A tale of two morphs: developmental patterns and mechanisms of seed coat differentiation in the dimorphic diaspore model Aethionema arabicum (Brassicaceae)

. 2021 Jul ; 107 (1) : 166-181. [epub] 20210518

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33945185

The developmental transition from a fertilized ovule to a dispersed diaspore (seed or fruit) involves complex differentiation processes of the ovule's integuments leading to the diversity in mature seed coat structures in angiosperms. In this study, comparative imaging and transcriptome analysis were combined to investigate the morph-specific developmental differences during outer seed coat differentiation and mucilage production in Aethionema arabicum, the Brassicaceae model for diaspore dimorphism. One of the intriguing adaptations of this species is the production and dispersal of morphologically distinct, mucilaginous and non-mucilaginous diaspores from the same plant (dimorphism). The dehiscent fruit morph programme producing multiple mucilaginous seed diaspores was used as the default trait combination, similar to Arabidopsis thaliana, and was compared with the indehiscent fruit morph programme leading to non-mucilaginous diaspores. Synchrotron-based radiation X-ray tomographic microscopy revealed a co-ordinated framework of morph-specific early changes in internal anatomy of developing A. arabicum gynoecia including seed abortion in the indehiscent programme and mucilage production by the mucilaginous seed coat. The associated comparative analysis of the gene expression patterns revealed that the unique seed coat dimorphism of Ae. arabicum provides an excellent model system for comparative study of the control of epidermal cell differentiation and mucilage biosynthesis by the mucilage transcription factor cascade and their downstream cell wall and mucilage remodelling genes. Elucidating the underlying molecular framework of the dimorphic diaspore syndrome is key to understanding differential regulation of bet-hedging survival strategies in challenging environments, timely in the face of global climatic change.

Zobrazit více v PubMed

Ahmad, B., Zhang, S.L., Yao, J., Rahman, M.U., Hanif, M., Zhu, Y.X. et al. (2019a) Genomic organization of the B3-domain transcription factor family in grapevine (Vitis vinifera L.) and expression during seed development in seedless and seeded cultivars. International Journal of Molecular Sciences, 20, 4553.

Ahmad, R., Liu, Y., Wang, T.J., Meng, Q.X., Yin, H., Wang, X. et al. (2019b) GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid. Plant Physiology, 179, 1844-1860.

Arshad, W., Marone, F., Collinson, M.E., Leubner-Metzger, G. & Steinbrecher, T. (2020) Fracture of the dimorphic fruits of Aethionema arabicum (Brassicaceae). Botany-Botanique, 98, 65-75.

Arshad, W., Sperber, K., Steinbrecher, T., Nichols, B., Jansen, V.A.A., Leubner-Metzger, G. et al. (2019) Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae). New Phytologist, 221, 1434-1446.

Arsovski, A.A., Villota, M.M., Rowland, O., Subramaniam, R. & Western, T.L. (2009) MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana. Journal of Experimental Botany, 60, 2601-2612.

Baskin, C.C. & Baskin, J.M. (2014) Seeds - Ecology, biogeography, and evolution of dormancy and germination. San Diego, London: Academic Press.

Baskin, J.M., Lu, J.J., Baskin, C.C., Tan, D.Y. & Wang, L. (2014) Diaspore dispersal ability and degree of dormancy in heteromorphic species of cold deserts of northwest China: a review. Perspectives in Plant Ecology, Evolution and Systematics, 16, 93-99.

Benedict, J.C., Smith, S.Y., Specht, C.D., Collinson, M.E., Leong-Skornickova, J., Parkinson, D.Y. et al. (2016) Species diversity driven by morphological and ecological disparity: a case study of comparative seed morphology and anatomy across a large monocot order. AoB Plants, 8, plw063.

Bhattacharya, S., Sperber, K., Ozudogru, B., Leubner-Metzger, G. & Mummenhoff, K. (2019) Naturally-primed life strategy plasticity of dimorphic Aethionema arabicum facilitates optimal habitat colonization. Scientific Reports, 9, 16108.

Collinson, M.E., Mancester, S.R. & Wilde, V. (2012) Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. Abhandlungen der Senckenberg Gesellschaft für Naturforschung, 570, 1-249.

Di Marzo, M., Herrera-Ubaldo, H., Caporali, E., Novak, O., Strnad, M., Balanza, V. et al. (2020) SEEDSTICK controls Arabidopsis fruit size by regulating cytokinin levels and FRUITFULL. Cell Reports, 30, 2846-2857.e3.

Diao, P.F., Chen, C., Zhang, Y.Z., Meng, Q.W., Lv, W. & Ma, N.N. (2020) The role of NAC transcription factor in plant cold response. Plant Signaling & Behavior, 15, 1785668.

Ehlers, K., Bhide, A.S., Tekleyohans, D.G., Wittkop, B., Snowdon, R.J. & Becker, A. (2016) The MADS box genes ABS, SHP1, and SHP2 are essential for the coordination of cell divisions in ovule and seed coat development and for endosperm formation in Arabidopsis thaliana. PLoS One, 11, e0165075.

Ezquer, I., Mizzotti, C., Nguema-Ona, E., Gotte, M., Beauzamy, L., Viana, V.E. et al. (2016) The developmental regulator SEEDSTICK controls structural and mechanical properties of the Arabidopsis seed coat. The Plant Cell, 28, 2478-2492.

Fernandez-Pozo, N., Metz, T., Chandler, J.O., Gramzow, L., Merai, Z., Maumus, F. et al. (2021) Aethionema arabicum genome annotation using PacBio full-length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. The Plant Journal, 106, 275-293.

Ferrandiz, C., Pelaz, S. & Yanofsky, M.F. (1999) Control of carpel and fruit development in Arabidopsis. Annual Review of Biochemistry, 68, 321-354.

Finch-Savage, W.E. & Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist, 171, 501-523.

Friis, E.M., Crane, P.R. & Pedersen, K.R. (2019) The endothelium in seeds of early angiosperms. New Phytologist, 224, 1419-1424.

Friis, E.M., Marone, F., Pedersen, K.R., Crane, P.R. & Stampanoni, M. (2014) Three-dimensional visualization of fossil flowers, fruits, seeds, and other plant remains using synchrotron radiation X-ray tomographic microscopy (SRXTM): new insights into Cretaceous plant diversity. Journal of Paleontology, 88, 684-701.

Golz, J.F., Allen, P.J., Li, S.F., Parish, R.W., Jayawardana, N.U., Bacic, A. et al. (2018) Layers of regulation-insights into the role of transcription factors controlling mucilage production in the Arabidopsis seed coat. Plant Science, 272, 179-192.

Gonzalez-Grandio, E., Pajoro, A., Franco-Zorrilla, J.M., Tarancon, C., Immink, R.G.H. & Cubas, P. (2017) Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proceedings of the National Academy of Sciences of the United States of America, 114, E245-E254.

Graeber, K., Linkies, A., Wood, A.T. & Leubner-Metzger, G. (2011) A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. The Plant Cell, 23, 2045-2063.

Guo, M., Liu, J.H., Ma, X., Luo, D.X., Gong, Z.H. & Lu, M.H. (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science, 7, 114.

Gutterman, Y. (2000) Environmental factors and survival strategies of annual plant species in the Negev Desert, Israel. Plant Species Biology, 15, 113-125.

Han, X.X., Zhang, L.J., Miao, X.M., Hu, X.W., Nan, S.Z. & Fu, H. (2020) Transcriptome analysis reveals the molecular mechanisms of mucilage biosynthesis during Artemisia sphaerocephala seed development. Industrial Crops and Products, 145, 111991.

Huysmans, M., Buono, R.A., Skorzinski, N., Radio, M.C., De Winter, F., Parizot, B. et al. (2018) NAC transcription factors ANAC087 and ANAC046 control distinct aspects of programmed cell death in the Arabidopsis columella and lateral root cap. The Plant Cell, 30, 2197-2213.

Hwang, K., Susila, H., Nasim, Z., Jung, J.Y. & Ahn, J.H. (2019) Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Molecular Plant, 12, 489-505.

Imbert, E. (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics, 5, 13-36.

Kunieda, T., Mitsuda, N., Ohme-Takagi, M., Takeda, S., Aida, M., Tasaka, M. et al. (2008) NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. The Plant Cell, 20, 2631-2642.

Lenser, T., Graeber, K., Cevik, O.S., Adiguzel, N., Donmez, A.A., Grosche, C. et al. (2016) Developmental control and plasticity of fruit and seed dimorphism in Aethionema arabicum. Plant Physiology, 172, 1691-1707.

Lenser, T., Tarkowska, D., Novak, O., Wilhelmsson, P.K.I., Bennett, T., Rensing, S.A. et al. (2018) When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema. The Plant Journal, 94, 352-371.

Li, H.J., Zhu, S.S., Zhang, M.X., Wang, T., Liang, L., Xue, Y. et al. (2015) Arabidopsis CBP1 is a novel regulator of transcription initiation in central cell-mediated pollen tube guidance. The Plant Cell, 27, 2880-2893.

Li, M., Dong, X.J., Peng, J.Q., Xu, W., Ren, R., Liu, J. et al. (2016) De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.). BMC Plant Biology, 16, 82.

Li, Z.Q., Zhang, C., Guo, Y.R., Niu, W.L., Wang, Y. & Xu, Y. (2017) Evolution and expression analysis reveal the potential role of the HD-Zip gene family in regulation of embryo abortion in grapes (Vitis vinifera L.). BMC Genomics, 18, 744.

Liang, Y., Tan, Z.M., Zhu, L., Niu, Q.K., Zhou, J.J., Li, M. et al. (2013) MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization. PLoS Genetics, 9, e1003933.

Linkies, A., Gräber, K., Knight, C. & Leubner-Metzger, G. (2010) The evolution of seeds. New Phytologist, 186, 817-831.

Lu, J.J., Tan, D.Y., Baskin, J.M. & Baskin, C.C. (2015) Post-release fates of seeds in dehiscent and indehiscent siliques of the diaspore heteromorphic species Diptychocarpus strictus (Brassicaceae). Perspectives in Plant Ecology, Evolution and Systematics, 17, 255-262.

Manchester, S.R. & Collinson, M.E. (2019) Fruit morphology, anatomy and relationships of the type species of Mastixicarpum and Eomastixia (Cornales) from the late Eocene of Hordle, southern England. Acta Palaeobotanica, 59, 51-67.

Marone, F. & Stampanoni, M. (2012) Regridding reconstruction algorithm for real-time tomographic imaging. Journal of Synchrotron Radiation, 19, 1029-1037.

Matias-Hernandez, L., Battaglia, R., Galbiati, F., Rubes, M., Eichenberger, C., Grossniklaus, U. et al. (2010) VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis. The Plant Cell, 22, 1702-1715.

McLeay, R.C. & Bailey, T.L. (2010) Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics, 11, 165.

Mizoi, J., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 1819, 86-96.

Mohammadin, S., Peterse, K., van de Kerke, S.J., Chatrou, L.W., Donmez, A.A., Mummenhoff, K. et al. (2017) Anatolian origins and diversification of Aethionema, the sister lineage of the core Brassicaceae. American Journal of Botany, 104, 1042-1054.

Mühlhausen, A., Lenser, T., Mummenhoff, K. & Theissen, G. (2013) Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes. The Plant Journal, 73, 824-835.

Nguyen, T.P., Muhlich, C., Mohammadin, S., van den Bergh, E., Platts, A.E., Haas, F.B. et al. (2019) Genome improvement and genetic map construction for Aethionema arabicum, the first divergent branch in the Brassicaceae family. G3: Genes, Genomes, Genetics, 9, 3521-3530.

Pagnussat, G.C., Yu, H.J., Ngo, Q.A., Rajani, S., Mayalagu, S., Johnson, C.S. et al. (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development, 132, 603-614.

Penfield, S., Meissner, R.C., Shoue, D.A., Carpita, N.C. & Bevan, M.W. (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. The Plant Cell, 13, 2777-2791.

Perez-Rodriguez, P., Riano-Pachon, D.M., Correa, L.G.G., Rensing, S.A., Kersten, B. & Mueller-Roeber, B. (2010) PInTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Research, 38, D822-D827.

Roeder, A.H. & Yanofsky, M.F. (2006) Fruit development in Arabidopsis. The Arabidopsis Book, 4, e0075.

Royo, C., Torres-Perez, R., Mauri, N., Diestro, N., Cabezas, J.A., Marchal, C. et al. (2018) The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiology, 177, 1234-1253.

Saez-Aguayo, S., Ralet, M.C., Berger, A., Botran, L., Ropartz, D., Marion-Poll, A. et al. (2013) PECTIN METHYLESTERASE INHIBITOR6 promotes Arabidopsis mucilage release by limiting methylesterification of homogalacturonan in seed coat epidermal cells. The Plant Cell, 25, 308-323.

Scheler, C., Weitbrecht, K., Pearce, S.P., Hampstead, A., Buttner-Mainik, A., Lee, K. et al. (2015) Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases. Plant Physiology, 167, 200-215.

Shao, J.X., Liu, X.Y., Wang, R., Zhang, G.S. & Yu, F. (2012) The over-expression of an Arabidopsis B3 transcription factor, ABS2/NGAL1, leads to the loss of flower petals. PLoS One, 7, e49861.

Smith, S.Y., Collinson, M.E., Rudall, P.J., Simpson, D.A., Marone, F. & Stampanoni, M. (2009a) Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 12013-12018.

Smith, S.Y., Collinson, M.E., Simpson, D.A., Rudall, P.J., Marone, F. & Stampanoni, M. (2009b) Elucidating the affinities and habitat of ancient, widespread Cyperaceae: Volkeria messelensis gen. et sp. nov., a fossil mapanioid sedge from the Eocene of Europe. American Journal of Botany, 96, 1506-1518.

Stampanoni, M., Groso, A., Isenegger, A., Mikuljan, G., Chen, Q., Bertrand, A. et al. (2006) Trends in synchrotron-based tomographic imaging: the SLS experience. Developments in X-Ray Tomography V, 6318. https://doi.org/10.1117/12.679497

Sullivan, S., Ralet, M.C., Berger, A., Diatloff, E., Bischoff, V., Gonneau, M. et al. (2011) CESA5 is required for the synthesis of cellulose with a role in structuring the adherent mucilage of Arabidopsis seeds. Plant Physiology, 156, 1725-1739.

Taylor-Teeples, M., Lin, L., de Lucas, M., Turco, G., Toal, T.W., Gaudinier, A. et al. (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature, 517, 571-575.

Usadel, B., Kuschinsky, A.M., Rosso, M.G., Eckermann, N. & Pauly, M. (2004) RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Plant Physiology, 134, 286-295.

Vaughan, J.G., Whitehouse, F.L.S. & Whitehouse, J.M. (1971) Seed structure and the taxonomy of the Crucifereae. Botanical Journal of the Linnean Society, 64, 383-409.

Viudes, S., Burlat, V. & Dunand, C. (2020) Seed mucilage evolution: diverse molecular mechanisms generate versatile ecological functions for particular environments. Plant, Cell and Environment, 43, 2857-2870.

Voiniciuc, C., Yang, B., Schmidt, M.H.W., Gunl, M. & Usadel, B. (2015) Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls. International Journal of Molecular Sciences, 16, 3452-3473.

Voiniciuc, C., Zimmermann, E., Schmidt, M.H.W., Gunl, M., Fu, L.B., North, H.M. et al. (2016) Extensive natural variation in Arabidopsis seed mucilage structure. Frontiers in Plant Science, 7, 803.

Walck, J.L., Hidayati, S.N., Dixon, K.W., Thompson, K. & Poschlod, P. (2011) Climate change and plant regeneration from seed. Global Change Biology, 17, 2145-2161.

Wang, Z.R., Baskin, J.M., Baskin, C.C., Yang, X.J., Liu, G.F. & Huang, Z.Y. (2020) Dynamics of the diaspore and germination stages of the life history of an annual diaspore-trimorphic species in a temperate salt desert. Planta, 251, 87.

Western, T.L. (2012) The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal. Seed Science Research, 22, 1-25.

Western, T.L., Young, D.S., Dean, G.H., Tan, W.L., Samuels, A.L. & Haughn, G.W. (2004) MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiology, 134, 296-306.

Wilhelmsson, P.K.I., Chandler, J.O., Fernandez-Pozo, N., Graeber, K., Ullrich, K.K., Arshad, W. et al. (2019) Usability of reference-free transcriptome assemblies for detection of differential expression: a case study on Aethionema arabicum dimorphic seeds. BMC Genomics, 20, ARTN 95.

Wilhelmsson, P.K.I., Muhlich, C., Ullrich, K.K. & Rensing, S.A. (2017) Comprehensive genome-wide classification reveals that many plant-specific transcription factors evolved in streptophyte algae. Genome Biology and Evolution, 9, 3384-3397.

Yang, F., Baskin, J.M., Baskin, C.C., Yang, X., Cao, D. & Huang, Z. (2015) Effects of germination time on seed morph ratio in a seed-dimorphic species and possible ecological significance. Annals of Botany, 115, 137-145.

Yang, X., Baskin, J.M., Baskin, C.C. & Huang, Z. (2012) More than just a coating: ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspectives in Plant Ecology, Eviolution and Systematics, 14, 434-442.

Yang, X., Zhang, W., Dong, M., Boubriak, I. & Huang, Z. (2011) The achene mucilage hydrated in desert dew assists seed cells in maintaining DNA integrity: adaptive strategy of desert plant Artemisia sphaerocephala. PLoS One, 6, e24346.

Yu, L., Shi, D.C., Li, J.L., Kong, Y.Z., Yu, Y.C., Chai, G.H. et al. (2014) CELLULOSE SYNTHASE-LIKE A2, a glucomannan synthase, is involved in maintaining adherent mucilage structure in Arabidopsis seed. Plant Physiology, 164, 1842-1856.

Zhang, J., Huang, Q.P., Zhong, S., Bleckmann, A., Huang, J.Y., Guo, X.Y. et al. (2017) Sperm cells are passive cargo of the pollen tube in plant fertilization. Nature Plants, 3, 17079.

Zhao, L.H., Cai, H.Y., Su, Z.X., Wang, L.L., Huang, X.Y., Zhang, M. et al. (2018) KLU suppresses megasporocyte cell fate through SWR1-mediated activation of WRKY28 expression in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 115, E526-E535.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace