The dimorphic diaspore model Aethionema arabicum (Brassicaceae): Distinct molecular and morphological control of responses to parental and germination temperatures
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Natural Environment Research Council
Biotechnology and Biological Sciences Research Council - United Kingdom
Deutsche Forschungsgemeinschaft
Austrian Science Fund
I 3979
Austrian Science Fund FWF - Austria
Ministerio de Ciencia e Innovación
Internal Grant Agency of Palacký University
PubMed
38513609
PubMed Central
PMC11218780
DOI
10.1093/plcell/koae085
PII: 7633287
Knihovny.cz E-zdroje
- MeSH
- Brassicaceae * genetika fyziologie metabolismus MeSH
- klíčení * genetika fyziologie MeSH
- kyselina abscisová metabolismus MeSH
- ovoce * genetika fyziologie růst a vývoj metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin metabolismus MeSH
- semena rostlinná * genetika fyziologie růst a vývoj metabolismus MeSH
- teplota * MeSH
- transkriptom genetika MeSH
- vegetační klid genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina abscisová MeSH
- regulátory růstu rostlin MeSH
Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.
Biosystematics Group Wageningen University PB Wageningen 6708 The Netherlands
Centre for Biological Signalling Studies University of Freiburg Freiburg 79104 Germany
Department of Biological Sciences Royal Holloway University of London Egham Surrey TW20 0EX UK
Department of Biology Botany University of Osnabrück Osnabrück 49076 Germany
Institute for Mediterranean and Subtropical Horticulture La Mayora Málaga 29010 Spain
Plant Cell Biology Faculty of Biology University of Marburg Marburg 35043 Germany
Zobrazit více v PubMed
Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. R package version 2.52.0; 2023. 10.18129/B9.bioc.topGO. DOI
Andrade A, Riera N, Lindstrom L, Alemano S, Alvarez D, Abdala G, Vigliocco A. Pericarp anatomy and hormone profiles of cypselas in dormant and non-dormant inbred sunflower lines. Plant Biol. 2015:17(2):351–360. 10.1111/plb.12244 PubMed DOI
Arshad W, Lenser T, Wilhelmsson PKI, Chandler JO, Steinbrecher T, Marone F, Pérez M, Collinson ME, Stuppy W, Rensing SA, et al. A tale of two morphs: developmental patterns and mechanisms of seed coat differentiation in the dimorphic diaspore model Aethionema arabicum (Brassicaceae). Plant J. 2021:107(1):166–181. 10.1111/tpj.15283 PubMed DOI
Arshad W, Marone F, Collinson ME, Leubner-Metzger G, Steinbrecher T. Fracture of the dimorphic fruits of Aethionema arabicum (Brassicaceae). Botany. 2020:98(1):65–75. 10.1139/cjb-2019-0014 DOI
Arshad W, Sperber K, Steinbrecher T, Nichols B, Jansen VAA, Leubner-Metzger G, Mummenhoff K. Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae). New Phytol. 2019:221(3):1434–1446. 10.1111/nph.15490 PubMed DOI PMC
Bai D, Zhong Y, Gu S, Qi X, Sun L, Lin M, Wang R, Li Y, Hu C, Fang J. AvERF73 positively regulates waterlogging tolerance in kiwifruit by participating in hypoxia response and mevalonate pathway. Hortic Plant J. 10.1016/j.hpj.2023.05.021. 2024, preprint: not peer reviewed. DOI
Bai D-F, Li Z, Hu C-G, Zhang Y-J, Muhammad A, Zhong Y-P, Fang J-B. Transcriptome-wide identification and expression analysis of ERF family genes in Actinidia valvata during waterlogging stress. Sci Hortic-Amsterdam. 2021:281:109994. 10.1016/j.scienta.2021.109994 DOI
Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucl Acids Res. 2015:43(W1):W39–W49. 10.1093/nar/gkv416 PubMed DOI PMC
Barrero JM, Millar AA, Griffiths J, Czechowski T, Scheible WR, Udvardi M, Reid JB, Ross JJ, Jacobsen JV, Gubler F. Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant J. 2010:61(4):611–622. 10.1111/j.1365-313X.2009.04088.x PubMed DOI
Baskin JM, Lu JJ, Baskin CC, Tan DY, Wang L. Diaspore dispersal ability and degree of dormancy in heteromorphic species of cold deserts of Northwest China: a review. Perspect Plant Ecol Evol Syst. 2014:16(2):93–99. 10.1016/j.ppees.2014.02.004 DOI
Batlla D, Malavert C, Farnocchia RBF, Footitt S, Benech-Arnold RL, Finch-Savage WE. A quantitative analysis of temperature-dependent seasonal dormancy cycling in buried Arabidopsis thaliana seeds can predict seedling emergence in a global warming scenario. J Exp Bot. 2022:73(8):2454–2468. 10.1093/jxb/erac038 PubMed DOI
Benech-Arnold RL, Gualano N, Leymarie J, Come D, Corbineau F. Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. J Exp Bot. 2006:57(6):1423–1430. 10.1093/jxb/erj122 PubMed DOI
Bhattacharya S, Sperber K, Ozudogru B, Leubner-Metzger G, Mummenhoff K. Naturally-primed life strategy plasticity of dimorphic Aethionema arabicum facilitates optimal habitat colonization. Sci Rep. 2019:9(1):16108. 10.1038/s41598-019-52520-y PubMed DOI PMC
Borisjuk L, Rolletschek H. The oxygen status of the developing seed. New Phytol. 2009:182(1):17–30. 10.1111/j.1469-8137.2008.02752.x PubMed DOI
Bueso E, Munoz-Bertomeu J, Campos F, Brunaud V, Martinez L, Sayas E, Ballester P, Yenush L, Serrano R. Arabidopsis thaliana HOMEOBOX25 uncovers a role for gibberellins in seed longevity. Plant Physiol. 2014:164(2):999–1010. 10.1104/pp.113.232223 PubMed DOI PMC
Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE. Gene expression profiles of Arabidopsis cvi seed during cycling through dormant and non-dormant states indicate a common underlying dormancy control mechanism. Plant J. 2006:46(5):805–822. 10.1111/j.1365-313X.2006.02738.x PubMed DOI
Christianson JA, Wilson IW, Llewellyn DJ, Dennis ES. The low-oxygen induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis thaliana seeds following low-oxygen treatment. Plant Physiol. 2009:149(4):1724–1738. 10.1104/pp.108.131912 PubMed DOI PMC
Corbineau F. Oxygen, a key signalling factor in the control of seed germination and dormancy. Seed Sci Res. 2022:32(3):126–136. 10.1017/S096025852200006X DOI
Dave A, Vaistij FE, Gilday AD, Penfield SD, Graham IA. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. J Exp Bot. 2016:67(8):2277–2284. 10.1093/jxb/erw028 PubMed DOI PMC
Dominguez CP, Rodriguez MV, Batlla D, de Salamone IEG, Mantese AI, Andreani AL, Benech-Arnold RL. Sensitivity to hypoxia and microbial activity are instrumental in pericarp-imposed dormancy expression in sunflower (Helianthus annuus L.). Seed Sci Res. 2019:29(2):85–96. 10.1017/S0960258519000060 DOI
Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG. Germination, postgermination adaptation, and species ecological ranges. Annu Rev Ecol Evol Syst. 2010:41:293–319. 10.1146/annurev-ecolsys-102209-144715 DOI
Fernandez-Pascual E, Mattana E, Pritchard HW. Seeds of future past: climate change and the thermal memory of plant reproductive traits. Biol Rev Camb Philos Soc. 2019:94(2):439–456. 10.1111/brv.12461 PubMed DOI
Fernandez-Pozo N, Bombarely A. EasyGDB: a low-maintenance and highly customizable system to develop genomics portals. Bioinformatics (Oxford, England). 2022:38(16):4048–4050. 10.1093/bioinformatics/btac412 PubMed DOI PMC
Fernandez-Pozo N, Metz T, Chandler JO, Gramzow L, Merai Z, Maumus F, Scheid OM, Theissen G, Schranz ME, Leubner-Metzger G, et al. Aethionema arabicum genome annotation using PacBio full-length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. Plant J. 2021:106(1):275–293. 10.1111/tpj.15161 PubMed DOI PMC
Finch-Savage WE, Footitt S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J Exp Bot. 2017:68(4):843–856. 10.1093/jxb/erw477 PubMed DOI
Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006:171(3):501–523. 10.1111/j.1469-8137.2006.01787.x PubMed DOI
Flokova K, Tarkowska D, Miersch O, Strnad M, Wasternack C, Novak O. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014:105:147–157. 10.1016/j.phytochem.2014.05.015 PubMed DOI
Footitt S, Walley PG, Lynn JR, Hambidge AJ, Penfield S, Finch-Savage WE. Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytol. 2020:225(5):2035–2047. 10.1111/nph.16081 PubMed DOI PMC
Gasch P, Fundinger M, Muller JT, Lee T, Bailey-Serres J, Mustroph A. Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis. Plant Cell. 2016:28(1):160–180. 10.1105/tpc.15.00866 PubMed DOI PMC
Gianella M, Bradford KJ, Guzzon F. Ecological, (epi)genetic and physiological aspects of bet-hedging in angiosperms. Plant Reprod. 2021:34(1):21–36. 10.1007/s00497-020-00402-z PubMed DOI PMC
Gibbs DJ, Lee SC, Md Isa N, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature. 2011:479(7373):415–419. 10.1038/nature10534 PubMed DOI PMC
Gomez-Porras JL, Riano-Pachon DM, Dreyer I, Mayer JE, Mueller-Roeber B. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics. 2007:8:260. 10.1186/1471-2164-8-260 PubMed DOI PMC
Graeber K, Linkies A, Steinbrecher T, Mummenhoff K, Tarkowská D, Turečková V, Ignatz M, Sperber K, Voegele A, de Jong H, et al. DELAY OF GERMINATION 1 mediates a conserved coat dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc Natl Acad Sci U S A. 2014:111(34):E3571–E3580. 10.1073/pnas.1403851111 PubMed DOI PMC
Graeber K, Linkies A, Wood ATA, Leubner-Metzger G. A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell. 2011:23(6):2045–2063. 10.1105/tpc.111.084103 PubMed DOI PMC
Grafi G. Dead but not dead end: multifunctional role of dead organs enclosing embryos in seed biology. Int J Mol Sci. 2020:21(21):8024. 10.3390/ijms21218024 PubMed DOI PMC
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics (Oxford, England). 2011:27(7):1017–1018. 10.1093/bioinformatics/btr064 PubMed DOI PMC
Gu ZG, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics (Oxford, England). 2014:30(19):2811–2812. 10.1093/bioinformatics/btu393 PubMed DOI
Hall JC, Tisdale TE, Donohue K, Kramer EM. Developmental basis of an anatomical novelty: heteroarthrocarpy in Cakile lanceolata and Erucaria erucarioides (Brassicaceae). Int J Plant Sci. 2006:167(4):771–789. 10.1086/504928 DOI
Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, Forczek E, Joly-Lopez Z, Steffen JG, Hazzouri KM, et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet. 2013:45(8):891–898. 10.1038/ng.2684 PubMed DOI
Hoang HH, Bailly C, Corbineau F, Leymarie J. Induction of secondary dormancy by hypoxia in barley grains and its hormonal regulation. J Exp Bot. 2013:64(7):2017–2025. 10.1093/jxb/ert062 PubMed DOI PMC
Holloway T, Steinbrecher T, Pérez M, Seville A, Stock D, Nakabayashi K, Leubner-Metzger G. Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. New Phytol. 2021:229(4):2179–2191. 10.1111/nph.16948 PubMed DOI
Ignatz M, Hourston JE, Tureckova V, Strnad M, Meinhard J, Fischer U, Steinbrecher T, Leubner-Metzger G. The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet. Planta. 2019:250(5):1717–1729. 10.1007/s00425-019-03257-5 PubMed DOI PMC
Imbert E. Ecological consequences and ontogeny of seed heteromorphism. Perspect Plant Ecol Evol Syst. 2002:5(1):13–36. 10.1078/1433-8319-00021 DOI
Iwasaki M, Penfield S, Lopez-Molina L. Parental and environmental control of seed dormancy in Arabidopsis thaliana. Annu Rev Plant Biol. 2022:73:355–378. 10.1146/annurev-arplant-102820-090750 PubMed DOI
Joosen RVL, Kodde J, Willems LAJ, Ligterink W, van der Plas LHW, Hilhorst HWM. GERMINATOR: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant J. 2010:62(1):148–159. 10.1111/j.1365-313X.2009.04116.x PubMed DOI
Ju L, Jing YX, Shi PT, Liu J, Chen JS, Yan JJ, Chu JF, Chen K-M, Sun JQ. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. New Phytol. 2019:223(1):246–260. 10.1111/nph.15757 PubMed DOI
Khadka J, Raviv B, Swetha B, Grandhi R, Singiri JR, Novoplansky N, Gutterman Y, Galis I, Huang ZY, Grafi G. Maternal environment alters dead pericarp biochemical properties of the desert annual plant Anastatica hierochuntica L. PLoS One. 2020:15(7):e0237045. 10.1371/journal.pone.0237045 PubMed DOI PMC
Kürsteiner O, Dupuis I, Kuhlemeier C. The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol. 2003:132(2):968–978. 10.1104/pp.102.016907 PubMed DOI PMC
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008:9:559. 10.1186/1471-2105-9-559 PubMed DOI PMC
Lee TA, Bailey-Serres J. Conserved and nuanced hierarchy of gene regulatory response to hypoxia. New Phytol. 2021:229(1):71–78. 10.1111/nph.16437 PubMed DOI
Lenser T, Graeber K, Cevik OS, Adiguzel N, Donmez AA, Grosche C, Kettermann M, Mayland-Quellhorst S, Merai Z, Mohammadin S, et al. Developmental control and plasticity of fruit and seed dimorphism in Aethionema arabicum. Plant Physiol. 2016:172(3):1691–1707. 10.1104/pp.16.00838 PubMed DOI PMC
Lenser T, Tarkowska D, Novak O, Wilhelmsson PKI, Bennett T, Rensing SA, Strnad M, Theissen G. When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema. Plant J. 2018:94(2):352–371. 10.1111/tpj.13861 PubMed DOI
Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep. 2012:31(2):253–270. 10.1007/s00299-011-1180-1 PubMed DOI
Liu J, Chen Y, Wang W-Q, Liu J-H, Zhu C-Q, Zhong Y-P, Zhang H-Q, Liu X-F, Yin X-R. Transcription factors AcERF74/75 respond to waterlogging stress and trigger alcoholic fermentation-related genes in kiwifruit. Plant Sci. 2022:314:111115. 10.1016/j.plantsci.2021.111115 PubMed DOI
Liu R, Wang L, Tanveer M, Song J. Seed heteromorphism: an important adaptation of halophytes for habitat heterogeneity. Front Plant Sci. 2018:9:1515. 10.3389/fpls.2018.01515 PubMed DOI PMC
Loades E, Perez M, Tureckova V, Tarkowska D, Strnad M, Seville A, Nakabayashi K, Leubner-Metzger G. Distinct hormonal and morphological control of dormancy and germination in Chenopodium album dimorphic seeds. Front Plant Sci. 2023:14:1156794. 10.3389/fpls.2023.1156794 PubMed DOI PMC
Lu GH, Paul AL, McCarty DR, Ferl RJ. Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh? Plant Cell. 1996:8(5):847–857. 10.1105/tpc.8.5.847 PubMed DOI PMC
Lu JJ, Tan DY, Baskin JM, Baskin CC. Post-release fates of seeds in dehiscent and indehiscent siliques of the diaspore heteromorphic species Diptychocarpus strictus (Brassicaceae). Perspect Plant Ecol Evol Syst. 2015a:17(4):255–262. 10.1016/j.ppees.2015.04.001 DOI
Lu JJ, Tan DY, Baskin CC, Baskin JM. Role of indehiscent pericarp in formation of soil seed bank in five cold desert Brassicaceae species. Plant Ecol. 2017a:218(10):1187–1200. 10.1007/s11258-017-0760-8 DOI
Lu JJ, Tan DY, Baskin CC, Baskin JM. Delayed dehiscence of the pericarp: role in germination and retention of viability of seeds of two cold desert annual Brassicaceae species. Plant Biol (Stuttg). 2017b:19(1):14–22. 10.1111/plb.12457 PubMed DOI
Lu JJ, Zhou YM, Tan DY, Baskin CC, Baskin JM. Seed dormancy in six cold desert Brassicaceae species with indehiscent fruits. Seed Sci Res. 2015b:25(3):276–285. 10.1017/S0960258515000215 DOI
Mamut J, Tan D-Y, Baskin CC, Baskin JM. Role of trichomes and pericarp in the seed biology of the desert annual Lachnoloma lehmannii (Brassicaceae). Ecol Res. 2014:29(1):33–44. 10.1007/s11284-013-1098-x DOI
McLeay RC, Bailey TL. Motif enrichment analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics. 2010:11:165. 10.1186/1471-2105-11-165 PubMed DOI PMC
Mendiondo GM, Leymarie J, Farrant JM, Corbineau F, Benech-Arnold RL. Differential expression of abscisic acid metabolism and signalling genes induced by seed-covering structures or hypoxia in barley (Hordeum vulgare L.) grains. Seed Sci Res. 2010:20(2):69–77. 10.1017/S0960258509990262 DOI
Merai Z, Graeber K, Wilhelmsson P, Ullrich KK, Arshad W, Grosche C, Tarkowska D, Tureckova V, Strnad M, Rensing SA, et al. Aethionema arabicum: a novel model plant to study the light control of seed germination. J Exp Bot. 2019:70(12):3313–3328. 10.1093/jxb/erz146 PubMed DOI PMC
Merai Z, Xu F, Musilek A, Ackerl F, Khalil S, Soto-Jimenez LM, Lalatovic K, Klose C, Tarkowska D, Tureckova V, et al. Phytochromes mediate germination inhibition under red, far-red, and white light in Aethionema arabicum. Plant Physiol. 2023:192(2):1584–1602. 10.1093/plphys/kiad138 PubMed DOI PMC
Mohammadin S, Peterse K, van de Kerke SJ, Chatrou LW, Donmez AA, Mummenhoff K, Pires JC, Edger PP, Al-Shehbaz IA, Schranz ME. Anatolian origins and diversification of Aethionema, the sister lineage of the core Brassicaceae. Am J Bot. 2017:104(7):1042–1054. 10.3732/ajb.1700091 PubMed DOI
Mohammadin S, Wang W, Liu T, Moazzeni H, Ertugrul K, Uysal T, Christodoulou CS, Edger PP, Pires JC, Wright SI, et al. Genome-wide nucleotide diversity and associations with geography, ploidy level and glucosinolate profiles in Aethionema arabicum (Brassicaceae). Plant Syst Evol. 2018:304(5):619–630. 10.1007/s00606-018-1494-3 DOI
Mohammed S, Turckova V, Tarkowska D, Strnad M, Mummenhoff K, Leubner-Metzger G. Pericarp-mediated chemical dormancy controls the fruit germination of the invasive hoary cress (Lepidium draba), but not of hairy whitetop (Lepidium appelianum). Weed Sci. 2019:67(5):560–571. 10.1017/wsc.2019.33 DOI
Mühlhausen A, Lenser T, Mummenhoff K, Theissen G. Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes. Plant J. 2013:73(5):824–835. 10.1111/tpj.12079 PubMed DOI
Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y. Abscisic acid and the control of seed dormany and germination. Seed Sci Res. 2010:20(2):55–67. 10.1017/S0960258510000012 DOI
Nguyen TP, Muhlich C, Mohammadin S, van den Bergh E, Platts AE, Haas FB, Rensing SA, Schranz ME. Genome improvement and genetic map construction for Aethionema arabicum, the first divergent branch in the Brassicaceae family. G3 (Bethesda). 2019:9(11):3521–3530. 10.1534/g3.119.400657 PubMed DOI PMC
Nichols BS, Leubner-Metzger G, Jansen VAA. Between a rock and a hard place: adaptive sensing and site-specific dispersal. Ecol Lett. 2020:23(9):1370–1379. 10.1111/ele.13564 PubMed DOI
O'Malley RC, Huang SSC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell. 2016:165(5):1280–1292. 10.1016/j.cell.2016.04.038 PubMed DOI PMC
Papdi C, Perez-Salamo I, Joseph MP, Giuntoli B, Bogre L, Koncz C, Szabados L. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J. 2015:82(5):772–784. 10.1111/tpj.12848 PubMed DOI
Penfield S, MacGregor DR. Effects of environmental variation during seed production on seed dormancy and germination. J Exp Bot. 2017:68(4):819–825. 10.1093/jxb/erw436 PubMed DOI
Renard J, Martinez-Almonacid I, Castillo IQ, Sonntag A, Hashim A, Bissoli G, Campos L, Munoz-Bertomeu J, Ninoles R, Roach T, et al. Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species. New Phytol. 2021:231(2):679–694. 10.1111/nph.17399 PubMed DOI
Reynoso MA, Kajala K, Bajic M, West DA, Pauluzzi G, Yao AI, Hatch K, Zumstein K, Woodhouse M, Rodriguez-Medina J, et al. Evolutionary flexibility in flooding response circuitry in angiosperms. Science. 2019:365(6459):1291–1295. 10.1126/science.aax8862 PubMed DOI PMC
Rittenberg D, Foster GL. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem. 1940:133(3):737–744. 10.1016/S0021-9258(18)73304-8 DOI
Scheler C, Weitbrecht K, Pearce SP, Hampstead A, Buettner-Mainik A, Lee KJD, Voegele A, Oracz K, Dekkers BJW, Wang X, et al. Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases. Plant Physiol. 2015:167(1):200–215. 10.1104/pp.114.247429 PubMed DOI PMC
Seok H-Y, Tran HT, Lee S-Y, Moon Y-H. AtERF71/HRE2, an Arabidopsis AP2/ERF transcription factor gene, contains both positive and negative cis-regulatory elements in is promoter region involved in hypoxia and salt stress responses. Int J Mol Sci. 2022:23(10):5310. 10.3390/ijms23105310 PubMed DOI PMC
Shigeyama T, Watanabe A, Tokuchi K, Toh S, Sakurai N, Shibuya N, Kawakami N. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana. J Exp Bot. 2016:67(19):5615–5629. 10.1093/jxb/erw321 PubMed DOI PMC
Silva AT, Ribone PA, Chan RL, Ligterink W, Hilhorst HWM. A predictive coexpression network identifies novel genes controlling the seed-to-seedling phase transition in Arabidopsis thaliana. Plant Physiol. 2016:170(4):2218–2231. 10.1104/pp.15.01704 PubMed DOI PMC
Šimura J, Antoniadi I, Siroka J, Tarkowská D, Strnad M, Ljung K, Novak O. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018:177(2):476–489. 10.1104/pp.18.00293 PubMed DOI PMC
Sperber K, Steinbrecher T, Graeber K, Scherer G, Clausing S, Wiegand N, Hourston JE, Kurre R, Leubner-Metzger G, Mummenhoff K. Fruit fracture biomechanics and the release of Lepidium didymum pericarp-imposed mechanical dormancy by fungi. Nat Commun. 2017:8(1):1868. 10.1038/s41467-017-02051-9 PubMed DOI PMC
Stamm P, Topham AT, Mukhtar NK, Jackson MDB, Tome DFA, Beynon JL, Bassel GW. The transcription factor ATHB5 affects GA-mediated plasticity in hypocotyl cell growth during seed germination. Plant Physiol. 2017:173(1):907–917. 10.1104/pp.16.01099 PubMed DOI PMC
Steinbrecher T, Leubner-Metzger G. The biomechanics of seed germination. J Exp Bot. 2017:68(4):765–783. 10.1093/jxb/erw428 PubMed DOI
Steinbrecher T, Leubner-Metzger G. Xyloglucan remodelling enzymes and the mechanics of plant seed and fruit biology. J Exp Bot. 2022:73(5):1253–1257. 10.1093/jxb/erac020 PubMed DOI PMC
Takeno K, Yamaguchi H. Diversity in seed-germination behavior in relation to heterocarpy in Salsola komarovii iljin. Bot Mag Tokyo. 1991:104(3):207–215. 10.1007/BF02489453 DOI
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3—new capabilities and interfaces. Nucl Acids Res. 2012:40(15):e115. 10.1093/nar/gks596 PubMed DOI PMC
van Veen H, Akman M, Jamar DC, Vreugdenhil D, Kooiker M, van Tienderen P, Voesenek LA, Schranz ME, Sasidharan R. Group VII ethylene response factor diversification and regulation in four species from flood-prone environments. Plant Cell Environ. 2014:37(10):2421–2432. 10.1111/pce.12302 PubMed DOI
Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P. Climate change and plant regeneration from seed. Global Change Biol. 2011:17(6):2145–2161. 10.1111/j.1365-2486.2010.02368.x DOI
Wang L, Hua DP, He JN, Duan Y, Chen ZZ, Hong XH, Gong ZZ. Auxin response factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet. 2011:7(7):e1002172. 10.1371/journal.pgen.1002172 PubMed DOI PMC
Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. J Exp Bot. 2011:62(10):3289–3309. 10.1093/jxb/err030 PubMed DOI
Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
Wilhelmsson PKI, Chandler JO, Fernandez-Pozo N, Graeber K, Ullrich KK, Arshad W, Khan S, Hofberger J, Buchta K, Edger PP, et al. Usability of reference-free transcriptome assemblies for detection of differential expression: a case study on Aethionema arabicum dimorphic seeds. BMC Genomics. 2019:20(1):95. 10.1186/s12864-019-5452-4 PubMed DOI PMC
Yang C-Y, Hsu F-C, Li J-P, Wang N-N, Shih M-C. The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol. 2011:156(1):202–212. 10.1104/pp.111.172486 PubMed DOI PMC
Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 2010:61(4):672–685. 10.1111/j.1365-313X.2009.04092.x PubMed DOI
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005:4:Article17. 10.2202/1544-6115.1128 PubMed DOI
Zhang Y, Liu Y, Sun L, Baskin CC, Baskin JM, Cao M, Yang J. Seed dormancy in space and time: global distribution, paleoclimatic and present climatic drivers, and evolutionary adaptations. New Phytol. 2022:234(5):1770–1781. 10.1111/nph.18099 PubMed DOI
Aethionema arabicum dimorphic seed trait resetting during transition to seedlings