The dimorphic diaspore model Aethionema arabicum (Brassicaceae): Distinct molecular and morphological control of responses to parental and germination temperatures

. 2024 Jul 02 ; 36 (7) : 2465-2490.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38513609

Grantová podpora
Natural Environment Research Council
Biotechnology and Biological Sciences Research Council - United Kingdom
Deutsche Forschungsgemeinschaft
Austrian Science Fund
I 3979 Austrian Science Fund FWF - Austria
Ministerio de Ciencia e Innovación
Internal Grant Agency of Palacký University

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.

Zobrazit více v PubMed

Alexa  A, Rahnenfuhrer  J. topGO: enrichment analysis for gene ontology. R package version 2.52.0; 2023. 10.18129/B9.bioc.topGO. DOI

Andrade  A, Riera  N, Lindstrom  L, Alemano  S, Alvarez  D, Abdala  G, Vigliocco  A. Pericarp anatomy and hormone profiles of cypselas in dormant and non-dormant inbred sunflower lines. Plant Biol. 2015:17(2):351–360. 10.1111/plb.12244 PubMed DOI

Arshad  W, Lenser  T, Wilhelmsson  PKI, Chandler  JO, Steinbrecher  T, Marone  F, Pérez  M, Collinson  ME, Stuppy  W, Rensing  SA, et al.  A tale of two morphs: developmental patterns and mechanisms of seed coat differentiation in the dimorphic diaspore model Aethionema arabicum (Brassicaceae). Plant J. 2021:107(1):166–181. 10.1111/tpj.15283 PubMed DOI

Arshad  W, Marone  F, Collinson  ME, Leubner-Metzger  G, Steinbrecher  T. Fracture of the dimorphic fruits of Aethionema arabicum (Brassicaceae). Botany. 2020:98(1):65–75. 10.1139/cjb-2019-0014 DOI

Arshad  W, Sperber  K, Steinbrecher  T, Nichols  B, Jansen  VAA, Leubner-Metzger  G, Mummenhoff  K. Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae). New Phytol. 2019:221(3):1434–1446. 10.1111/nph.15490 PubMed DOI PMC

Bai  D, Zhong  Y, Gu  S, Qi  X, Sun  L, Lin  M, Wang  R, Li  Y, Hu  C, Fang  J. AvERF73 positively regulates waterlogging tolerance in kiwifruit by participating in hypoxia response and mevalonate pathway. Hortic Plant J. 10.1016/j.hpj.2023.05.021. 2024, preprint: not peer reviewed. DOI

Bai  D-F, Li  Z, Hu  C-G, Zhang  Y-J, Muhammad  A, Zhong  Y-P, Fang  J-B. Transcriptome-wide identification and expression analysis of ERF family genes in Actinidia valvata during waterlogging stress. Sci Hortic-Amsterdam. 2021:281:109994. 10.1016/j.scienta.2021.109994 DOI

Bailey  TL, Johnson  J, Grant  CE, Noble  WS. The MEME suite. Nucl Acids Res. 2015:43(W1):W39–W49. 10.1093/nar/gkv416 PubMed DOI PMC

Barrero  JM, Millar  AA, Griffiths  J, Czechowski  T, Scheible  WR, Udvardi  M, Reid  JB, Ross  JJ, Jacobsen  JV, Gubler  F. Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant J. 2010:61(4):611–622. 10.1111/j.1365-313X.2009.04088.x PubMed DOI

Baskin  JM, Lu  JJ, Baskin  CC, Tan  DY, Wang  L. Diaspore dispersal ability and degree of dormancy in heteromorphic species of cold deserts of Northwest China: a review. Perspect Plant Ecol Evol Syst. 2014:16(2):93–99. 10.1016/j.ppees.2014.02.004 DOI

Batlla  D, Malavert  C, Farnocchia  RBF, Footitt  S, Benech-Arnold  RL, Finch-Savage  WE. A quantitative analysis of temperature-dependent seasonal dormancy cycling in buried Arabidopsis thaliana seeds can predict seedling emergence in a global warming scenario. J Exp Bot. 2022:73(8):2454–2468. 10.1093/jxb/erac038 PubMed DOI

Benech-Arnold  RL, Gualano  N, Leymarie  J, Come  D, Corbineau  F. Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. J Exp Bot. 2006:57(6):1423–1430. 10.1093/jxb/erj122 PubMed DOI

Bhattacharya  S, Sperber  K, Ozudogru  B, Leubner-Metzger  G, Mummenhoff  K. Naturally-primed life strategy plasticity of dimorphic Aethionema arabicum facilitates optimal habitat colonization. Sci Rep. 2019:9(1):16108. 10.1038/s41598-019-52520-y PubMed DOI PMC

Borisjuk  L, Rolletschek  H. The oxygen status of the developing seed. New Phytol. 2009:182(1):17–30. 10.1111/j.1469-8137.2008.02752.x PubMed DOI

Bueso  E, Munoz-Bertomeu  J, Campos  F, Brunaud  V, Martinez  L, Sayas  E, Ballester  P, Yenush  L, Serrano  R. Arabidopsis thaliana HOMEOBOX25 uncovers a role for gibberellins in seed longevity. Plant Physiol. 2014:164(2):999–1010. 10.1104/pp.113.232223 PubMed DOI PMC

Cadman  CSC, Toorop  PE, Hilhorst  HWM, Finch-Savage  WE. Gene expression profiles of Arabidopsis cvi seed during cycling through dormant and non-dormant states indicate a common underlying dormancy control mechanism. Plant J. 2006:46(5):805–822. 10.1111/j.1365-313X.2006.02738.x PubMed DOI

Christianson  JA, Wilson  IW, Llewellyn  DJ, Dennis  ES. The low-oxygen induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis thaliana seeds following low-oxygen treatment. Plant Physiol. 2009:149(4):1724–1738. 10.1104/pp.108.131912 PubMed DOI PMC

Corbineau  F. Oxygen, a key signalling factor in the control of seed germination and dormancy. Seed Sci Res. 2022:32(3):126–136. 10.1017/S096025852200006X DOI

Dave  A, Vaistij  FE, Gilday  AD, Penfield  SD, Graham  IA. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. J Exp Bot. 2016:67(8):2277–2284. 10.1093/jxb/erw028 PubMed DOI PMC

Dominguez  CP, Rodriguez  MV, Batlla  D, de Salamone  IEG, Mantese  AI, Andreani  AL, Benech-Arnold  RL. Sensitivity to hypoxia and microbial activity are instrumental in pericarp-imposed dormancy expression in sunflower (Helianthus annuus L.). Seed Sci Res. 2019:29(2):85–96. 10.1017/S0960258519000060 DOI

Donohue  K, Rubio de Casas  R, Burghardt  L, Kovach  K, Willis  CG. Germination, postgermination adaptation, and species ecological ranges. Annu Rev Ecol Evol Syst. 2010:41:293–319. 10.1146/annurev-ecolsys-102209-144715 DOI

Fernandez-Pascual  E, Mattana  E, Pritchard  HW. Seeds of future past: climate change and the thermal memory of plant reproductive traits. Biol Rev Camb Philos Soc. 2019:94(2):439–456. 10.1111/brv.12461 PubMed DOI

Fernandez-Pozo  N, Bombarely  A. EasyGDB: a low-maintenance and highly customizable system to develop genomics portals. Bioinformatics (Oxford, England). 2022:38(16):4048–4050. 10.1093/bioinformatics/btac412 PubMed DOI PMC

Fernandez-Pozo  N, Metz  T, Chandler  JO, Gramzow  L, Merai  Z, Maumus  F, Scheid  OM, Theissen  G, Schranz  ME, Leubner-Metzger  G, et al.  Aethionema arabicum genome annotation using PacBio full-length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. Plant J. 2021:106(1):275–293. 10.1111/tpj.15161 PubMed DOI PMC

Finch-Savage  WE, Footitt  S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J Exp Bot. 2017:68(4):843–856. 10.1093/jxb/erw477 PubMed DOI

Finch-Savage  WE, Leubner-Metzger  G. Seed dormancy and the control of germination. New Phytol. 2006:171(3):501–523. 10.1111/j.1469-8137.2006.01787.x PubMed DOI

Flokova  K, Tarkowska  D, Miersch  O, Strnad  M, Wasternack  C, Novak  O. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014:105:147–157. 10.1016/j.phytochem.2014.05.015 PubMed DOI

Footitt  S, Walley  PG, Lynn  JR, Hambidge  AJ, Penfield  S, Finch-Savage  WE. Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytol. 2020:225(5):2035–2047. 10.1111/nph.16081 PubMed DOI PMC

Gasch  P, Fundinger  M, Muller  JT, Lee  T, Bailey-Serres  J, Mustroph  A. Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis. Plant Cell. 2016:28(1):160–180. 10.1105/tpc.15.00866 PubMed DOI PMC

Gianella  M, Bradford  KJ, Guzzon  F. Ecological, (epi)genetic and physiological aspects of bet-hedging in angiosperms. Plant Reprod. 2021:34(1):21–36. 10.1007/s00497-020-00402-z PubMed DOI PMC

Gibbs  DJ, Lee  SC, Md Isa  N, Gramuglia  S, Fukao  T, Bassel  GW, Correia  CS, Corbineau  F, Theodoulou  FL, Bailey-Serres  J, et al.  Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature. 2011:479(7373):415–419. 10.1038/nature10534 PubMed DOI PMC

Gomez-Porras  JL, Riano-Pachon  DM, Dreyer  I, Mayer  JE, Mueller-Roeber  B. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics. 2007:8:260. 10.1186/1471-2164-8-260 PubMed DOI PMC

Graeber  K, Linkies  A, Steinbrecher  T, Mummenhoff  K, Tarkowská  D, Turečková  V, Ignatz  M, Sperber  K, Voegele  A, de Jong  H, et al.  DELAY OF GERMINATION 1 mediates a conserved coat dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc Natl Acad Sci U S A. 2014:111(34):E3571–E3580. 10.1073/pnas.1403851111 PubMed DOI PMC

Graeber  K, Linkies  A, Wood  ATA, Leubner-Metzger  G. A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell. 2011:23(6):2045–2063. 10.1105/tpc.111.084103 PubMed DOI PMC

Grafi  G. Dead but not dead end: multifunctional role of dead organs enclosing embryos in seed biology. Int J Mol Sci. 2020:21(21):8024. 10.3390/ijms21218024 PubMed DOI PMC

Grant  CE, Bailey  TL, Noble  WS. FIMO: scanning for occurrences of a given motif. Bioinformatics (Oxford, England). 2011:27(7):1017–1018. 10.1093/bioinformatics/btr064 PubMed DOI PMC

Gu  ZG, Gu  L, Eils  R, Schlesner  M, Brors  B. Circlize implements and enhances circular visualization in R. Bioinformatics (Oxford, England). 2014:30(19):2811–2812. 10.1093/bioinformatics/btu393 PubMed DOI

Hall  JC, Tisdale  TE, Donohue  K, Kramer  EM. Developmental basis of an anatomical novelty: heteroarthrocarpy in Cakile lanceolata and Erucaria erucarioides (Brassicaceae). Int J Plant Sci. 2006:167(4):771–789. 10.1086/504928 DOI

Haudry  A, Platts  AE, Vello  E, Hoen  DR, Leclercq  M, Williamson  RJ, Forczek  E, Joly-Lopez  Z, Steffen  JG, Hazzouri  KM, et al.  An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet. 2013:45(8):891–898. 10.1038/ng.2684 PubMed DOI

Hoang  HH, Bailly  C, Corbineau  F, Leymarie  J. Induction of secondary dormancy by hypoxia in barley grains and its hormonal regulation. J Exp Bot. 2013:64(7):2017–2025. 10.1093/jxb/ert062 PubMed DOI PMC

Holloway  T, Steinbrecher  T, Pérez  M, Seville  A, Stock  D, Nakabayashi  K, Leubner-Metzger  G. Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. New Phytol. 2021:229(4):2179–2191. 10.1111/nph.16948 PubMed DOI

Ignatz  M, Hourston  JE, Tureckova  V, Strnad  M, Meinhard  J, Fischer  U, Steinbrecher  T, Leubner-Metzger  G. The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet. Planta. 2019:250(5):1717–1729. 10.1007/s00425-019-03257-5 PubMed DOI PMC

Imbert  E. Ecological consequences and ontogeny of seed heteromorphism. Perspect Plant Ecol Evol Syst. 2002:5(1):13–36. 10.1078/1433-8319-00021 DOI

Iwasaki  M, Penfield  S, Lopez-Molina  L. Parental and environmental control of seed dormancy in Arabidopsis thaliana. Annu Rev Plant Biol. 2022:73:355–378. 10.1146/annurev-arplant-102820-090750 PubMed DOI

Joosen  RVL, Kodde  J, Willems  LAJ, Ligterink  W, van der Plas  LHW, Hilhorst  HWM. GERMINATOR: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant J. 2010:62(1):148–159. 10.1111/j.1365-313X.2009.04116.x PubMed DOI

Ju  L, Jing  YX, Shi  PT, Liu  J, Chen  JS, Yan  JJ, Chu  JF, Chen  K-M, Sun  JQ. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. New Phytol. 2019:223(1):246–260. 10.1111/nph.15757 PubMed DOI

Khadka  J, Raviv  B, Swetha  B, Grandhi  R, Singiri  JR, Novoplansky  N, Gutterman  Y, Galis  I, Huang  ZY, Grafi  G. Maternal environment alters dead pericarp biochemical properties of the desert annual plant Anastatica hierochuntica L. PLoS One. 2020:15(7):e0237045. 10.1371/journal.pone.0237045 PubMed DOI PMC

Kürsteiner  O, Dupuis  I, Kuhlemeier  C. The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol. 2003:132(2):968–978. 10.1104/pp.102.016907 PubMed DOI PMC

Langfelder  P, Horvath  S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008:9:559. 10.1186/1471-2105-9-559 PubMed DOI PMC

Lee  TA, Bailey-Serres  J. Conserved and nuanced hierarchy of gene regulatory response to hypoxia. New Phytol. 2021:229(1):71–78. 10.1111/nph.16437 PubMed DOI

Lenser  T, Graeber  K, Cevik  OS, Adiguzel  N, Donmez  AA, Grosche  C, Kettermann  M, Mayland-Quellhorst  S, Merai  Z, Mohammadin  S, et al.  Developmental control and plasticity of fruit and seed dimorphism in Aethionema arabicum. Plant Physiol. 2016:172(3):1691–1707. 10.1104/pp.16.00838 PubMed DOI PMC

Lenser  T, Tarkowska  D, Novak  O, Wilhelmsson  PKI, Bennett  T, Rensing  SA, Strnad  M, Theissen  G. When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema. Plant J. 2018:94(2):352–371. 10.1111/tpj.13861 PubMed DOI

Linkies  A, Leubner-Metzger  G. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep. 2012:31(2):253–270. 10.1007/s00299-011-1180-1 PubMed DOI

Liu  J, Chen  Y, Wang  W-Q, Liu  J-H, Zhu  C-Q, Zhong  Y-P, Zhang  H-Q, Liu  X-F, Yin  X-R. Transcription factors AcERF74/75 respond to waterlogging stress and trigger alcoholic fermentation-related genes in kiwifruit. Plant Sci. 2022:314:111115. 10.1016/j.plantsci.2021.111115 PubMed DOI

Liu  R, Wang  L, Tanveer  M, Song  J. Seed heteromorphism: an important adaptation of halophytes for habitat heterogeneity. Front Plant Sci. 2018:9:1515. 10.3389/fpls.2018.01515 PubMed DOI PMC

Loades  E, Perez  M, Tureckova  V, Tarkowska  D, Strnad  M, Seville  A, Nakabayashi  K, Leubner-Metzger  G. Distinct hormonal and morphological control of dormancy and germination in Chenopodium album dimorphic seeds. Front Plant Sci. 2023:14:1156794. 10.3389/fpls.2023.1156794 PubMed DOI PMC

Lu  GH, Paul  AL, McCarty  DR, Ferl  RJ. Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh?  Plant Cell. 1996:8(5):847–857. 10.1105/tpc.8.5.847 PubMed DOI PMC

Lu  JJ, Tan  DY, Baskin  JM, Baskin  CC. Post-release fates of seeds in dehiscent and indehiscent siliques of the diaspore heteromorphic species Diptychocarpus strictus (Brassicaceae). Perspect Plant Ecol Evol Syst. 2015a:17(4):255–262. 10.1016/j.ppees.2015.04.001 DOI

Lu  JJ, Tan  DY, Baskin  CC, Baskin  JM. Role of indehiscent pericarp in formation of soil seed bank in five cold desert Brassicaceae species. Plant Ecol. 2017a:218(10):1187–1200. 10.1007/s11258-017-0760-8 DOI

Lu  JJ, Tan  DY, Baskin  CC, Baskin  JM. Delayed dehiscence of the pericarp: role in germination and retention of viability of seeds of two cold desert annual Brassicaceae species. Plant Biol (Stuttg). 2017b:19(1):14–22. 10.1111/plb.12457 PubMed DOI

Lu  JJ, Zhou  YM, Tan  DY, Baskin  CC, Baskin  JM. Seed dormancy in six cold desert Brassicaceae species with indehiscent fruits. Seed Sci Res. 2015b:25(3):276–285. 10.1017/S0960258515000215 DOI

Mamut  J, Tan  D-Y, Baskin  CC, Baskin  JM. Role of trichomes and pericarp in the seed biology of the desert annual Lachnoloma lehmannii (Brassicaceae). Ecol Res. 2014:29(1):33–44. 10.1007/s11284-013-1098-x DOI

McLeay  RC, Bailey  TL. Motif enrichment analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics. 2010:11:165. 10.1186/1471-2105-11-165 PubMed DOI PMC

Mendiondo  GM, Leymarie  J, Farrant  JM, Corbineau  F, Benech-Arnold  RL. Differential expression of abscisic acid metabolism and signalling genes induced by seed-covering structures or hypoxia in barley (Hordeum vulgare L.) grains. Seed Sci Res. 2010:20(2):69–77. 10.1017/S0960258509990262 DOI

Merai  Z, Graeber  K, Wilhelmsson  P, Ullrich  KK, Arshad  W, Grosche  C, Tarkowska  D, Tureckova  V, Strnad  M, Rensing  SA, et al.  Aethionema arabicum: a novel model plant to study the light control of seed germination. J Exp Bot. 2019:70(12):3313–3328. 10.1093/jxb/erz146 PubMed DOI PMC

Merai  Z, Xu  F, Musilek  A, Ackerl  F, Khalil  S, Soto-Jimenez  LM, Lalatovic  K, Klose  C, Tarkowska  D, Tureckova  V, et al.  Phytochromes mediate germination inhibition under red, far-red, and white light in Aethionema arabicum. Plant Physiol. 2023:192(2):1584–1602. 10.1093/plphys/kiad138 PubMed DOI PMC

Mohammadin  S, Peterse  K, van de Kerke  SJ, Chatrou  LW, Donmez  AA, Mummenhoff  K, Pires  JC, Edger  PP, Al-Shehbaz  IA, Schranz  ME. Anatolian origins and diversification of Aethionema, the sister lineage of the core Brassicaceae. Am J Bot. 2017:104(7):1042–1054. 10.3732/ajb.1700091 PubMed DOI

Mohammadin  S, Wang  W, Liu  T, Moazzeni  H, Ertugrul  K, Uysal  T, Christodoulou  CS, Edger  PP, Pires  JC, Wright  SI, et al.  Genome-wide nucleotide diversity and associations with geography, ploidy level and glucosinolate profiles in Aethionema arabicum (Brassicaceae). Plant Syst Evol. 2018:304(5):619–630. 10.1007/s00606-018-1494-3 DOI

Mohammed  S, Turckova  V, Tarkowska  D, Strnad  M, Mummenhoff  K, Leubner-Metzger  G. Pericarp-mediated chemical dormancy controls the fruit germination of the invasive hoary cress (Lepidium draba), but not of hairy whitetop (Lepidium appelianum). Weed Sci. 2019:67(5):560–571. 10.1017/wsc.2019.33 DOI

Mühlhausen  A, Lenser  T, Mummenhoff  K, Theissen  G. Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes. Plant J. 2013:73(5):824–835. 10.1111/tpj.12079 PubMed DOI

Nambara  E, Okamoto  M, Tatematsu  K, Yano  R, Seo  M, Kamiya  Y. Abscisic acid and the control of seed dormany and germination. Seed Sci Res. 2010:20(2):55–67. 10.1017/S0960258510000012 DOI

Nguyen  TP, Muhlich  C, Mohammadin  S, van den Bergh  E, Platts  AE, Haas  FB, Rensing  SA, Schranz  ME. Genome improvement and genetic map construction for Aethionema arabicum, the first divergent branch in the Brassicaceae family. G3 (Bethesda). 2019:9(11):3521–3530. 10.1534/g3.119.400657 PubMed DOI PMC

Nichols  BS, Leubner-Metzger  G, Jansen  VAA. Between a rock and a hard place: adaptive sensing and site-specific dispersal. Ecol Lett. 2020:23(9):1370–1379. 10.1111/ele.13564 PubMed DOI

O'Malley  RC, Huang  SSC, Song  L, Lewsey  MG, Bartlett  A, Nery  JR, Galli  M, Gallavotti  A, Ecker  JR. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell. 2016:165(5):1280–1292. 10.1016/j.cell.2016.04.038 PubMed DOI PMC

Papdi  C, Perez-Salamo  I, Joseph  MP, Giuntoli  B, Bogre  L, Koncz  C, Szabados  L. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J. 2015:82(5):772–784. 10.1111/tpj.12848 PubMed DOI

Penfield  S, MacGregor  DR. Effects of environmental variation during seed production on seed dormancy and germination. J Exp Bot. 2017:68(4):819–825. 10.1093/jxb/erw436 PubMed DOI

Renard  J, Martinez-Almonacid  I, Castillo  IQ, Sonntag  A, Hashim  A, Bissoli  G, Campos  L, Munoz-Bertomeu  J, Ninoles  R, Roach  T, et al.  Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species. New Phytol. 2021:231(2):679–694. 10.1111/nph.17399 PubMed DOI

Reynoso  MA, Kajala  K, Bajic  M, West  DA, Pauluzzi  G, Yao  AI, Hatch  K, Zumstein  K, Woodhouse  M, Rodriguez-Medina  J, et al.  Evolutionary flexibility in flooding response circuitry in angiosperms. Science. 2019:365(6459):1291–1295. 10.1126/science.aax8862 PubMed DOI PMC

Rittenberg  D, Foster  GL. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem. 1940:133(3):737–744. 10.1016/S0021-9258(18)73304-8 DOI

Scheler  C, Weitbrecht  K, Pearce  SP, Hampstead  A, Buettner-Mainik  A, Lee  KJD, Voegele  A, Oracz  K, Dekkers  BJW, Wang  X, et al.  Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases. Plant Physiol. 2015:167(1):200–215. 10.1104/pp.114.247429 PubMed DOI PMC

Seok  H-Y, Tran  HT, Lee  S-Y, Moon  Y-H. AtERF71/HRE2, an Arabidopsis AP2/ERF transcription factor gene, contains both positive and negative cis-regulatory elements in is promoter region involved in hypoxia and salt stress responses. Int J Mol Sci. 2022:23(10):5310. 10.3390/ijms23105310 PubMed DOI PMC

Shigeyama  T, Watanabe  A, Tokuchi  K, Toh  S, Sakurai  N, Shibuya  N, Kawakami  N. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana. J Exp Bot. 2016:67(19):5615–5629. 10.1093/jxb/erw321 PubMed DOI PMC

Silva  AT, Ribone  PA, Chan  RL, Ligterink  W, Hilhorst  HWM. A predictive coexpression network identifies novel genes controlling the seed-to-seedling phase transition in Arabidopsis thaliana. Plant Physiol. 2016:170(4):2218–2231. 10.1104/pp.15.01704 PubMed DOI PMC

Šimura  J, Antoniadi  I, Siroka  J, Tarkowská  D, Strnad  M, Ljung  K, Novak  O. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018:177(2):476–489. 10.1104/pp.18.00293 PubMed DOI PMC

Sperber  K, Steinbrecher  T, Graeber  K, Scherer  G, Clausing  S, Wiegand  N, Hourston  JE, Kurre  R, Leubner-Metzger  G, Mummenhoff  K. Fruit fracture biomechanics and the release of Lepidium didymum pericarp-imposed mechanical dormancy by fungi. Nat Commun. 2017:8(1):1868. 10.1038/s41467-017-02051-9 PubMed DOI PMC

Stamm  P, Topham  AT, Mukhtar  NK, Jackson  MDB, Tome  DFA, Beynon  JL, Bassel  GW. The transcription factor ATHB5 affects GA-mediated plasticity in hypocotyl cell growth during seed germination. Plant Physiol. 2017:173(1):907–917. 10.1104/pp.16.01099 PubMed DOI PMC

Steinbrecher  T, Leubner-Metzger  G. The biomechanics of seed germination. J Exp Bot. 2017:68(4):765–783. 10.1093/jxb/erw428 PubMed DOI

Steinbrecher  T, Leubner-Metzger  G. Xyloglucan remodelling enzymes and the mechanics of plant seed and fruit biology. J Exp Bot. 2022:73(5):1253–1257. 10.1093/jxb/erac020 PubMed DOI PMC

Takeno  K, Yamaguchi  H. Diversity in seed-germination behavior in relation to heterocarpy in Salsola komarovii iljin. Bot Mag Tokyo. 1991:104(3):207–215. 10.1007/BF02489453 DOI

Untergasser  A, Cutcutache  I, Koressaar  T, Ye  J, Faircloth  BC, Remm  M, Rozen  SG. Primer3—new capabilities and interfaces. Nucl Acids Res. 2012:40(15):e115. 10.1093/nar/gks596 PubMed DOI PMC

van Veen  H, Akman  M, Jamar  DC, Vreugdenhil  D, Kooiker  M, van Tienderen  P, Voesenek  LA, Schranz  ME, Sasidharan  R. Group VII ethylene response factor diversification and regulation in four species from flood-prone environments. Plant Cell Environ. 2014:37(10):2421–2432. 10.1111/pce.12302 PubMed DOI

Walck  JL, Hidayati  SN, Dixon  KW, Thompson  K, Poschlod  P. Climate change and plant regeneration from seed. Global Change Biol. 2011:17(6):2145–2161. 10.1111/j.1365-2486.2010.02368.x DOI

Wang  L, Hua  DP, He  JN, Duan  Y, Chen  ZZ, Hong  XH, Gong  ZZ. Auxin response factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet. 2011:7(7):e1002172. 10.1371/journal.pgen.1002172 PubMed DOI PMC

Weitbrecht  K, Müller  K, Leubner-Metzger  G. First off the mark: early seed germination. J Exp Bot. 2011:62(10):3289–3309. 10.1093/jxb/err030 PubMed DOI

Wickham  H. Ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.

Wilhelmsson  PKI, Chandler  JO, Fernandez-Pozo  N, Graeber  K, Ullrich  KK, Arshad  W, Khan  S, Hofberger  J, Buchta  K, Edger  PP, et al.  Usability of reference-free transcriptome assemblies for detection of differential expression: a case study on Aethionema arabicum dimorphic seeds. BMC Genomics. 2019:20(1):95. 10.1186/s12864-019-5452-4 PubMed DOI PMC

Yang  C-Y, Hsu  F-C, Li  J-P, Wang  N-N, Shih  M-C. The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol. 2011:156(1):202–212. 10.1104/pp.111.172486 PubMed DOI PMC

Yoshida  T, Fujita  Y, Sayama  H, Kidokoro  S, Maruyama  K, Mizoi  J, Shinozaki  K, Yamaguchi-Shinozaki  K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 2010:61(4):672–685. 10.1111/j.1365-313X.2009.04092.x PubMed DOI

Zhang  B, Horvath  S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005:4:Article17. 10.2202/1544-6115.1128 PubMed DOI

Zhang  Y, Liu  Y, Sun  L, Baskin  CC, Baskin  JM, Cao  M, Yang  J. Seed dormancy in space and time: global distribution, paleoclimatic and present climatic drivers, and evolutionary adaptations. New Phytol. 2022:234(5):1770–1781. 10.1111/nph.18099 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Aethionema arabicum dimorphic seed trait resetting during transition to seedlings

. 2024 ; 15 () : 1358312. [epub] 20240308

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace