A Novel Nanoprobe for Multimodal Imaging Is Effectively Incorporated into Human Melanoma Metastatic Cell Lines
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26370983
PubMed Central
PMC4613273
DOI
10.3390/ijms160921658
PII: ijms160921658
Knihovny.cz E-zdroje
- Klíčová slova
- fluorescence lifetime correlation spectroscopy, fluorescence microscopy, high throughput microscopy, magnetic resonance imaging, melanoma brain metastasis, nanoprobe, theranostics, zeta potential,
- MeSH
- barvení a značení MeSH
- cytoplazma metabolismus MeSH
- fluorescenční spektrometrie MeSH
- glykogen metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kontrastní látky chemie MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- magnetická rezonanční tomografie metody MeSH
- melanom metabolismus patologie MeSH
- molekulární sondy * MeSH
- molekulární zobrazování metody MeSH
- multimodální zobrazování * MeSH
- nádorové buněčné linie MeSH
- nanotechnologie * MeSH
- pohyb buněk MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykogen MeSH
- kontrastní látky MeSH
- molekulární sondy * MeSH
To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T₁ relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/μL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.
Department of Clinical Medicine University of Bergen 5020 Bergen Norway
Molecular Imaging Center Department of Biomedicine University of Bergen 5020 Bergen Norway
NorLux Neuro Oncology Laboratory Department of Biomedicine University of Bergen 5020 Bergen Norway
Zobrazit více v PubMed
Spano D., Zollo M. Tumor microenvironment: A main actor in the metastasis process. Clin. Exp. Metastasis. 2012;29:381–395. doi: 10.1007/s10585-012-9457-5. PubMed DOI
Fink K.R., Fink J.R. Imaging of brain metastases. Surg. Neurol. Int. 2013;4(Suppl. 4):S209–S219. PubMed PMC
Giovannini E., Lazzeri P., Milano A., Gaeta M.C., Ciarmiello A. Clinical applications of choline PET/CT in brain tumors. Curr. Pharm. Des. 2015;21:121–127. doi: 10.2174/1381612820666140915120742. PubMed DOI
Thorsen F., Fite B., Mahakian L.M., Seo J.W., Qin S., Harrison V., Johnson S., Ingham E., Caskey C., Sundstrøm T., et al. Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases. J. Control. Release. 2013;172:812–822. doi: 10.1016/j.jconrel.2013.10.019. PubMed DOI PMC
Jang E.S., Lee S.Y., Cha E.J., Sun I.C., Kwon I.C., Kim D., Kim Y.I., Kim K., Ahn C.H. Fluorescent dye labeled iron oxide/silica core/shell nanoparticle as a multimodal imaging probe. Pharm. Res. 2014;12:3371–3378. doi: 10.1007/s11095-014-1426-z. PubMed DOI
Xing Y., Zhao J., Conti P.S., Chen K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics. 2014;4:290–306. doi: 10.7150/thno.7341. PubMed DOI PMC
Khemtong C., Kessinger C.W., Gao J. Polymeric nanomedicine for cancer MR imaging and drug delivery. Chem. Commun. 2009;24:3497–3510. doi: 10.1039/b821865j. PubMed DOI PMC
Lee D.E., Koo H., Sun I.C., Ryu J.H., Kim K., Kwon I.C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 2012;41:2656–2672. doi: 10.1039/C2CS15261D. PubMed DOI
Sumer B., Gao J. Theranostic nanomedicine for cancer. Nanomedicine. 2008;3:137–140. doi: 10.2217/17435889.3.2.137. PubMed DOI
Li N., Yang H., Pan W., Diao W., Tang B. A tumour mRNA-triggered nanocarrier for multimodal cancer cell imaging and therapy. Chem. Commun. 2014;50:7473–7476. doi: 10.1039/c4cc01009d. PubMed DOI
Laurent S., Saei A.A., Behzadi S., Panahifar A., Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Exp. Opin. Drug Deliv. 2014;9:1449–1470. doi: 10.1517/17425247.2014.924501. PubMed DOI
Jain K.K. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine. 2012;7:1225–1233. doi: 10.2217/nnm.12.86. PubMed DOI
Horowitz P.M., Chiocca E.A. Nanotechnology-based strategies for the diagnosis and treatment of intracranial neoplasms. World Neurosurg. 2013;80:53–55. doi: 10.1016/j.wneu.2013.02.039. PubMed DOI
Wang T., Kievit F.M., Veiseh O., Arami H., Stephen Z.R., Fang C., Liu Y., Ellenbogen R.G., Zhang M. Targeted cell uptake of a noninternalizing antibody through conjugation to iron oxide nanoparticles in primary central nervous system lymphoma. World Neurosurg. 2013;80:134–141. doi: 10.1016/j.wneu.2013.01.011. PubMed DOI
Yuk S.H., Oh K.S., Cho S.H., Lee B.S., Kim S.Y., Kwak B.K., Kim K., Kwon I.C. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Biomacromolecules. 2011;12:2335–2343. doi: 10.1021/bm200413a. PubMed DOI
Chung Y.I., Kim J.C., Kim Y.H., Tae G., Lee S.Y., Kim K., Kwon I.C. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated pluronic on tumor targeting. J. Control. Release. 2010;143:374–382. doi: 10.1016/j.jconrel.2010.01.017. PubMed DOI
Mansa R., Detellier C. Preparation and characterization of guar-montmorillonite nanocomposites. Materials. 2013;6:5199–5216. doi: 10.3390/ma6115199. PubMed DOI PMC
Wanga C., Huang Y. Facile preparation of fluorescent Ag-clusters–chitosan-hybrid nanocomposites for bio-applications. New J. Chem. 2014;38:657–662. doi: 10.1039/C3NJ00951C. DOI
Win K.Y., Feng S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–2722. doi: 10.1016/j.biomaterials.2004.07.050. PubMed DOI
Sakhtianchi R., Minchin R.F., Lee K.B., Alkilany A.M., Serpooshan V., Mahmoudi M. Exocytosis of nanoparticles from cells: Role in cellular retention and toxicity. Adv. Colloid Interface Sci. 2013;201–202:18–29. doi: 10.1016/j.cis.2013.10.013. PubMed DOI
Ridley A.J., Schwartz M.A., Burridge K., Firtel R.A., Ginsberg M.H., Borisy G., Parsons J.T., Horwitz A.R. Cell migration: Integrating signals from front to back. Science. 2003;302:1704–1709. doi: 10.1126/science.1092053. PubMed DOI
Filippov S.K., Sedlacek O., Bogomolova A., Vetrik M., Jirak D., Kovar J., Kucka J., Bals S., Turner S., Stepanek P., et al. Glycogen as a biodegradable construction nanomaterial for in vivo use. Macromol. Biosci. 2012;12:1731–1738. doi: 10.1002/mabi.201200294. PubMed DOI
Naahidi S., Jafari M., Edalat F., Raymond K., Khademhosseini A., Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release. 2013;166:182–194. doi: 10.1016/j.jconrel.2012.12.013. PubMed DOI
Zhang S., Li J., Lykotrafitis G., Bao G., Suresh S. Size-dependent endocytosis of nanoparticles. Adv. Mater. 2009;21:419–424. doi: 10.1002/adma.200801393. PubMed DOI PMC
Barua S., Rege K. Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small. 2009;5:370–376. doi: 10.1002/smll.200800972. PubMed DOI PMC
Kelf T.A., Sreenivasan V.K., Sun J., Kim E.J., Goldys E.M., Zvyagin A.V. Non-specific cellular uptake of surface-functionalized quantum dots. Nanotechnology. 2010;21:285105. doi: 10.1088/0957-4484/21/28/285105. PubMed DOI
Chithrani Devika B., Chan W.C.W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007;7:1542–1550. doi: 10.1021/nl070363y. PubMed DOI
Rima W., Sancey L., Aloy M.T., Armandy E., Alcantara G.B., Epicier T., Malchere A., Joly-Pottuz L., Mowat P., Lux F., et al. Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. Biomaterials. 2013;34:181–195. doi: 10.1016/j.biomaterials.2012.09.029. PubMed DOI
Liu J., Bauer H., Callahan J., Kopečková P., Pan H., Kopeček J. Endocytic uptake of a large array of HPMA copolymers: Elucidation into the dependence on the physicochemical characteristics. J. Control. Release. 2010;143:71–79. doi: 10.1016/j.jconrel.2009.12.022. PubMed DOI PMC
Ferrer J.C., Favre C., Gomis R.R., Fernández-Novell J.M., García-Rocha M., de la Iglesia N., Cid E., Guinovart J.J. Control of glycogen deposition. FEBS Lett. 2003;546:127–132. doi: 10.1016/S0014-5793(03)00565-9. PubMed DOI
Glaumann H., Fredzell J., Jubner A., Ericsson J.L.E. Uptake and degradation of glycogen by Kupffer cells. Exp. Mol. Pathol. 1979;31:70–80. doi: 10.1016/0014-4800(79)90008-X. PubMed DOI
Rejman J., Oberle V., Zuhorn I.S., Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004;377 Pt 1:159–169. doi: 10.1042/bj20031253. PubMed DOI PMC
Fenouille N., Tichet M., Dufies M., Pottier A., Mogha A., Soo J.K., Rocchi S., Mallavialle A., Galibert M.D., Khammari A., et al. The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS ONE. 2012;7:e40378. doi: 10.1371/journal.pone.0040378. PubMed DOI PMC
Eikenes L., Bruland O.S., Brekken C., Davies Cde L. Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts. Cancer Res. 2004;64:4768–4773. doi: 10.1158/0008-5472.CAN-03-1472. PubMed DOI
Sundstrøm T., Daphu I., Wendelbo I., Hodneland E., Lundervold A., Immervoll H., Skaftnesmo K.O., Babic M., Jendelova P., Syková E., et al. Automated tracking of nanoparticle-labeled melanoma cells improves the predictive power of a brain metastasis model. Cancer Res. 2013;73:2445–2456. doi: 10.1158/0008-5472.CAN-12-3514. PubMed DOI
Terreno E., Geninatti Crich S., Belfiore S., Biancone L., Cabella C., Esposito G., Manazza A.D., Aime S. Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn. Res. Med. 2006;55:491–497. doi: 10.1002/mrm.20793. PubMed DOI
Chacko A.-M., Li C., Pryma D.A., Brem S., Coukos G., Muzykantov V. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain barrier divide. Exp. Opin. Drug Deliv. 2013;10:907–926. doi: 10.1517/17425247.2013.808184. PubMed DOI PMC
Morris D.L. Some effects of the intravenous injection of corn glycogen into rabbits. J. Biol. Chem. 1943;148:699–706.
Czerney P. Fluorescent Dyes for Bioanalytical and Hightech Applications. 7th ed. Volume 7. Dyomics GmbH; Jena, Germany: 2011. Dyomics—Colours for life; p. 84.
Wang J., Daphu I., Pedersen P.H., Miletic H., Hovland R., Mørk S., Bjerkvig R., Tiron C., McCormack E., Micklem D., et al. A novel brain metastases model developed in immunodeficient rats closely mimics the growth of metastatic brain tumours in patients. Neuropathol. Appl. Neurobiol. 2011;37:189–205. doi: 10.1111/j.1365-2990.2010.01119.x. PubMed DOI
Prasmickaite L., Skrbo N., Høifødt H.K., Suo Z., Engebraten O., Gullestad H.P., Aamdal S., Fodstad Ø., Maelandsmo G.M. Human malignant melanoma harbours a large fraction of highly clonogenic cells that do not express markers associated with cancer stem cells. Pigment Cell Melanoma Res. 2010;23:449–451. doi: 10.1111/j.1755-148X.2010.00690.x. PubMed DOI
Pawley J.B. Handbook of Biological Confocal Microscopy. 3rd ed. Springer Science + Business Media; New York, NY, USA: 2006.
Kapusta P., Macháň R., Benda A., Hof M. Fluorescence lifetime correlation spectroscopy (FLCS): Concepts, applications and outlook. Int. J. Mol. Sci. 2012;13:12890–12910. doi: 10.3390/ijms131012890. PubMed DOI PMC
Daphu I., Sundstrøm T., Horn S., Huszthy P.C., Niclou S.P., Sakariassen P.Ø., Immervoll H., Miletic H., Bjerkvig R., Thorsen F. In vivo animal models for studying brain metastasis: Value and limitations. Clin. Exp. Metastasis. 2013;30:695–710. PubMed
Fluorine polymer probes for magnetic resonance imaging: quo vadis?