciarmiello A. Clinical applications of choline PET/CT in brain tumors. Curr. Pharm. Des. 2015;21:121–127. doi: 10.2174/1381612820666140915120742. PubMed DOI

Thorsen F., Fite B., Mahakian L.M., Seo J.W., Qin S., Harrison V., Johnson S., Ingham E., Caskey C., Sundstrøm T., et al. Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases. J. Control. Release. 2013;172:812–822. doi: 10.1016/j.jconrel.2013.10.019. PubMed DOI PMC

Jang E.S., Lee S.Y., Cha E.J., Sun I.C., Kwon I.C., Kim D., Kim Y.I., Kim K., Ahn C.H. Fluorescent dye labeled iron oxide/silica core/shell nanoparticle as a multimodal imaging probe. Pharm. Res. 2014;12:3371–3378. doi: 10.1007/s11095-014-1426-z. PubMed DOI

Xing Y., Zhao J., Conti P.S., Chen K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics. 2014;4:290–306. doi: 10.7150/thno.7341. PubMed DOI PMC

Khemtong C., Kessinger C.W., Gao J. Polymeric nanomedicine for cancer MR imaging and drug delivery. Chem. Commun. 2009;24:3497–3510. doi: 10.1039/b821865j. PubMed DOI PMC

Lee D.E., Koo H., Sun I.C., Ryu J.H., Kim K., Kwon I.C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 2012;41:2656–2672. doi: 10.1039/C2CS15261D. PubMed DOI

Sumer B., Gao J. Theranostic nanomedicine for cancer. Nanomedicine. 2008;3:137–140. doi: 10.2217/17435889.3.2.137. PubMed DOI

Li N., Yang H., Pan W., Diao W., Tang B. A tumour mRNA-triggered nanocarrier for multimodal cancer cell imaging and therapy. Chem. Commun. 2014;50:7473–7476. doi: 10.1039/c4cc01009d. PubMed DOI

Laurent S., Saei A.A., Behzadi S., Panahifar A., Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Exp. Opin. Drug Deliv. 2014;9:1449–1470. doi: 10.1517/17425247.2014.924501. PubMed DOI

Jain K.K. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine. 2012;7:1225–1233. doi: 10.2217/nnm.12.86. PubMed DOI

Horowitz P.M., Chiocca E.A. Nanotechnology-based strategies for the diagnosis and treatment of intracranial neoplasms. World Neurosurg. 2013;80:53–55. doi: 10.1016/j.wneu.2013.02.039. PubMed DOI

Wang T., Kievit F.M., Veiseh O., Arami H., Stephen Z.R., Fang C., Liu Y., Ellenbogen R.G., Zhang M. Targeted cell uptake of a noninternalizing antibody through conjugation to iron oxide nanoparticles in primary central nervous system lymphoma. World Neurosurg. 2013;80:134–141. doi: 10.1016/j.wneu.2013.01.011. PubMed DOI

Yuk S.H., Oh K.S., Cho S.H., Lee B.S., Kim S.Y., Kwak B.K., Kim K., Kwon I.C. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Biomacromolecules. 2011;12:2335–2343. doi: 10.1021/bm200413a. PubMed DOI

Chung Y.I., Kim J.C., Kim Y.H., Tae G., Lee S.Y., Kim K., Kwon I.C. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated pluronic on tumor targeting. J. Control. Release. 2010;143:374–382. doi: 10.1016/j.jconrel.2010.01.017. PubMed DOI

Mansa R., Detellier C. Preparation and characterization of guar-montmorillonite nanocomposites. Materials. 2013;6:5199–5216. doi: 10.3390/ma6115199. PubMed DOI PMC

Wanga C., Huang Y. Facile preparation of fluorescent Ag-clusters–chitosan-hybrid nanocomposites for bio-applications. New J. Chem. 2014;38:657–662. doi: 10.1039/C3NJ00951C. DOI

Win K.Y., Feng S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–2722. doi: 10.1016/j.biomaterials.2004.07.050. PubMed DOI

Sakhtianchi R., Minchin R.F., Lee K.B., Alkilany A.M., Serpooshan V., Mahmoudi M. Exocytosis of nanoparticles from cells: Role in cellular retention and toxicity. Adv. Colloid Interface Sci. 2013;201–202:18–29. doi: 10.1016/j.cis.2013.10.013. PubMed DOI

Ridley A.J., Schwartz M.A., Burridge K., Firtel R.A., Ginsberg M.H., Borisy G., Parsons J.T., Horwitz A.R. Cell migration: Integrating signals from front to back. Science. 2003;302:1704–1709. doi: 10.1126/science.1092053. PubMed DOI

Filippov S.K., Sedlacek O., Bogomolova A., Vetrik M., Jirak D., Kovar J., Kucka J., Bals S., Turner S., Stepanek P., et al. Glycogen as a biodegradable construction nanomaterial for in vivo use. Macromol. Biosci. 2012;12:1731–1738. doi: 10.1002/mabi.201200294. PubMed DOI

Naahidi S., Jafari M., Edalat F., Raymond K., Khademhosseini A., Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release. 2013;166:182–194. doi: 10.1016/j.jconrel.2012.12.013. PubMed DOI

Zhang S., Li J., Lykotrafitis G., Bao G., Suresh S. Size-dependent endocytosis of nanoparticles. Adv. Mater. 2009;21:419–424. doi: 10.1002/adma.200801393. PubMed DOI PMC

Barua S., Rege K. Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small. 2009;5:370–376. doi: 10.1002/smll.200800972. PubMed DOI PMC

Kelf T.A., Sreenivasan V.K., Sun J., Kim E.J., Goldys E.M., Zvyagin A.V. Non-specific cellular uptake of surface-functionalized quantum dots. Nanotechnology. 2010;21:285105. doi: 10.1088/0957-4484/21/28/285105. PubMed DOI

Chithrani Devika B., Chan W.C.W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007;7:1542–1550. doi: 10.1021/nl070363y. PubMed DOI

Rima W., Sancey L., Aloy M.T., Armandy E., Alcantara G.B., Epicier T., Malchere A., Joly-Pottuz L., Mowat P., Lux F., et al. Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. Biomaterials. 2013;34:181–195. doi: 10.1016/j.biomaterials.2012.09.029. PubMed DOI

Liu J., Bauer H., Callahan J., Kopečková P., Pan H., Kopeček J. Endocytic uptake of a large array of HPMA copolymers: Elucidation into the dependence on the physicochemical characteristics. J. Control. Release. 2010;143:71–79. doi: 10.1016/j.jconrel.2009.12.022. PubMed DOI PMC

Ferrer J.C., Favre C., Gomis R.R., Fernández-Novell J.M., García-Rocha M., de la Iglesia N., Cid E., Guinovart J.J. Control of glycogen deposition. FEBS Lett. 2003;546:127–132. doi: 10.1016/S0014-5793(03)00565-9. PubMed DOI

Glaumann H., Fredzell J., Jubner A., Ericsson J.L.E. Uptake and degradation of glycogen by Kupffer cells. Exp. Mol. Pathol. 1979;31:70–80. doi: 10.1016/0014-4800(79)90008-X. PubMed DOI

Rejman J., Oberle V., Zuhorn I.S., Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004;377 Pt 1:159–169. doi: 10.1042/bj20031253. PubMed DOI PMC

Fenouille N., Tichet M., Dufies M., Pottier A., Mogha A., Soo J.K., Rocchi S., Mallavialle A., Galibert M.D., Khammari A., et al. The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS ONE. 2012;7:e40378. doi: 10.1371/journal.pone.0040378. PubMed DOI PMC

Eikenes L., Bruland O.S., Brekken C., Davies Cde L. Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts. Cancer Res. 2004;64:4768–4773. doi: 10.1158/0008-5472.CAN-03-1472. PubMed DOI

Sundstrøm T., Daphu I., Wendelbo I., Hodneland E., Lundervold A., Immervoll H., Skaftnesmo K.O., Babic M., Jendelova P., Syková E., et al. Automated tracking of nanoparticle-labeled melanoma cells improves the predictive power of a brain metastasis model. Cancer Res. 2013;73:2445–2456. doi: 10.1158/0008-5472.CAN-12-3514. PubMed DOI

Terreno E., Geninatti Crich S., Belfiore S., Biancone L., Cabella C., Esposito G., Manazza A.D., Aime S. Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn. Res. Med. 2006;55:491–497. doi: 10.1002/mrm.20793. PubMed DOI

Chacko A.-M., Li C., Pryma D.A., Brem S., Coukos G., Muzykantov V. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain barrier divide. Exp. Opin. Drug Deliv. 2013;10:907–926. doi: 10.1517/17425247.2013.808184. PubMed DOI PMC

Morris D.L. Some effects of the intravenous injection of corn glycogen into rabbits. J. Biol. Chem. 1943;148:699–706.

Czerney P. Fluorescent Dyes for Bioanalytical and Hightech Applications. 7th ed. Volume 7. Dyomics GmbH; Jena, Germany: 2011. Dyomics—Colours for life; p. 84.

Wang J., Daphu I., Pedersen P.H., Miletic H., Hovland R., Mørk S., Bjerkvig R., Tiron C., McCormack E., Micklem D., et al. A novel brain metastases model developed in immunodeficient rats closely mimics the growth of metastatic brain tumours in patients. Neuropathol. Appl. Neurobiol. 2011;37:189–205. doi: 10.1111/j.1365-2990.2010.01119.x. PubMed DOI

Prasmickaite L., Skrbo N., Høifødt H.K., Suo Z., Engebraten O., Gullestad H.P., Aamdal S., Fodstad Ø., Maelandsmo G.M. Human malignant melanoma harbours a large fraction of highly clonogenic cells that do not express markers associated with cancer stem cells. Pigment Cell Melanoma Res. 2010;23:449–451. doi: 10.1111/j.1755-148X.2010.00690.x. PubMed DOI

Pawley J.B. Handbook of Biological Confocal Microscopy. 3rd ed. Springer Science + Business Media; New York, NY, USA: 2006.

Kapusta P., Macháň R., Benda A., Hof M. Fluorescence lifetime correlation spectroscopy (FLCS): Concepts, applications and outlook. Int. J. Mol. Sci. 2012;13:12890–12910. doi: 10.3390/ijms131012890. PubMed DOI PMC

Daphu I., Sundstrøm T., Horn S., Huszthy P.C., Niclou S.P., Sakariassen P.Ø., Immervoll H., Miletic H., Bjerkvig R., Thorsen F. In vivo animal models for studying brain metastasis: Value and limitations. Clin. Exp. Metastasis. 2013;30:695–710. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...