Steroid Metabolome Analysis in Dichorionic Diamniotic Twin Pregnancy
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
MH CZ - DRO - VFN00064165
General University Hospital in Prague
MH CZ - DRO - 00023761
Institute of Endocrinology
PubMed
38338872
PubMed Central
PMC10855299
DOI
10.3390/ijms25031591
PII: ijms25031591
Knihovny.cz E-resources
- Keywords
- foetomaternal steroidome, multiple pregnancy, neuroactive steroids, pregnancy complications,
- MeSH
- Cesarean Section MeSH
- Infant MeSH
- Humans MeSH
- Metabolome MeSH
- Infant, Newborn MeSH
- Retrospective Studies MeSH
- Steroids MeSH
- Pregnancy, Twin * MeSH
- Pregnancy MeSH
- Pregnancy Outcome * MeSH
- Check Tag
- Infant MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Steroids MeSH
Steroid hormones have diverse roles in pregnancy; some help stabilise pregnancy and influence the stability of pregnancy and the onset of labour. Changes and disorders in steroidogenesis may be involved in several pregnancy pathologies. To date, only a few studies have performed a very limited steroid analysis in multiple pregnancies. Our teams investigated multiple pregnancies regarding the biosynthesis, transport, and effects of steroids. We recruited two groups of patients: pregnant women with multiple pregnancies as the study group, and a control singleton pregnancies group. Blood samples were drawn from the participants and analysed. Information about the mother, foetus, delivery, and newborn was extracted from medical records. The data were then analysed. The gestational age of twin pregnancies during delivery ranged from 35 + 3 to 39 + 3 weeks, while it was 38 + 1 to 41 + 1 weeks for the controls. Our findings provide answers to questions regarding the steroidome in multiple pregnancies. Results demonstrate differences in the steroidome between singleton and twin pregnancies. These were based on the presence of two placentae and two foetal adrenal glands, both with separate enzymatic activity. Since every newborn was delivered by caesarean section, analysis was not negatively influenced by changes in the steroid metabolome associated with the spontaneous onset of labour.
See more in PubMed
Rupprecht R., Reul J.M., Trapp T., van Steensel B., Wetzel C., Damm K., Zieglgänsberger W., Holsboer F. Progesterone receptor-mediated effects of neuroactive steroids. Neuron. 1993;11:523–530. doi: 10.1016/0896-6273(93)90156-L. PubMed DOI
Tuem K.B., Atey T.M. Neuroactive steroids: Receptor interactions and responses. Front. Neurol. 2017;8:442. doi: 10.3389/fneur.2017.00442. PubMed DOI PMC
Mitchell B.F., Mitchell J.M., Chowdhury J., Tougas M., Engelen S.M., Senff N., Heijnen I., Moore J.T., Goodwin B., Wong S., et al. Metabolites of progesterone and the pregnane X receptor: A novel pathway regulating uterine contractility in pregnancy? Am. J. Obstet. Gynecol. 2005;192:1304–1315. doi: 10.1016/j.ajog.2005.01.040. PubMed DOI
Pasqualini J.R., Chetrite G.S. The formation and transformation of hormones in maternal, placental and fetal compartments: Biological implications. Horm. Mol. Biol. Clin. Investig. 2016;27:11–28. doi: 10.1515/hmbci-2016-0036. PubMed DOI
Pašková A. Úloha neuroaktivních steroidů v těhotenství a jejich význam v prenatální diagnostice. [The role of neuroactive steroids in pregnancy and their importance in prenatal diagnostics] Praha. 2013;100:3.
Adamcová K., Kolátorová L., Škodová T., Šimková M., Pařízek A., Stárka L., Dušková M. Steroid hormone levels in the peripartum period—Differences caused by fetal sex and delivery type. Physiol. Res. 2018;67:S489–S497. doi: 10.33549/physiolres.934019. PubMed DOI
Ellis M.J., Livesey J.H., Inder W.J., Prickett T.C., Reid R. Plasma corticotropin-releasing hormone and unconjugated estriol in human pregnancy: Gestational patterns and ability to predict preterm delivery. Am. J. Obstet. Gynecol. 2002;186:94–99. doi: 10.1067/mob.2002.119188. PubMed DOI
Hill M., Parízek A., Kancheva R., Dusková M., Velíková M., Kríz L., Klímková M., Pasková A., Zizka Z., Matucha P., et al. Steroid metabolome in plasma from the umbilical artery, umbilical vein, maternal cubital vein and in amniotic fluid in normal and preterm labor. J. Steroid Biochem. Mol. Biol. 2010;121:594–610. doi: 10.1016/j.jsbmb.2009.10.012. PubMed DOI
McLean M., Smith R. Corticotrophin-releasing hormone and human parturition. Reproduction. 2001;121:493–501. doi: 10.1530/rep.0.1210493. PubMed DOI
Ravanos K., Dagklis T., Petousis S., Margioula-Siarkou C., Prapas Y., Prapas N. Factors implicated in the initiation of human parturition in term and preterm labor: A review. Gynecol. Endocrinol. 2015;31:679–683. doi: 10.3109/09513590.2015.1076783. PubMed DOI
Linton E.A., Woodman J.R., Asboth G., Glynn B.P., Plested C.P., Bernal A.L. Corticotrophin releasing hormone: Its potential for a role in human myometrium. Exp. Physiol. 2001;86:273–281. doi: 10.1113/eph8602183. PubMed DOI
Grammatopoulos D., Thompson S., Hillhouse E.W. The human myometrium expresses multiple isoforms of the corticotropin-releasing hormone receptor. J. Clin. Endocrinol. Metab. 1995;80:2388–2393. PubMed
Zhu P., Tao F.B., Jiang X.M., Hao J.H., Wang Y.L., Xu Y.Y. Effect of intrahepatic cholestasis of pregnancy on the functions of hypothalamic-pituitary-adrenocortical axis and adrenal cortex in normal neonates. Chin. J. Contemp. Pediatr. 2010;12:5–8. PubMed
Pařízek A., Hill M., Dušková M., Vítek L., Velíková M., Kancheva R., Šimják P., Koucký M., Kokrdová Z., Adamcová K., et al. A comprehensive evaluation of steroid metabolism in women with intrahepatic cholestasis of pregnancy. PLoS ONE. 2016;11:e0159203. doi: 10.1371/journal.pone.0159203. PubMed DOI PMC
Šimják P., Pařízek A., Vítek L., Černý A., Adamcová K., Koucký M., Hill M., Dušková M., Stárka L. Fetal complications due to intrahepatic cholestasis of pregnancy. J. Perinat. Med. 2015;43:133–139. doi: 10.1515/jpm-2014-0089. PubMed DOI
Pařízek A., Dušková M., Vítek L., Šrámková M., Hill M., Adamcová K., Šimják P., Černý A., Kordová Z., Vráblíková H., et al. The role of steroid hormones in the development of intrahepatic cholestasis of pregnancy. Physiol. Res. 2015;64:S203–S209. doi: 10.33549/physiolres.933117. PubMed DOI
Luisi S., Petraglia F., Benedetto C., Nappi R.E., Bernardi F., Fadalti M., Reis F.M., Luisi M., Genazzani A.R. Serum allopregnanolone levels in pregnant women: Changes during pregnancy, at delivery, and in hypertensive patients. J. Clin. Endocrinol. Metab. 2000;85:2429–2433. doi: 10.1210/jcem.85.7.6675. PubMed DOI
Parker C.R., Jr., Everett R.B., Quirk J.G., Jr., Whalley P.J., Gant N.F. Hormone production during pregnancy in the primigravid patient. I. Plasma levels of progesterone and 5-alpha-pregnane-3,20-dione throughout pregnancy of normal women and women who developed pregnancy-induced hypertension. Am. J. Obstet. Gynecol. 1979;135:778–782. doi: 10.1016/0002-9378(79)90391-0. PubMed DOI
Berkane N., Liere P., Oudinet J.P., Hertig A., Lefèvre G., Pluchino N., Schumacher M., Chabbert-Buffet N. From pregnancy to preeclampsia: A key role for estrogens. Endocr. Rev. 2017;38:123–144. doi: 10.1210/er.2016-1065. PubMed DOI
Baud O., Berkane N. Hormonal changes associated with intra-uterine growth restriction: Impact on the developing brain and future neurodevelopment. Front. Endocrinol. 2019;10:179. doi: 10.3389/fendo.2019.00179. PubMed DOI PMC
Hirst J.J., Yawno T., Nguyen P., Walker D.W. Stress in pregnancy activates neurosteroid production in the fetal brain. Neuroendocrinology. 2006;84:264–274. doi: 10.1159/000097990. PubMed DOI
Hirst J.J., Palliser H.K., Yates D.M., Yawno T., Walker D.W. Neurosteroids in the fetus and neonate: Potential protective role in compromised pregnancies. Neurochem. Int. 2008;52:602–610. doi: 10.1016/j.neuint.2007.07.018. PubMed DOI
Hirst J.J., Kelleher M.A., Walker D.W., Palliser H.K. Neuroactive steroids in pregnancy: Key regulatory and protective roles in the foetal brain. J. Steroid Biochem. Mol. Biol. 2014;139:144–153. doi: 10.1016/j.jsbmb.2013.04.002. PubMed DOI
McEvoy K., Payne J.L., Osborne L.M. Neuroactive steroids and perinatal depression: A review of recent literature. Curr. Psychiatry Rep. 2018;20:78. doi: 10.1007/s11920-018-0937-4. PubMed DOI PMC
Deligiannidis K.M., Kroll-Desrosiers A.R., Mo S., Nguyen H.P., Svenson A., Jaitly N., Hall J.E., Barton B.A., Rothschild A.J., Shaffer S.A. Peripartum neuroactive steroid and γ-aminobutyric acid profiles in women at-risk for postpartum depression. Psychoneuroendocrinology. 2016;70:98–107. doi: 10.1016/j.psyneuen.2016.05.010. PubMed DOI PMC
Hellgren C., Comasco E., Skalkidou A., Sundström-Poromaa I. Allopregnanolone levels and depressive symptoms during pregnancy in relation to single nucleotide polymorphisms in the allopregnanolone synthesis pathway. Horm. Behav. 2017;94:106–113. doi: 10.1016/j.yhbeh.2017.06.008. PubMed DOI
Todorovic S.M., Pathirathna S., Brimelow B.C., Jagodic M.M., Ko S.H., Jiang X., Nilsson K.R., Zorumski C.F., Covey D.F., Jevtovic-Todorovic V. 5beta-reduced neuroactive steroids are novel voltage-dependent blockers of T-type Ca2+ channels in rat sensory neurons in vitro and potent peripheral analgesics in vivo. Mol. Pharmacol. 2004;66:1223–1235. doi: 10.1124/mol.104.002402. PubMed DOI
Zorumski C.F., Paul S.M., Covey D.F., Mennerick S. Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiol. Stress. 2019;11:100196. doi: 10.1016/j.ynstr.2019.100196. PubMed DOI PMC
Anker J.J., Carroll M.E. The role of progestins in the behavioral effects of cocaine and other drugs of abuse: Human and animal research. Neurosci. Biobehav. Rev. 2010;35:315–333. doi: 10.1016/j.neubiorev.2010.04.003. PubMed DOI PMC
Good Clinical Practice Network. A Study of Brexanolone for Acute Respiratory Distress Syndrome Due to COVID-19. [(accessed on 29 March 2022)]. Available online: https://ichgcp.net/clinical-trials-registry/NCT04537806.
Shaw J.C., Dyson R.M., Palliser H.K., Gray C., Berry M.J., Hirst J.J. Neurosteroid replacement therapy using the allopregnanolone-analogue ganaxolone following preterm birth in male guinea pigs. Pediatr. Res. 2019;85:86–96. doi: 10.1038/s41390-018-0185-7. PubMed DOI
Chauhan S.P., Scardo J.A., Hayes E., Abuhamad A.Z., Berghella V. Twins: Prevalence, problems, and preterm births. Am. J. Obstet. Gynecol. 2010;203:305–315. doi: 10.1016/j.ajog.2010.04.031. PubMed DOI
Sentilhes L., Oppenheimer A., Bouhours A.C., Normand E., Haddad B., Descamps P., Marpeau L., Goffinet F., Kayem G. Neonatal outcome of very preterm twins: Policy of planned vaginal or cesarean delivery. Am. J. Obstet. Gynecol. 2015;213:73.e1–73.e7. doi: 10.1016/j.ajog.2015.02.020. PubMed DOI
Townsend R., Khalil A. Fetal growth restriction in twins. Best Pract. Res. Clin. Obstet. Gynaecol. 2018;49:79–88. doi: 10.1016/j.bpobgyn.2018.02.004. PubMed DOI
Bamberg C., Hecher K. Update on twin-to-twin transfusion syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 2019;58:55–65. doi: 10.1016/j.bpobgyn.2018.12.011. PubMed DOI
Canpolat F.E., Yurdakök M., Korkmaz A., Yigit S., Tekinalp G. Birthweight discordance in twins and the risk of being heavier for respiratory distress syndrome. Twin Res. Hum. Genet. 2006;9:659–663. doi: 10.1375/twin.9.5.659. PubMed DOI
Cohen-Bendahan C.C., van Goozen S.H., Buitelaar J.K., Cohen-Kettenis P.T. Maternal serum steroid levels are unrelated to fetal sex: A study in twin pregnancies. Twin Res. Hum. Genet. 2005;8:173–177. doi: 10.1375/twin.8.2.173. PubMed DOI
Tapp A.L., Maybery M.T., Whitehouse A.J. Evaluating the twin testosterone transfer hypothesis: A review of the empirical evidence. Horm. Behav. 2011;60:713–722. doi: 10.1016/j.yhbeh.2011.08.011. PubMed DOI
Talia C., Raja E.A., Bhattacharya S., Fowler P.A. Testing the twin testosterone transfer hypothesis-intergenerational analysis of 317 dizygotic twins born in Aberdeen, Scotland. Hum. Reprod. 2020;35:1702–1710. doi: 10.1093/humrep/deaa091. PubMed DOI PMC
Kuijper E.A., Twisk J.W., Korsen T., Caanen M.R., Kushnir M.M., Rockwood A.L., Meikle A.W., Hompes P.G., Wit J.M., Lambalk C.B. Mid-pregnancy, perinatal, and neonatal reproductive endocrinology: A prospective cohort study in twins and singleton control subjects. Fertil. Steril. 2015;104:1527–1534.e349. doi: 10.1016/j.fertnstert.2015.08.016. PubMed DOI
Thomas H.V., Murphy M.F., Key T.J., Fentiman I.S., Allen D.S., Kinlen L.J. Pregnancy and menstrual hormone levels in mothers of twins compared to mothers of singletons. Ann. Hum. Biol. 1998;25:69–75. doi: 10.1080/03014469800005432. PubMed DOI
Houghton L.C., Lauria M., Maas P., Stanczyk F.Z., Hoover R.N., Troisi R. Circulating maternal and umbilical cord steroid hormone and insulin-like growth factor concentrations in twin and singleton pregnancies. J. Dev. Orig. Health Dis. 2019;10:232–236. doi: 10.1017/S2040174418000697. PubMed DOI PMC
Honcu P., Hill M., Bicikova M., Jandova D., Velikova M., Kajzar J., Kolatorova L., Bestak J., Macova L., Kancheva R., et al. Activation of Adrenal Steroidogenesis and an Improvement of Mood Balance in Postmenopausal Females after Spa Treatment Based on Physical Activity. Int. J. Mol. Sci. 2019;20:3687. doi: 10.3390/ijms20153687. PubMed DOI PMC
Shin Y.Y., An S.M., Jeong J.S., Yang S.Y., Lee G.S., Hong E.J., Jeung E.B., Kim S.C., An B.S. Comparison of steroid hormones in three different preeclamptic models. Mol. Med. Rep. 2021;23:252. doi: 10.3892/mmr.2021.11891. PubMed DOI PMC
Solano M.E., Arck P.C. Steroids, Pregnancy and Fetal Development. Front. Immunol. 2019;10:3017. doi: 10.3389/fimmu.2019.03017. PubMed DOI PMC
Vo T., Hardy D.B. Molecular mechanisms underlying the fetal programming of adult disease. J. Cell Commun. Signal. 2012;6:139–153. doi: 10.1007/s12079-012-0165-3. PubMed DOI PMC
Kley H.K., Schlaghecke R., Krüskemper H.L. Stabilität von Steroiden im Plasma über einen Zeitraum von 10 Jahren [Stability of steroids in plasma over a 10-year period] J. Clin. Chem. Clin. Biochem. 1985;23:875–878. PubMed
Kley H.K., Rick W. Einfluss von Lagerung und Temperatur auf die Analyse von Steroiden in Plasma und Blut [The effect of storage and temperature on the analysis of steroids in plasma and blood] J. Clin. Chem. Clin. Biochem. 1984;22:371–378. PubMed
Hill M., Hána V., Jr., Velíková M., Pařízek A., Kolátorová L., Vítků J., Škodová T., Šimková M., Šimják P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI